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Abstract Since carbon dioxide (CO2) emissions cause great concern around the world, a

large amount of literature focuses on the impact factors of CO2 emissions. However, there

is little specific guidance on the spatial effects of variables and regional characteristics of

CO2 emissions in China. Based on spatial panel methods, this paper used a STIRPAT

(stochastic impacts by regression on population, affluence and technology) model to

examine the impact of energy-related factors on CO2 emissions in China. Then, the spil-

lover effects of China’s provincial per capita CO2 emissions have been tested. The results

indicate that there exist obvious spatial correlation and spatial agglomeration features in

spatial distribution of per capita CO2 emissions. Spatial economic model is demonstrated

to offer a greater explanatory power than the traditional non-spatial panel model. More-

over, GDP per capita, energy intensity, industrial structure and urbanization have positive

and significant effects on CO2 emissions, while the coefficient of population is not sig-

nificant. According to these results, this paper proposes some policy suggestions on

reducing China’s CO2 emissions.

Keywords Spatial panel data model � STIRPAT model � Regional difference � China

1 Introduction

Nowadays, global warming has become the most important environmental issue, since it

affects natural ecosystems and threatens human’s survival (Chang and Soruco Carballo

2011). The increase in carbon dioxide (CO2) emissions generated mostly through the
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burning of fossil fuels is considered mainly to blame for global warming. Rising sea levels,

melting glaciers and other extreme weather phenomena have aroused worldwide attention.

The relationship between CO2 emissions and natural hazards is becoming a very central

and critical issue, even a political issue. It is particularly important to explore the ways of

CO2 emission reduction because CO2 emissions can lead to serious natural disasters.

Combating global climate change requires multilateral international agreements, and each

county has the obligation to reduce greenhouse gas emissions. This is particularly true for

China which accounted for 25.4 % of the world’s CO2 emissions in 2011 and has been the

largest polluter since 2006 (Yin et al. 2015). China has experienced remarkable economic

growth accompanied with high demand for energy consumption. Rapid increase in CO2

emissions in China is not only the result of energy consumption but also a unique set of

inner driving factors, such as the huge population pressure, large numbers of low-efficiency

high-energy-consuming industries and rapid urbanization. In 2014, China pledged to

achieve the peaking of CO2 emissions around 2030 and increase the share of non-fossil

fuels in primary energy consumption to around 20 % by 2030. Hence, it is necessary to

explore the driving factors of CO2 emissions to achieve CO2 emission reduction goal.

In addressing the impact factors of CO2 emissions, many scholars used the STIRPAT

(stochastic impacts by regression on population, affluence and technology) model to sys-

tematically explore CO2 emissions in different countries and organizations. At the cross-

country level, there are extensive studies that have focused on the determinants of CO2

emissions among different countries by estimating panel data models. Poumanyvong and

Kaneko (2010) used the STIRPAT model to investigate the influence factor of CO2

emissions with a balanced panel dataset of 99 countries and found that there existed a

positive link between population, urbanization rate, energy intensity and CO2 emissions.

Sunila Sharma Sharma (2011) investigated the determinants of CO2 emissions for a global

66 countries and found that trade openness, GDP per capita, electric power consumption

per capita and total primary energy consumption per capita had positive effects on CO2

emissions, while urbanization had a negative impact on CO2 emissions in high-income,

middle-income and low-income countries. Shafiei and Salim (2014) used cross-country

panel data to explore the determinants of CO2 emissions in OECD countries and found

evidence suggested that total population size, GDP per capita, industrialization and

urbanization had positive and significant effects on CO2 emissions. Sadorsky (2014)

emphatically explored the effect of urbanization on CO2 emissions in emerging economies

and found that the estimated coefficient on the urbanization variable in most specifications

was positive but statistically insignificant. Apergis and Ozturk (2015) employed panel data

of 14 Asian countries to explore the relationship between GDP per capita, population

density, industry shares in GDP and CO2 emissions, and the estimates had the expected

signs and were statistically significant, yielding empirical support to the presence of an

EKC for the sample of 14 Asian countries.

Obviously, these studies adopted cross-country panel data and mostly assumed that the

impact of determinants on CO2 emissions is homogeneous across countries. This is a very

strong assumption and one that is unlikely to hold across a large grouping of countries. As

Wei (2015) pointed out that regional development emerged differences and positively

related to local development path, economic structure, spatial linkages and local resource

endowments. Based on unique resource and location advantages, countries always appear

to be different in development mode and country policies. Hence, omitting analysis the

heterogeneity of different economies easily leads to lack of strong explanatory power for

the research conclusion.
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In addition to cross-country analysis, there are a great number of studies concerning

individual countries. Based on times series analysis, Akbostancı et al. (2009) adopted co-

integration techniques to explore the CO2 emissions in Turkey. Saboori and Sulaiman

(2013) applied autoregressive distributed lag methodology to test the CO2 emissions of

Malaysia. Besides, there are CO2 emission researches for other countries such as Brazil

(Pao and Tsai 2011), United Arab Emirates (Shahbaz et al. 2014) and Tunisia (Farhani and

Ozturk 2015). In the case of China, Lin and Jiang (2009) adopted STIRPAT model with

data of time series to analyze the effect of population, GDP per capita, energy intensity,

industrialization and urbanization level on China’s environmental impact. O’Neill et al.

(2012) employed the integrated population–economy–technology–science (IPETS) model

to explore the effect of urbanization on energy use in China. Considering regional dif-

ferences in China, Li et al. (2012) analyzed China’s regional difference in determinants of

energy-related CO2 emissions and found that population, GDP per capita, industrial

structure, technology level and urbanization had different impacts on CO2 emissions in

China’s different emission regions. Wang et al. (2014) investigated the relationship of

urbanization, energy consumption and CO2 emissions using panel data of province level in

China and found that there existed a positive bidirectional long-run relationship between

the three variables; CO2 emissions of east region are much higher than that in central and

west regions. Wang and Zhao (2015) examined the impact factors including population,

GDP per capita, technology, urbanization, industrialization level and foreign trade degree

on energy-related CO2 emissions in three different regions of China and found that dif-

ferentiated measures for CO2 reductions should be adopted according to local conditions of

different regions in China.

Apparently, most previous studies on the determinants of CO2 emissions in China using

conventional estimation techniques with national time series data or province-level panel

data and some studies had explored regional difference in CO2 emissions. Conventional

estimation techniques always assume that the research units are homogeneous, which is a

very strong assumption and is unlikely to hold across a large group of provinces like China.

The difference in level of development among China’s provinces is similar to the

heterogeneity of different countries; in other words, China’s province-level data are to

some extent parallel to the international multicountry data in terms of development dis-

parity. According to the spatial econometric theory, a certain economic geography phe-

nomenon or a certain attribute value in a regional spatial unit is related to the adjacent

spatial units on the same phenomenon or attribute value, meaning that the data between

cross section and time series have the corresponding spatial correlation. As for spatial

econometric model, there also exist some studies mostly focusing on the environment

Kuznets curve (EKC) research, such as Maddison (2006) for the EKCs (including SO2,

CO, NOx, VOC), Wang et al. (2013) for ecological footprint, Hao and Liu (2015) for urban

PM2.5 of China. However, these studies just stressed the shape of EKC and explored the

relationship between economic development and pollution indicators and did not focus on

the research of impacts of CO2 emissions. Therefore, this paper will re-examine the

determinants of provincial CO2 emissions in China by a statistical STIRPAT model using

spatial economic techniques. The object of this study is to test the spatial nexus of

provincial CO2 emissions in China and the driving forces of CO2 emissions when the

spatial effects are controlled. Besides, a comparative analysis of the estimated coefficients

between the non-spatial panel model and spatial panel model will be conducted. It is

important for China’s policy-makers to understand better about the characteristics of

provincial CO2 emissions as well as the determinants for formulating appropriate policies.
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The rest of the paper is organized as follows: Sect. 2 presents the model specification

and the spatial panel models. Section 3 reports the empirical results and discussions.

Finally, Sect. 4 concludes the paper.

2 Methodology

2.1 STIRPAT model

Ehrlich and Holdren (1971) firstly proposed the influence, population, affluence and

technology (IPAT) model. Then, many scholars have paid a great deal of attention to the

IPAT model to specify the determinants of environmental impact. However, there are two

important limitations for IPAT model. Firstly, it does not permit hypothesis testing since

the known values of some terms determine the value of the missing term. Secondly, it

assumes a rigid proportionality between the variables (Sadorsky 2014). To overcome these

limitations, Dietz and Rosa (1997) proposed a stochastic version of IPAT known as

STIRPAT model, which is given by the following equation:

Iit ¼ aPb
itA

c
itT

d
it eit ð1Þ

where a indicates the constant term, b, c and d are the exponential terms of P, A, and T,

respectively. Here, i denotes province in China, t denotes the year, and eit is the error term.

After taking natural logarithms, Eq. (1) provides a convenient linear specification for panel

estimation. Equation (1) can be written as follows:

lnðIitÞ ¼ aþ b lnðPitÞ þ c lnðAitÞ þ d lnðTitÞ þ eit ð2Þ

Chang (2014) pointed out that China needs to optimize industrial structure to achieve

CO2 emission reduction targets. Wang and Yang (2015) stated that carbon emissions were

dominated by the secondary industry in China. Besides, many scholars concluded there

was a positive link between urbanization and CO2 emissions (Wang et al. 2014; Zhang

et al. 2014). As China is now in the stage of industrial adjustment and fast urbanization, in

this paper, we add the industrial structure and urbanization variables to the STIRPAT

model. The augmented model is:

lnðIitÞ ¼ aþ b1 lnðPitÞ þ b2 lnðAitÞ þ b3 lnðTitÞ þ b4 lnðISitÞ þ b5 lnðUitÞ þ eit ð3Þ

where I means CO2 emissions per capita, P denotes population, A stands for real gross

domestic product (GDP) per capita, T denotes technological level usually proxied by

energy intensity (Lin et al. 2009; Wang and Zhao 2015). IS denotes the industrial structure.

U is urbanization level. The specific descriptions of the variables used in this paper are

given in Table 1.

2.2 Spatial econometric models

Following Elhorst (2012), there are mainly two kinds of spatial econometric models,

named spatial lag panel model (SLM) and spatial error panel model (SEM).

Spatial lag panel model mainly explores whether there is a diffusion phenomenon

(spillover effects) that economic behaviors of the adjacent regions cause to other parts of

the local economic behaviors. The spatial lag panel data model can be expressed in matrix

form as
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Y ¼ qðIT �WNÞY þ bX þ ðtT � INÞlþ ðIT � tNÞdþ u ð4Þ

where Y is the dependent variable denoting a (NT 9 1) vector. X is an (NT 9 M) matrix of

the independent variables assuming there are m independent variables. q is the spatial

autoregressive coefficient, which reflects the influence degree of spatial factors on the

dependent variable. The term l denotes the individual effect of spatial unit, and d repre-

sents time effect. WN is a (N 9 N) matrix of spatial weighting coefficients. In this paper,

we adopt the binary contiguity matrix. That is to say, if province i and j are neighboring,

then the value of matrix element is 1, otherwise it is 0. To be consistent with the other

literatures, we normalize the matrix according to row standardization to interpret the

spatial spillover effects as an average of all neighboring provinces. IT and IN denote the

identity matrix, and � denotes the Kronecker product. u is a (NT 9 1) error vector and

obeys to i.i.d. (0, r2I).
While the spatial error panel model is emphasized, faced with the same external

environment impact, local economic phenomenon will show similar fluctuations as adja-

cent areas share some common or similar features. The spatial error panel data model can

be expressed as

Y ¼bX þ ðtT � INÞlþ ðIT � tNÞdþ u

u ¼qðIT �WNÞuþ e
ð5Þ

where u denotes the spatially autocorrelated error term and e is a (NT 9 1) error vector and

obeys to i.i.d. (0, r2I). The other parameters are the same as the above mentioned. Here, q
reflects the influence degree of spatial factors to the independent variables.

According to different assumptions, the above two kinds of spatial panel models can be

divided into fixed effects and random effects models. The fixed effects models can be

further divided into fixed space, fixed time, fixed space and time forms. Due to the

introduction of spatially lagged dependent variable, spatial econometric models will arouse

endogenous variable problem. Hence, if adopting the least squares method to estimate, the

coefficient estimates are biased. Generally, the spatial panel models are estimated by

maximum likelihood method (Elhorst 2012).

Besides, a third model specification enriches and develops the two kinds of model and

provides with a new technical method containing spatial lag both of the dependent variable

and the independent variables. It is called spatial Durbin model (SDM), which can be

specified as

Table 1 Definition of the variables used in the study over the period 1997–2012

Variables Definition Unit of measurement

CO2 emissions per capita (PCO2) Energy-related CO2 emissions ton

Population (P) Population at the end of year 104 units

GDP per capita (PGDP) GDP divided by population at the
end of the year

yuan in constant 1997 price

Energy intensity (EI) Total energy use divided by GDP tce per ten thousand yuan

Industrial structure (IS) Proportion of the secondary
industry output value over the
total GDP

%

Urbanization (UR) Percentage of the urban
population in the total
population

%

Nat Hazards (2016) 81:405–421 409

123



Y ¼ qðIT �WNÞY þ bX þ cðIT �WNÞX þ ðIT � tNÞdþ ðtT � INÞlþ u ð6Þ

where c is a (M 9 1) vector of spatial autocorrelation coefficient of independent variables

and the other parameters are the same as before.

2.3 Global spatial autocorrelation

Global spatial autocorrelation can examine the overall degree of regional spatial correla-

tion. If there is a spatial correlation of China’s overall CO2 emissions, it is generally tested

by Moran’s I index. The formula of global Moran’s I index can be shown as follows:

Moran’ I ¼
Pn

i¼1

Pn
j¼1 xijðYi � �YÞðYj � �YÞ

S2
Pn

i¼1

Pn
j¼1 xij

ð7Þ

where Yi represents the observation of CO2 emissions. The term xij denotes binary space

adjacent weights. If province i is adjacent to province j, the value of xij is 1, otherwise, the

value is 0. The global Moran’s I index ranges from -1 to 1. The value of global Moran’s

I index greater than 0 indicates that environmental pollution behavior exists positive spatial

autocorrelation. The stronger the value is, the greater the degree of positive autocorrelation

is. Conversely, the value less than 0 means that environmental pollution behavior

exists negative spatial autocorrelation. The zero value indicates that the environmental

pollution behavior is not spatial autocorrelated.

3 Data

3.1 Data sources

This paper estimates the impacts of energy-related CO2 emissions using a balanced panel

dataset of 30 provinces in China over the period of 1997–2012, with a sample of 480

observations. As China has no statistical data of CO2 emissions directly, most studies are

based on the indirect calculation of primary energy consumption. In this paper, we also

calculate the CO2 emissions from the consumption of primary energy. The data on GDP,

total population, urban population, the share of the second industry in GDP are from the

China statistical yearbook (National Bureau of Statistics of China 1998–2013b). The data

on GDP are converted into 1997 constant price (Chinese yuan). The energy data of raw

coal, raw oil and natural gas are drawn from the China energy statistical yearbook (Na-

tional Bureau of Statistics of China 1998–2013a). The standard coal equivalent coefficients

for each energy source are also obtained from the China energy statistical yearbook

(National Bureau of Statistics of China 1998–2013a).

3.2 The correlations and multicollinearity of variables

The correlation coefficients and multicollinearity test of the variables are shown in

Table 2. It can be seen that most correlation coefficients are low or moderate. CO2

emissions have strong and significant correlation with population, GDP per capita, energy

intensity, industrial structure and urbanization. To test for multicollinearity, a variance

inflation factor (VIF) test is used over a data range of 1.64–5.75, with a mean value of 3.14.

The VIF values are all less than 10, indicating that there is no multicollinearity.
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4 Empirical results and discussion

4.1 Global spatial autocorrelation test

The global Moran’ I index in sample period is 0.074 at a 1 % significant level, which

indicates that CO2 emissions per capita in China tend to cluster together. However, global

Moran’s I index only tests the overall CO2 emissions pattern and trend. To further detect

the clustering of provincial level, we conduct a Moran’s I scatter plot displayed in Fig. 1.

There are four quadrants in Fig. 1. The four quadrants in the scatter plot present a clas-

sification of four types of spatial autocorrelation: High–High clustering (quadrant I), Low–

High clustering (quadrant II), Low–Low clustering (quadrant III) and High–Low clustering

(quadrant IV).

Provinces located in the first quadrant are Shaanxi, Ningxia, Gansu, Qinghai, Xinjiang,

Yunnan, Guangxi, Guizhou, Sichuan, Chongqing and Hunan. Provinces located in this

quadrant area are economic less-developed western regions. It can be found that these areas

are basically the largest consumption of primary energy. Provinces located in the second

quadrant are Hubei, Fujian, Shandong, Inner Mongolia and Hainan. Furthermore, pro-

vinces located in the third quadrant are Zhejiang, Shanghai, Beijing, Tianjin, Hebei, Jilin,

Table 2 Correlation coefficient matrix and VIF test

VIF lnPCO2 lnP lnPGDP lnEI lnIS lnUR

lnPCO2 1.000

lnP 1.64 -0.2038*** 1.000

lnPGDP 5.75 0.6086*** -0.0124 1.000

lnEI 1.83 0.3950*** -0.3029*** -0.4134*** 1.000

lnIS 1.72 0.5126*** 0.3123*** 0.3386*** 0.137*** 1.000

lnUR 4.75 0.5795*** -0.2292*** 0.8584*** 0.185** -0.2623*** 1.000

* P\ 0.1; ** P\ 0.05; *** P\ 0.01

Fig. 1 Moran’s scatter plot of China’s provincial per capita CO2 emissions (1997–2012)
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Liaoning and Heilongjiang. These provinces or municipalities are mostly the high level of

economic development areas in China. Located in the fourth quadrant provinces are

Jiangsu, Anhui, Shanxi, Henan, Jiangxi and Guangdong.

Above all, it can be seen that provinces with high per capita CO2 emissions (in quadrant

I) have a tendency to cluster together (11 provinces in total) and provinces with low per

capita CO2 emissions (in quadrant III) tend to cluster together (nine provinces in total),

which have accounted for 67 % of the total provinces for the sample period. Thus, spatial

agglomeration of China’s provincial per capita CO2 emissions is significant, which means

that the spatial autocorrelation exists in provincial per capita CO2 emissions of China.

Besides, the value of global Moran’s I index also implies that China has significant spatial

clustering of provincial per capita CO2 emissions.

4.2 Empirical results of spatial panel data models

In order to determine which type of model best fits the data, following Elhorst (2012), at

first the procedure begins by testing the non-spatial fixed models. Columns (1)–(4) of

Table 3 list the estimation results which give the specification of: pooled OLS only, fixed

effects only, time-period fixed effects only and both spatial fixed effects and time-period

fixed effects, respectively. These specifications are all estimated by panel least square

Table 3 Estimation results of non-spatial panel model

Determinants Pooled OLS Spatial fixed effects Time-period fixed
effects

Spatial and
time-period
fixed effects

Intercept -6.614922***
(-13.05720)

lnP -0.005104
(-0.299847)

-0.666945*
(-6.429234)

-0.006920
-0.409274

-0.535796*
(-4.133391)

lnPGDP 0.825791***
(23.41602)

0.779990***
(31.28437)

0.768833***
16.247400

0.833886***
(8.884926)

lnEI 0.901877***
(35.04979)

0.373471***
(14.63344)

0.891527***
33.217191

0.324705***
(12.39753)

lnIS 0.390970***
(5.741612)

0.236521***
(2.88392)

0.403829***
5.945448

0.212901***
(2.60086)

lnUR -0.001655
(-0.02757)

0.136437***
(3.481958)

0.036304 0.528904 0.255880***
(5.540635)

r2 0.0504 0.0118 0.049 0.0108

R2 0.8849 0.9276 0.8376 0.6069

FE R2 0.9731 0.8878 0.9754

Log-likelihood 38.9658 387.5093 45.1854 409.019

LM spatial lag 18.0173*** 30.0160*** 13.5276*** 14.5993***

LM spatial error 8.6308*** 9.6717*** 7.667*** 2.9495

Robust LM spatial
lag

10.4129*** 21.0259*** 6.7897*** 1.2404***

Robust LM spatial
error

1.0265 0.6816 0.9291 7.7229***

The test statistic for the LM test is based on a Chi-squared distribution with one degree of freedom. Numbers
in the parentheses represent t-stat values

* P\ 0.1; ** P\ 0.05; *** P\ 0.01
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method. We perform a LR test to investigate the null hypothesis that the spatial effects and

time-period effects are jointly insignificant. The LR test is rejected at a 1 % significant

level (707.69, 29 degrees of freedom, P\ 0.01). Besides, the null hypothesis that the time-

period fixed effects are jointly significant is also rejected (43.02, with 15 degrees of

freedom, P\ 0.01). Thus, these results justify the panel data model with two-way fixed

effects including the spatial effects and time-period effects.

The non-spatial panel models may suffer from misspecification if spatial dependence

exists within the data of variables. To investigate the spatial dependence, we employ

Lagrange multiplier (LM) tests and their robustness to examine whether non-spatial panel

data models ignore the spatial effects of data or not as shown in the bottom part of Table 3.

Referring to the results of LM tests, the null hypothesis of no spatially lagged dependent

variable and the null hypothesis of no spatially autocorrelated error term are strongly

rejected at a 1 % significance level in the specifications of pooled OLS, spatial fixed effects

only and time-period fixed effects only. The null hypothesis of no spatially autocorrelated

error term cannot be rejected in the non-spatial panel model with two-way fixed effects,

while the null hypothesis of no spatially lagged dependent variable can be rejected at the

1 % significance level. For these tests’ robust counterparts, surprisingly, the null hypoth-

esis of no spatially lagged dependent variable is rejected in all specifications while the null

hypothesis of no spatially autocorrelated error term is only rejected in the non-spatial panel

model with two-way fixed effects. Apparently, these results imply that there exists spatial

correlation among the data. Hence, the OLS estimation of the STIRPAT model is not a

good reflection of the real relationships among the variables. In order to obtain better

parameter estimates, the spatial panel model may favor over the non-spatial panel model

by the LM tests and their robustness.

To further determine which spatial econometric model is appropriate, we estimate the

spatial Durbin model and then perform the Wald test and LR test. The null hypothesis (H0:

c = 0) of Wald test is to examine whether the SDM model can be simplified to the SLM

model, and the null hypothesis (H0: c ? bq = 0) of LR test is to determine whether the

SDM model can be simplified to SEM model. The LR and Wald test statistics are reported

in Table 4. According to the results of Wald test and LR test, both of the null hypotheses

are rejected at the 1 % significance level, which indicates that the SDM model is the most

appropriate specification for this relationship. Hence, we utilize the maximum likelihood

method to examine SDM model with spatial fixed effects, time-period fixed effects, two-

way fixed effects and spatial random effects which are reported in Table 5.

We conduct a Hausman test to determine which are stronger between fixed effects and

random effects, and the Hausman test presents that the random effects are rejected at a 1 %

Table 4 Diagnostic tests of spatial specification

Determinants Spatial fixed
effects

Time-period
fixed effects

Spatial and time-
period fixed
effects

Spatial random
effects and time-
period fixed effects

Wald test spatial lag 45.9477*** 28.7087*** 38.4878*** 41.254***

LR test spatial lag 45.8075*** 28.9589*** 36.429*** 57.5782***

Wald test spatial error 59.3448*** 31.6197*** 53.5573*** 53.8232***

LR test spatial error 58.6308*** 30.828*** 50.7537*** 58.5523***

Both tests follow a Chi-squared distribution with K degrees of freedom

* P\ 0.1; ** P\ 0.05; *** P\ 0.01
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significance level (49.26, with 15 degrees of freedom, P\ 0.01), suggesting that the fixed

effects models in Table 5 are more appropriate specifications. According to the value of R2

and the log-likelihood, listed in the bottom of Table 5, the SDM model with spatial fixed

effects (SDM FE model) is chosen as the best model specification. The estimate results

show that all of the spatially lagged explanatory variables are statistically significant except

the population. Given our normalization of the spatial weighting matrix, the positive sign

of the lagged dependent variable coefficients in SDM FE model suggests that CO2

emissions in neighboring provinces, on average, are exerting a positive effect on local CO2

emissions. This is consistent with the results of Moran’s I index and the LM tests with their

robustness for spatial autocorrelation in Table 3. As shown in Table 5, a 1 % average

change of CO2 emissions in adjacent neighborhood provinces will cause a 0.17 % change

in CO2 emissions of the home province. Since CO2 emissions are estimated based on

primary energy consumption across provinces in this paper, this coefficient implies that

provinces with similar energy-related CO2 emissions generally gather together.

A comparison of the SDM FE model in Table 5 to the corresponding non-spatial two-

way fixed effect model in Table 3 reveals that all of the coefficient estimates (in absolute

terms) are inconsistent. These differences arise because the non-spatial panel data model is

potentially misspecified due to the presence of spatial dependence within the data (Burnett

et al. 2013). Another interpretation is the feedback effects, one province can influence the

CO2 emissions of adjacent provinces and in this way the CO2 emissions of itself can be

affected in turn. The feedback effects are partially from spatially lagged dependent variable

(q(IT � WN)Y), and the other part comes from the spatially lagged independent variables

(c(IT � WN)X). For example, the coefficient estimate of energy intensity by SDM FE

model is 0.34, while the coefficient estimate by non-spatial panel data model is 0.32.

Hence, the feedback effect amounts to -0.02, meaning that the elasticity of energy

intensity in non-spatial panel model is underestimated. The non-spatial model results may

lead policy-makers to believe that reducing energy intensity by 1 % will result in CO2

emission reductions by 0.32 %. However, in fact, the coefficient estimate from the SDM

FE model yields a larger reduction of 0.34 %. This means that China’s local governments

should break administrative boundaries to strengthen regional cooperation promote CO2

reduction together. It also shows the importance for policy-maker to improve system

design and institutional innovation to make the most effective way to reduce CO2 emis-

sions in total.

4.3 Discussion

To analyze the influence factors of CO2 emissions, geographic spatial dependence cannot

be ignored. CO2 emissions per capita present clustering phenomenon among provinces in

China. From the results of Moran’s I scatter plot, China has formed two obvious CO2

emissions’ clustering zones, the western provinces (including Shaanxi, Ningxia, Gansu,

Qinghai and Xinjiang) and the southwest provinces (including Yunnan, Guangxi, Guizhou,

Sichuan and Chongqing) gather the core regions of high per capita CO2 emissions; the

northeast provinces (including Jilin, Liaoning and Heilongjiang) and the northern pro-

vinces (including Hebei, Beijing, Tianjin and Inner Mongolia) are the core regions of the

low per capita CO2 emissions. The spatial correlation presents an obvious apparent blocks

structure in western and northern China. This spatial structure indicates that China’s

western provinces have more responsibility for reducing CO2 emissions. Western pro-

vinces are economically underdeveloped with onefold economic structure. Based on the

resources endowment, the pillar industry of western provinces is mostly energy-intensive
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industries (Meng et al. 2011). Particularly, some western provinces with heavy industry-

oriented industrial structure make the CO2 emission reduction targets quite difficult to

achieve. Besides, it is even more critical that technology backwardness is the widespread

phenomenon, which has caused severe environmental pollution. To address this, the key to

improve the energy-saving emission reduction is corresponding pollution-reducing tech-

nology. The government should make legislative and administrative moves to foster energy

conservation awareness and practices. The introduction and innovation of energy-saving

technologies should also be encouraged or even forced. If the energy-saving policies are

properly formulated and implemented, the goals of economic development and CO2

emission reduction can be well balanced.

Since the diagnostic results suggest that the spatial Durbin panel data model with fixed

effects provides the best fitting, we will limit our discussion to these estimates in Table 5.

When it comes to CO2 emissions in China, GDP per capita has the highest regression

coefficient of 0.98, followed by urbanization level, energy intensity and industrialization

level.

GDP per capita is the most important impact factor of CO2 emissions. The growth of

GDP along with large amounts of primary energy consumption directly results in large

quantities of carbon dioxide emissions. The most important and primary task for China is

to achieve economic and social development. China will continue to raise investment in

order to maintain fast economic growth, which would increase massive fossil consumption

and exhaust CO2 emissions and inevitably result in tremendous damage to the natural

environment. Hence, China needs to optimize its economic growth patterns and adjust

investment structure focusing away from industries of high-energy consumptions to

maintain a growth level of residents’ wealth without destroying the environment (Lin et al.

2009). In this paper, the technological level is proxied by energy intensity which has a

positive effect on CO2 emissions. Energy intensity of China shows a downward trend in

whole from 1997 to 2012. However, compared with developed countries, China’s energy

intensity is still high and has a large potential for reduction. In the 12th Five-Year National

Development Plan, China has set the target of the reduction of energy intensity by 16 %

and carbon dioxide emission per unit of GDP by 17 %. Zhang and Da (2013) argued that

technological choices were the dominant contributor to the decline in energy intensity in

China. Conforming to the viewpoint of the endogenous growth theory, the advancement of

technology can reduce energy intensity and indirectly save CO2 emissions. Besides,

renewable energy can reduce environmental damage in both the short and long run (Al-

mulali et al. 2015). China should optimize the energy structure by putting great weight

behind the development of wind power, photovoltaic power and biomass energy and

working actively to develop hydropower and nuclear power to cut carbon emissions.

Industrial structure and urbanization have a positive and significant impact on CO2

emissions in China. The estimated coefficient on the industrial structure presents that a 1 %

increase in the second industry is associated with a 0.19 % increase in CO2 emissions,

which implies that rapid development of industrialization greatly improves the energy-

related CO2 emissions. Hence, it is essential for China to take a low-carbon industrialized

road. The elastic coefficient of urbanization is 0.22, which means that a 1 % increase in

urban population will result in a 0.22 % increase in CO2 emissions. However, China is now

in the stage of fast industrialization and urbanization and its energy consumption is still on

the rise. It is very difficult for China to reduce CO2 emissions from these two aspects. Tian

et al. (2014) pointed out that services based on providing information-intensive intangible

goods are considered to generate less pollution. Theoretically speaking, optimizing and

upgrading the industrial structure indicate the process of production factors such as capital,

416 Nat Hazards (2016) 81:405–421

123



labor and technology flows from the production sectors or links of industrial chains with

low value-added, poor efficiency and high consumption to those with high value-added,

high efficiency and low consumption, such as the high-end producer services. The pro-

portion of the third industry is insufficient in China, which accounted for 44.6 % share in

2012 and correspondingly restricts the urbanization process. Therefore, in the first and

unprecedented urbanization, China should conduct its industrial restoring, endeavor to

build an industrial system with low-carbon emissions and enter into the low-carbon ser-

vices such as financial services, software industry, tourism, R&D and design, e-commerce,

energy-saving service and ecological restoration, trade and logistics step by step, gradually

increasing the proportion of the third industry. The adjustment of industrial structure and

the corresponding spatial spillover effects will result in some effects such as the

agglomeration effect, the contagion effect and the merging effect, produce a variety of

economic effects and promote regional industrial cluster, leading to the emergence of

urban agglomeration. This view is similar to Ma (2015), who argued that energy-saving

measures such as a compact city layout and the diffusion of energy-saving technologies in

the process of urbanization can lead to a decline of CO2 emissions. Zhang and Lin (2012)

also pointed out that urbanization can change the lifestyles of residents and improve the

efficiency of energy consumption in a long run, therefore CO2 emissions will eventually

decrease though urbanization exerted significantly effects on CO2 emissions at present. In

the future, China’s urbanization rate is projected to increase by 1.5 % annually to 73 % in

2035 (IEA 2013), which will continuously place upward pressure on CO2 emissions.

Therefore, in the process of urbanization, China needs to build a group of different

functions of urban agglomeration on the basis of industry adjustment.

Overall, China is in the process of changing economic growth from the investment

patterns to innovation-driven patterns, but it has traditional high-energy consumption with

low-efficiency economic output abound. The government should fully recognize the

importance of energy conservation and enhance the sense of responsibility to reduce

energy intensity, improve the energy utilization efficiency and accelerate building an

energy conserving economic development mode. To optimize and upgrade the industrial

structure, technological innovation is an enduring force and source (Al-Mulali and Ozturk

2015). China should boost high-end producer services to create, extend and integrate

industrial chains, and speed up the development of producer services in the process of

urbanization. Besides, the construction of new urban should become the important channel

and the hot spot that can cause the city development and new industry clusters.

5 Conclusions and policy recommendations

5.1 Conclusions

This paper studied the influence factors of energy-related CO2 emissions in China with a

spatial panel econometric approach over the period of 1997–2012. We provide strong

evidence of spatial spillover effects of CO2 emissions at county level in China. This

situation illustrated that traditional estimation techniques can yield biased estimated

parameters due to the ignorance of spatial spillover effects of variables. It is especially

important when using panel datasets from across Chinese provinces to explore the elas-

ticity of influence factors of energy-related CO2 emissions.
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Based on global Moran’s I index statistic, we found a significant spatial autocorrelation

of provincial CO2 emissions in China. The spatial correlation presents an obvious apparent

blocks structure of CO2 emissions in China. Specifically, China’s western provinces have

more potential in reducing CO2 emissions than the other provinces. This spatial structure

indicates that a main way to reduce China’s overall CO2 emissions is narrowing the

difference of China’s regional CO2 emissions. Policy-makers should seriously address

regional differences, and the policies issued should be regionally specific. Provinces in

China should take the so-called common but different responsibility to reduce the CO2

emissions. High per capita CO2 emissions of the provinces has more responsibility to

reduce emissions.

Comparing traditional panel methods (e.g., pooled OLS, spatial effects, two-way fixed

effects and random effects) with OLS, the spatial panel techniques are better estimated by

maximum likelihood method. In particular, the SDM FE model is chosen as the better fit

compared to SLM and SEM. The empirical results show that GDP per capita serves as the

most major contributor to increasing CO2 emissions in China, followed by urbanization

level, energy intensity and industrialization level.

5.2 Policy recommendations

From the analysis results previously stated, in order to achieve the promised carbon

emissions intensity target, this paper puts forward some targeted measures for Chinese

government as follows.

(a) The environmental policies should consider regional characteristics and differences

instead of applying the similar policy to all the regions. The spatial spillover effects

indicate that economic activity in provinces has positive externalities. Interprovince

cooperation on energy conservation and emissions reduction need be strengthened.

The central government should make legislative and administrative moves to foster

energy conservation awareness and practices. The introduction and innovation of

energy-saving technologies should also be encouraged or even forced. For local

governments, Western provinces such as Xinjiang, Gansu and Shaanxi with high per

capita CO2 emissions should limit the construction of heavy pollutant enterprises

and strengthen cooperation with the southeast coastal provinces on related carbon-

reduction technologies.

(b) The central government should abandon the high-speed growth mode and propel the

combination of low-carbon urbanization and industrial restructuring. In fact, the

Chinese government has claimed that annual economic growth rate is restrained to

7 % in the 12th Five-Year Plan period to adjust the industrial structure and changing

the mode of economic growth to achieve economic sustainable development.

Greater emphasis should be placed on the optimization of urban layout to allow for

economies of scale and facilitate a low-carbon transition of energy-use patterns of

urban dwellers (Ma 2015). In our views, China should vigorously promote low-

carbon urbanization road and widely spread the application of green architecture

technology with the topic of energy-saving and environmental protection to develop

green city. Some favorable policies in taxation and special funds should be supplied

for economic compensation according to introducing energy conservation and

environmental protection materials. China need adjust the industrial structure,

develop the low-carbon industries and restrict the market access of high-carbon

industries. It can build different functions of environmental protection industry in
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the process of urban agglomeration such as modern service industries. The

government can also create appropriate energy-saving and carbon-reduction

subsidies to accelerate the development of those low-carbon industries (Zhang

and Da 2015).

(c) China should reduce the use of fossil energy and increase the development of clean

energy. As a coal-dominant energy mix, China’s energy intensity is much higher

than developed countries and has a large potential for reduction. Much attention

should be paid to the potential effect of clean coal technology on CO2 emissions

change during the 13th Five-Year Plan period. China’s energy transition from coal

to clean energies is still in its infancy. It is necessary to decrease the share of coal in

energy consumption and increase the proportion of new energies, such as solar

power, wind power and hydro power to reduce the CO2 emissions. More

environmental protection policies should be promulgated in provinces such as

Shanxi, Hebei, Henan and Liaoning where iron and steel enterprises or other

resource-oriented industries gather as these enterprises consume large amounts of

fossil fuels. It is also essential to establish a sound system to strengthen independent

R&D capacity and introduce advanced foreign managerial practices for heavy

pollutant enterprises for these provinces.

All in all, this paper is an attempt to investigate the influential factors of CO2 emissions

using the spatial econometric techniques in China. The purpose of this study is to arouse

the attention of China’s policy-makers to understand better about the spatial characteristics

of provincial CO2 emissions as well as the impacts. Inevitably, this study has some lim-

itations. Firstly, the relationship between CO2 emissions and economic drivers is highly

complicated, and further research can explore more factors influencing the energy-related

CO2 emissions. Secondly, it seems clear that the spatial panel models may better under-

stand the relationships between economic activity and environmental impact with a more

detailed analysis with other spatial weights matrix defined on geographic and non-geo-

graphic measures of connectivity. These are a few of the potential lines for future research.

Acknowledgments The authors gratefully acknowledge the financial supported by the National Natural
Science Foundation of China (No. 71373172) and Humanities and Social Sciences Planning Fund Project of
Ministry of Education (No. 15YJA790091).

References
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