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Abstract In this study, we developed a flood vulnerability index to help planners screen

the relative flood vulnerability across the entire state of Illinois at the county, jurisdictional,

and census block scales. Our flood vulnerability index was comprised of a deterministic

flood loss assessment using the Federal Emergency Management Agency’s Hazus-MH

multi-hazard loss estimation software, coupled with a parametric social vulnerability index

developed from US Census data. The flood-vulnerability screening revealed that approxi-

mately half (46 %; 8500 km2) of Illinois’s 18,500 km2 special flood hazard areas (i.e.,

100-year floodplain) had low flood vulnerability (i.e., few people affected, with little or no

flood losses). This finding substantially reduces the area that Illinois planners may need to

focus their mitigation efforts. The relative flood vulnerability across the three spatial scales

evaluated in this study generally mirrored each other (i.e., counties with high flood vul-

nerability had a substantial number of its jurisdictions and census blocks with high flood

vulnerability). However, the census block-level analysis revealed that counties and a sub-

stantial number of jurisdictions with moderate-to-low relative flood vulnerability often had

pockets (one to a few census blocks) of high relative flood vulnerability. This suggests

flood-vulnerability screening should be performed to at least the census block scale to

ensure pockets of vulnerability are not overlooked. Jurisdictional flood loss ratios (flood

losses proportional to total floodplain exposure) in Illinois were generally largest in rural
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and relatively unprotected floodplain communities located along the state’s large rivers.

This suggests the economic impacts related to riverine flooding would be more severe in

these rural jurisdictions, relative to their economic base, and likely exceed the economic

resources these communities could assemble for flood recovery. The jurisdiction flood-

vulnerability screening results indicated the primary driver of flood vulnerability was dif-

ferent between urban and rural communities. In urban jurisdictions, social vulnerability was

the main driver in flood vulnerability where in the rural jurisdictions flood losses tended to

be the primary driver. This suggests different mitigation strategies will likely need to be

employed in urban versus rural jurisdictions in order to reduce flood vulnerability.

Keywords Flood-vulnerability assessment � Flood vulnerability index � Mitigation �
Hazus-MH � Illinois

1 Introduction

Flooding is the most costly hazard in the USA and worldwide. Between 1993 and 2013,

flood losses recorded in the National Oceanic and Atmospheric Administration’s

(NOAA’s) National Climatic Data Center (NCDC) database exceed $200 billion, with $5.5

billion of these in Illinois alone (NOAA 2014). While flooding cannot be prevented, the

impacts of flooding can be ameliorated.

In order to reduce flood losses and other hazard-related damages, the US Congress

passed the Disaster Mitigation Act of 2000 (DMA 2000). One of the primary goals of the

DMA 2000 was to encourage communities to undertake proactive hazard mitigation

planning. Hazard mitigation planning (HMP) entails the development of pre-disaster plans,

with the goals of reducing the damages and costs from future natural disasters. The

overarching goal of such planning is to reduce vulnerability and increase resiliency of

communities across the USA (Godschalk 2003; FEMA 2011; Frazier et al. 2013).

DMA 2000 requires states and counties to prepare HMPs in order to be eligible to

receive Federal Emergency Management Agency (FEMA) hazard mitigation funds (Berke

and Godschalk 2009; Frazier et al. 2010, 2013). DMA 2000 has established minimum

requirements for HMPs which emphasize physical exposure and the identification of rel-

evant mitigation actions for each natural hazard identified in a jurisdiction. While the

requirements for assessing physical exposure are a first good step, probabilistic loss

assessment coupled with socioeconomic vulnerability assessment could be more effective

in targeted scarce mitigation funding (Frazier et al. 2010, 2013). To move toward more

comprehensive flood hazard assessment, this paper describes construction of a flood vul-

nerability index (FVI) using FEMA’s natural hazard loss estimation software (Hazus-MH),

which can be used to systematically assess flood hazard and socioeconomic vulnerability

across multiple spatial scales (e.g., census block, jurisdictional, and county scales). The

modeling framework presented in this paper is intended to help planners screen flood

vulnerability among locations and jurisdictions in order to target areas for more detailed

flood hazard or mitigation assessment.

1.1 Social vulnerability

Social vulnerability refers to the characteristics of a person or a group and the circum-

stances that influence their capacity to anticipate, manage, or recover from the effects of a
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hazard (Wisner et al. 2004). Social vulnerability is often most pertinent after a hazardous

event, when the different patterns of distress and recovery are observed among particular

groups within the population such as the aged, poor, and minorities (Cutter et al. 2000;

Heinz Center 2000; Cutter and Finch 2007). Economic status is also important consider-

ation because a lack of access to economic resources can limit the ability of some

socioeconomic groups to respond adequately to a disaster (Phillips et al. 2005; Masozera

et al. 2007). These groups are often underprepared for an emergency, often reside in more

hazardous locations, in substandard dwellings, have fewest resources, and lack knowledge

and/or political efficacy to assert access to resources for recovery (National Resource

Council [NRC] 2006). Social vulnerability analysis (SVA) describes social characteristics,

vulnerability to hazards, and the distribution of tangible hazard effects.

SVA generally begins with a qualitative characterization of the study area, followed by

identification of vulnerability drivers, development of a quantitative vulnerability model,

and communication of findings to stakeholders (Polsky et al. 2007; Tate 2012). The model

development stage usually involves the development of a social vulnerability index (SVI).

The purpose of a SVI is to simplify the multi-dimensional complexity into a single metric.

Development of a SVI involves successive stages, including the selection of demographics

indicators, normalization of indicators to a common reference, and summation to a final

value (Tate 2013).

There are three common designs of SVIs: deductive, hierarchical, and inductive models

(Tate 2013). Deductive models generally contain less than ten vulnerability indicators,

which are normalized and aggregated to an index (i.e., Cutter et al. 2000; Montz and Evans

2001; Wu et al. 2002; Collins et al. 2009; Lein and Abel 2010). Hierarchical models

employ generally between 10 and 20 indicators, which are separated into sub-indices that

share a common underlying dimension of vulnerability (e.g., Vincent 2004; Chakraborty

et al. 2005; Flanagan et al. 2011; Mustafa et al. 2011). Within hierarchical models, indi-

vidual indicators are aggregated into sub-indices, and sub-indices combined to formulate

the SVI (Tate 2013). Inductive models start with a large set of indicators ([20), which are

reduced to a smaller subset of uncorrelated latent factors using a principal component

analysis (PCA). These factors are then combined to build an SVI. Inductive models were

made popular by the ‘‘social vulnerability index’’ (commonly referred to as SoVI; Cutter

et al. 2003) and are the basis for the majority of many recent SVIs (e.g., Rygel et al. 2006;

Borden et al. 2007; Burton and Cutter 2008; Myers et al. 2008; Fekete 2009, 2011; Burton

2010; Finch et al. 2010; Schmidtlein et al. 2010; Tate et al. 2010; Wood et al. 2010; Cutter

et al. 2013).

Despite the broad interest in the need to quantitatively model social vulnerability, there

is a lack of consensus regarding the optimum method(s) for constructing SVIs (Tate 2012).

The absence of consensus for formulating SVIs is largely attributable to the lack of an

accepted external validation data set(s) (Tate 2012; Burton 2015). Recent work by Tate

(2012, 2013) has focused on internal validation of SVIs using global sensitivity and

uncertainty analyses. The results of the global sensitivity analysis revealed that hierarchical

SVI design was found to be the most accurate, while inductive SVI design was the most

precise. In addition, deductive SVI design was found to be the most sensitive to the choice

of transformation method, hierarchical design was most sensitivity to selection of

weighting scheme, and inductive model design was most sensitive to indicator set and scale

of analysis. Tate’s (2013) SVI uncertainty analyses revealed that SVI precision decreases

with an increase in vulnerability rank.
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1.2 Flood vulnerability and flood assessment vulnerability

In the literature, definitions and quantification of flood vulnerability have been proposed by

several investigators (e.g., van der Veen and Logtmeijer 2005; Conner and Hiroki 2005;

Balica et al. 2009, 2013; Karmakar et al. 2010). The goal of this investigation was to

develop a framework from which to screen flood vulnerability over a large geographic

region in order to help inform flood hazard assessment and mitigation efforts. The defi-

nition of flood vulnerability best suited to this investigation’s goal is from Balica et al.

(2013): ‘‘the extent to which a system is susceptible to floods due to exposure, a pertur-

bation in conjunction with its ability to cope, recover, or basically adapt.’’ This definition

can be expressed mathematically as

FloodVulnerability ¼ Exposureþ Susceptibilityþ Social Vulnerability ð1Þ

and serves as the tenet for development of our FVI. In this definition, exposure is defined as

the estimated value of the buildings that are present in the areas potentially threatened by

flooding. Susceptibility is defined as the probability of the human population affected and

associated building stock damaged within the floodplain during a flood of a particular

magnitude (Balica et al. 2009). Previous flood-vulnerability assessments can be grouped

into two general approaches, deterministic and parametric. Deterministic approaches are

those which use physically based modeling methods to estimate probability of a particular

flood event and damage assessment models to quantify economic consequences which

together provide an assessment of flood risk for a given area. Parametric approaches use

readily available information, such as census and geospatial data (i.e., land cover,

infrastructure, and precipitation) to develop a relative assessment of the flood vulnerability

within a given area where the results rely on assumptions that cannot be validated from

observed data (Balica et al. 2013). To parameterize Eq. 1, we developed a hybrid modeling

framework in which we employ a deterministic modeling approach to estimate the physical

flood hazard and a parametric model to estimate human vulnerability to the flood hazard

using a SVI.

2 Methods

Our hybrid modeling framework evaluates relative flood vulnerability using a FVI at three

spatial scales: census blocks, incorporated communities, and counties. Using the SFHA

(B1 % annual chance flood) mapped on FIRMs, flood exposure and losses were estimated

using FEMA’s Hazus-MH flood loss modeling software. Census-based demographic data

fromHazus-MHwere employed to develop a parametric model (a SVI) fromwhich to assess

social vulnerability to flooding. Assessments of flood losses and social vulnerability were

combined to produce a FVI to assess relative flood vulnerability across the state of Illinois.

2.1 Study region

Illinois is approximately 146,000 km2 in size and is divided into 102 counties that contain

*1370 incorporated jurisdictions. The state is bounded by three large rivers: the Missis-

sippi River on the west, the Ohio River along the south, and the Wabash River along the

state’s eastern boundary. Within Illinois, there are river systems with extensive floodplains,

including the Illinois, Kaskaskia, Sangamon, Rock, and Green Rivers.
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Floodplain management in Illinois is largely driven by compliance with the US National

Flood Insurance Program (NFIP). The NFIP was established by the US Congress in 1968 to

slow flood disaster relief costs by offering federal flood insurance to property owners pro-

vided that their communities regulate future development in the special flood hazard areas

(SFHA’s; 100-year floodplain). The US Federal Emergency Management Agency (FEMA)

has generated Flood Insurance Rate Maps (FIRMs) to delineate flood hazard areas, identify

flood insurance rate zones, and in areaswhere detailed hydrologic and hydraulicmodeling are

performed, estimate flood water surface elevations (WSELs). On the FIRMs, three flood

hazard types are depicted: (1) SFHAs (C1 % annual chance of inundation), (2) moderate

flood hazard areas [C1.0 % (100 year) toB0.2 % annual chance (500 year) of inundation or

area protected by accredited levees], and (3) areas in which flood hazards are minimal

([0.2 % annual chance of inundation or the flood probability is undetermined, but still

possible; NRC 2009). The portion of the SFHA mapped across Illinois encompasses

approximately 18,500 km2 or 13 % of the state (Fig. 1).

In Illinois, 89 counties out of its 102 counties (78 %) participate in the NFIP. The counties

which do not participate in the NFIP are rural counties generally concentrated in the south-

central or southeastern portion of Illinois (Fig. 1). Of the 918 communities in Illinois eval-

uated by FEMA for flood hazard areas, 790 (86 %) participate in the NFIP. The 127 com-

munities (14 %) which do not participate in the NFIP are generally small, rural communities

located within the counties which do not participate in the NFIP (FEMA 2015).

In addition to the NFIP, FEMA also encourages communities to participate in its Com-

munity Rating System (CRS). This voluntary incentive program encourages communities to

exceed theminimumNFIP requirements for floodplainmanagement.Depending on the rating

class of a participating jurisdiction and location of the insured property within or outside a

SFHA, the insurance premium for policy holders locatedwithin these communities receives a

5–45 % reduction in their insurance premium. Only 3 counties (\3 %) and 13 communities

(\1.5 %) participate in the CRS program in Illinois (FEMA 2012a).

Within Illinois’s SFHA, 143 levee systems have been identified, which together protect

2400 km2 of floodplain. Protection levels of Illinois’s levees range from *10 to 2 %

annual chance floods for agricultural areas up to 0.2–1 % annual chance floods for levees

protecting more developed or urban areas (Fig. 1). Nearly all the levees with protection

levels B1 %annual chance flood are FEMA accredited (Remo et al. 2013).

In the flood-vulnerability modeling approach described below (Sect. 2.2.3), effects of

flood mitigation efforts through NFIP required land use restrictions are largely accounted

for in general building stock (GBS). This is because the GBS model takes into account

NFIP building regulations (FEMA 2012b). Areas protected by FEMA-accredited levees are

explicitly accounted for in SFHA delineations and are presumed to be excluded from

inundation for the B1 % annual chance flood. Given the low participation rate in FEMA’s

CRS program in Illinois and that flood damage reduction measures are only a small

component of this program, the effect of this program on the flood losses is likely minimal.

2.2 Data sources

2.2.1 Floodplain maps

We compiled a SFHA data layer ([1.0 % annual chance floodplain) for the entire state of

Illinois. This layer was compiled from two primary sources: (1) FEMA Digital Flood Rate

Insurance Maps (DFIRMs) where available, or (2) digitized versions of the FIRMs where

DFIRMs were not available. The DFIRMs were obtained from the FEMA Map Service
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Center, and the digitized FIRMs were compiled and edited from the Illinois State Water

Survey (ISWS 1996). At the time of this study, 77 out of 102 Illinois counties had effective

DFIRMs, and three additional preliminary DFRIMs were available. DFIRMs are FIRMs

which have been constructed in a GIS environment using orthoimagery, a digital elevation

model (DEM), and flood data to map the SFHAs and other flood hazard delineations. The

remaining 25 counties had either a FIRMor preliminaryDFIRMdepicting SFHAboundaries.
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Fig. 1 Illinois special flood hazard area (SFHA; floodplains), levees, and major rivers. Levees systems
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2.2.2 Digital elevation model

A DEM, which is used to characterize floodplain topography in the Hazus-MH flood loss

model, was downloaded from the United States Geological Survey’s National Map (USGS

2013). We used a 1/3-arc-second (*10-m resolution) DEM for the flood loss analyses

performed in this study. The DEM is used in the construction of a flood depth grid (FDG)

which defines the area of potential flood inundation and its related flood depths to deter-

mine flood losses (see Sect. 2.2.1 for additional details).

2.2.3 Demographic and building inventory data

Inventories within Hazus-MH include population, demographic, and infrastructure data.

The demographic data contain information such as age, income, and race. These demo-

graphic data were compiled from the 2000 US Census. Hazus-MH provides a national-

level database of essential and critical facilities, transportation networks, utility networks,

and a data model of building inventory [general building stock (GBS)] for users that do not

wish to create their own databases. The Hazus-MH GBS includes data models based on

property insurance data, experts’ knowledge, and tax records (FEMA 2012b). Enhancing

Hazus-MH’s default inventory is desirable for more realistic flood loss estimates, but

compiling such a detailed data set for all of Illinois was beyond the scope of this study. In

previous studies, Hazus-MH using the default inventory has been shown to be capable of

producing reasonable flood exposure and flood loss estimates for coarse regional assess-

ments (Scawthorn et al. 2006; Remo et al. 2012).

2.3 Flood-vulnerability assessment

To capture both the economic and social aspects of flood vulnerability, we used Hazus-MH

to quantify potential flood losses within the FEMA-mapped SFHAs and developed social

vulnerability scores for the census block, jurisdictional, and county spatial scales.

Screening of the relative flood vulnerability in Illinois census blocks, incorporated juris-

dictions, and counties was accomplished by developing a FVI. The FVI developed for this

study is comprised of both a flood loss index (FLI) to quantify the relative economic losses

(flood losses normalized to estimate exposure) and a social vulnerability index to assess the

relative socioeconomic condition of floodplain communities in order to evaluate their

potential ability to recover from a large damaging flood. The general procedure for

developing the FVI is shown in Fig. 2 and described in detail below.

2.3.1 Flood loss modeling

The flood loss modeling in this study was performed using Hazus-MH version 2.1, service

pack 3. Hazus-MH is a geographic information system (GIS)-based risk assessment tool

designed by FEMA in collaboration with the National Institute of Building Sciences. The

Hazus-MH flood module assesses the impact of flooding based on FEMA and US Army

Corps of Engineers (USACE) damage relationships. These relationships are applied to

Hazus-MH infrastructure inventories to estimate losses for different flood scenarios

(Schneider and Schauer 2006).

Hazus-MH allows modelers either to choose default settings (‘‘Level 1’’ analysis) or

else to provide increasingly detailed user-supplied data to improve the resolution and
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accuracy of loss estimates (‘‘Level 2’’ or ‘‘Level 3’’ analyses). We performed Level 1

Hazus-MH flood loss analysis for the entire state of Illinois. Updating building and

infrastructure data or performing hydrologic and hydraulic modeling to create a more
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Fig. 2 Overview of the flood-vulnerability assessment framework
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detailed flood hazard assessment was beyond the scope of this project. For each county, we

estimated the potential flood losses within the designated SFHA ([1 % annual chance

flood). For floodplain areas protected by FEMA-accredited levees, we assumed the levees

performed as designed [i.e., no levee failure(s)]. It is important to point out that the flood

scenario modeled here does not represent a realistic flood. It is highly unlikely that all

rivers and streams in a given jurisdiction, let alone the whole state of Illinois, would

simultaneously experience the 1 % (‘‘100-year’’) flood. Hence, the flood losses presented

here should be viewed as a standardized estimate of building-related flood losses, which

allows for comparison of relative riverine flood hazard between Illinois’s jurisdictions.

Hazus-MH requires the construction of a flood depth grid (FDG) to define the area of

potential flood inundation and flood depth to determine damages using depth–damage

curves. To construct the FDGs here, we employed Hazus-MH’s enhanced quick look

(EQL) tool. The data required to generate a FDG using the EQL tool are a polygon layer

representing the extent of the flood, in this case FEMA’s SFHA, and a DEM representing

floodplain topography. In each county, we used the DFIRM or digitized FIRM map to

delineate the SFHA boundary. A 1/3-arc-second (*10 m) DEM was used to depict

floodplain topography. Hazus-MH default aggregate GBS data were used for the loss

estimation. The aggregated GBS uses building valuations from Dun and Bradstreet (2006)

R.S. Means values. Consequently, all flood loss and flood exposure estimations presented

in this paper are in 2006 dollars.

Hazus-MH flood losses reported in this study are for building-related losses only.

Building-related losses include building damages, building inventory damages, and com-

mercial inventory damages. These building-related flood loss estimates do not include

damage to infrastructure (i.e., roads, bridges, and utilities), agricultural losses, or indirect

economic losses (i.e., loss of business or industrial production). In addition, these flood loss

and exposure estimates are based on full replacement cost (i.e., the estimated cost to

replace the damaged portion of a building). Hence, the resulting flood loss estimates may

be significantly higher than insured losses or loss estimates calculated using property

assessment data. Insured losses and loss estimates using assessor data commonly use fair

market values, which include depreciation of building values after initial construction.

2.3.2 Social vulnerability assessment

A community’s wealth, race, class, and sociopolitical structures can influence the ability of

a community to recover from a flood disaster, and geographic variations in these char-

acteristics can be used to construct place-based metrics of disaster vulnerability (Ngo 2001;

Tierney 2006; Burton and Cutter 2008; Cutter et al. 2013). The goal of this study was to

develop a SVI informed by the social vulnerability literature (e.g., Cutter et al. 2003, 2013;

Burton and Cutter 2008; Cutter 2010; Wood et al. 2010) and implemented using the

socioeconomic data available within Hazus-MH.

To assess differences in socioeconomic factors among Illinois flood-prone jurisdictions,

we developed a SVI using a mainly inductive modeling approach, employing socioeco-

nomic data derived from the 2000 US Census and included within Hazus-MH (v 2.1). For

the census blocks in Illinois which were at least partially located in the floodplain, we

identified 27 vulnerability-relevant demographic parameters available within Hazus-MH

from which to develop a SVI. We limited ourselves to these demographic parameters

because they were readily available at a common spatial scale and covered the major

vulnerability indicator categories (age, race, and wealth). To develop a relative SVI, we

first consolidate the age, race, and wealth parameters. For this consolidation, we summed
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the number of persons under the age of 16 and over the age of 65 to create a single age

parameter for each census block. We next consolidated six race classes into two race

category parameters, white and nonwhite. The nonwhite race parameter was the sum of the

number of Asian, Hispanic, Pacific Islander, Native American, and persons of other races

(other than white) in each census block. The white race parameter was the sum of the

number of white persons in each census bock. The household income levels (wealth

parameter) were consolidated from nine to five categories. Next, we normalized the age,

race, and general occupation parameters by total population within the census block

(number of persons/total number of persons per census block). The income and housing

parameters were normalized to the total number of households within a census block

(number of households/total number of households per census block; see Table 1).

We next employed a principal components analysis (PCA) using the remaining 16

socioeconomic parameters to develop a smaller set of uncorrelated latent factors using

SPSS (v19). Of the 16 parameters included in the PCA, eight explained 78.6 % of the

variance within the assessed parameters. We selected these parameters (principle com-

ponents) using a modified version of the ‘‘Kaiser’s Rule’’ (Jolliffe 2002). The principle

components with ratios exceeding 0.7 [a component’s eigenvalue divided by the average

eigenvalue (amount of joint variance)] were retained (Table 2; Wilks 2006).

The formulation of our SVI began with evaluating the eight socioeconomic parameters

retained from the PCA (Table 2). Based on a review of the social vulnerability literature,

directionality (positive for increasing and negative for decreasing social vulnerability) was

assigned to each parameter. Elderly, youth, nonwhite race, and low income were associated

positively with social vulnerability. High income and white race were associated nega-

tively with social vulnerability (Cutter et al. 2003; Wood et al. 2010). For household

income, we selected $40,000 as the break between positive and negative directionality,

because the household poverty income level for most family sizes in Illinois is B$40,000

(US Census 2014).

The first step in the SVI formulation was to calculate the social vulnerability score

(SVscore) for each census block in which a portion of the block was located within the

SFHA:

SVScore ¼
pp1þ pp2þ � � � varx
number of parameters

� np1þ np2þ � � � varx
number of parameters

ð2Þ

where pp are the positive social vulnerability parameters and np are the negative social

vulnerability parameters. Next, the general indexing formula (Wu et al. 2002; Karmakar

et al. 2010) was applied to the SVscores to calculate the SVI. In this formulation, VIi is the

respective vulnerability index and the index Ii corresponding to the SVscore for ith census

block is calculated using the following equation, which normalizes the SVscore from 0.0 to

1.0:

VIi ¼
Ii � Imin

Imax � Imin

ð3Þ

where Imin and Imax are the minimum and maximum SVscore and Ii is the SVscore for the ith

block.

To assess the relative importance of each of the eight socioeconomic parameters in the

formulation of the SVI, a sensitivity assessment was performed by withholding one of the

parameters and comparing the result to the complete SVI formulation. The average of the

percent difference between the complete SVI formulation and the SVI with a parameter
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withheld was used to assess the parameters effect on the SVI score. This sensitivity

assessment was performed at each geographic unit analyzed in this study (i.e., census

block, jurisdiction, and county levels; Table 3).

2.3.3 Flood vulnerability index calculation

The FVI was calculated for each census block, jurisdiction, and county in Illinois using

the following procedure. First, the flood exposure (Floodexposure) and flood loss

Table 1 The 27 socioeconomic vulnerability-relevant parameters from Hazus-MH’s demographic database
which were evaluated for use in the formulation of the SVI

Normalized parameter description Consolidated parameters

Percentage of male population\16 years of age Percent of population under 16 and greater
than 65 years of agePercentage of female population\16 years of age

Percentage of male population[65 years of age

Percentage of female population[65 years of age older

Percentage of the population white Percent white

Percentage of the population black

Percentage of the population Asian Percent nonwhite

Percentage of the population Hispanic

Percentage of the population Pacific Islander

Percentage of the population Native American

Percentage of the population other race

Percentage of the households with income of $0–$10K Percentage of households earning $0–$20K

Percentage of the households with income of $10–$20K

Percentage of the households with income of $20–$30K Percentage of households earning $20–$40K

Percentage of the households with income of $30–$40K

Percentage of the households with income of $40–$50K Percentage of households earning $40–$60K

Percentage of the households with income of $50–$60K

Percentage of the households with income of $60–$75K Percentage of households earning $60–$100K

Percentage of the households with income of $75–$100K

Percentage of the households with income over $100K Percentage of households earning[$100K

Percentage of owner-occupied units

Percentage of renter-occupied units

Percentage of vacant homes

Percentage of the population working in commercial
industry

Percentage of the population working in industrial industry

Percentage of homes owned

Percentage of vacant houses

Percentage of homes rented

The age, race, and occupation parameter classes were normalized to total population within a census block
(number of persons/total number of persons in a census block), and the income and housing status
parameters were normalized to the total number of households within an census block (number of house-
holds/total number of households within a census block)
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(Floodloss) estimates for the SFHA in each geographic unit were calculated using Hazus-

MH (see flood loss modeling section above for details). Next, a flood loss ratio (Lossratio)

was calculated to normalize flood loss estimation parameter for each geographic unit

analyzed.

Lossratio ¼
Floodloss

Floodexposure
ð4Þ

Hazus-MH does not calculate flood exposure and losses at jurisdictional scales. In order

to ascribe the flood exposure and flood loss estimates to a particular jurisdiction, we used

the spatial join tool within Esri’s ArcMap (v10.2) GIS software. The join tool summed

flood exposure and flood loss estimates from the census blocks that were either fully or

partly contained within each jurisdiction’s boundaries. In order to account for the overlap

of census blocks outside a jurisdictional boundary, a floodplain area weighting factor

(FPwf) was calculated by dividing the total area of the jurisdiction (JDarea) by the SFHA

within the jurisdiction (FParea; Eq. 5). FPwf was then multiplied by the jurisdiction’s loss

ratio to calculate the weighted flood loss ratio (WLossRatio; Eq. 6).

FPwf ¼
JDarea

FParea
ð5Þ

WLossRatio ¼ LossRatio � FPwf ð6Þ

Table 2 The results of the principal component analysis

Parameter Component Eigenvalue Percent of
variance
explained

Percent under 16 years of age and percent over
65 years of age

1 4.22 23.5

Percent of nonwhite people 2 2.08 11.6

Percent of white people 3 1.86 10.3

Percent of households earning $0–$20K 4 1.71 9.5

Percent of households earning $20–$40K 5 1.34 7.4

Percent of households earning $40–$60K 6 1.25 6.9

Percent of households earning $60–100K 7 0.96 5.3

Percent of households earning >$100K 8 0.74 4.1

Explained variance 78.6

Percent households owned 9 0.66 3.9

Percent household rented 10 0.65 3.8

Percentage of vacant homes 11 0.55 3.1

Percentage of vacant houses 12 0.45 2.6

Percentage of the population working in industrial industry 13 0.41 2.4

Percentage of the population working in commercial industry 14 0.36 2.1

Percentage of owner-occupied units 15 0.33 1.9

Percentage of renter-occupied units 16 0.27 1.6

Total variance explained 100.0

Bold denotes parameters retained for formulation of the SVI
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To assess a county’s or jurisdiction’s social vulnerability, we averaged the SVscore

within each of the flood-prone census blocks in a given jurisdiction using an averaging

spatial join.

For the county-scale analysis, we aggregated the census block flood exposure, losses,

and SVscore values to the county scale using a spatial join tool within ArcMap. A sum

spatial join was used to aggregate the Hazus-MH flood exposure and flood loss estimates to

the county. The flood loss ratio for each county was then calculated using Eq. 4. An

average spatial join was then used to aggregate the flood-prone census block SVscore to the

county.

Next, Eq. 3 was applied to the Lossratio or WLossratio to calculate the flood loss index

(FLI) for the respective geographic unit under consideration. Then, the FLI and SVI were

added together to calculate a flood vulnerability score (FVScore) for each block, jurisdic-

tion, and county.

FVscore ¼ FLIþ SVI ð7Þ

The FVscore was index using Eq. 3 to generate the FVI, so each census block’s, juris-

diction’s, or county’s flood vulnerability could be ranked.

3 Results

Of Illinois’s 1367 incorporated jurisdictions, 899 jurisdictions included mapped SFHAs

within their boundaries, and Hazus-MH flood loss modeling suggested that 895 of them

would experience at least some flood losses if the 1 % chance annual flood were to occur.

3.1 Social vulnerability results

The social vulnerability assessment results suggest that Hudson Village, in McLean

County, was one of the least socially vulnerable communities in Illinois. Venice City,

located on the border between St. Clair and Madison Counties, was one of the most flood

vulnerable jurisdictions in Illinois. The least and most socially vulnerable counties in

Illinois were Kendall and Pulaski Counties, respectively (Supplemental Materials

Appendices 1 and 2).

As outlined in Sect. 2, we tested the sensitivity of our SVI scores to incremental

removal of each of the input parameters, and we completed this test for each of the spatial

scales in the study (census blocks, jurisdictions, counties). This assessment revealed that

the resulting SVI scores did change, in some cases substantially (up to 39 %). The race

parameters were the most sensitive model parameters across each geographic unit ana-

lyzed. For the block and county units, percent white people was the most sensitive

parameter and, at the jurisdiction unit, percent nonwhite people was the most sensitive

parameter. Between the age and wealth parameters, the wealth parameters tended to be

more sensitive, in general, than the age parameter (Table 3).

We also compared our county-level SVI to the widely cited Hazards and Vulnerability

Research Institute’s (HVRI) county-level social vulnerability index (SoVI) for the USA

2006–2010 (HVRI 2012). Despite the difference in the data employed and the formulations

of the two indices, the SoVI and SVI scores were generally in agreement (*80 %) in their

relative vulnerability classification [i.e., high (top 25 %), medium (middle 50 %), low

(bottom 25 %)] for Illinois counties.
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3.2 Physical flood hazard assessment

The building-related flood exposure within the full SFHA in Illinois was estimated here to

be *$300 billion. The greatest concentration of this flood exposure was located in Cook

and adjacent five counties: Dupage, Kane, Lake, McHenry, and Will. These counties

contain the urban centers of the Chicago metropolitan area, and together they contain

*$191 billion or nearly 64 % of the flood exposure within Illinois’s SFHA. The analyses

of flood exposure at the census block and jurisdictional scales also showed the greatest

exposure totals concentrated in Cook County and the surrounding areas (Supplemental

Materials Appendices 1 and 2).

Total building-related flood losses within the full SFHA in Illinois were estimated here

to be *$18 billion. Aggregated county-level losses ranged from a minimum of $2.7

million in Ford County up to $3.3 billion in Cook County (Fig. 3). At the jurisdictional

level, flood losses ranged from less than a $1000 in Bondville up to $942 million in the city

of Chicago. As with the flood exposure estimates, the largest flood losses were concen-

trated in and around the city of Chicago (Supplemental Materials Appendices 1 and 2).

Flood loss ratios were calculated in order to normalize losses to total building infras-

tructure exposure. As Fig. 3 shows, the flood loss ratio provides a different perspective on

flood risk than flood exposure and flood loss estimates. When normalized to total exposure

(total infrastructure within the SFHA), Cook and surrounding counties have average (0.05)

to slightly below average ratios. Unlike the raw flood exposure and flood loss values, the

highest flood loss ratios were outside of the Chicago area. The counties with the largest
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flood loss ratios are Lee, Peoria, Tazewell, White, and Pulaski Counties. These counties

have large expanses of floodplain along larger rivers such as the Illinois, Rock, Green,

Ohio, and Wabash. Jurisdictions with high flood loss ratios tend to be small river towns

that lack large accredited levees or other structural protection (Fig. 4).

3.3 Flood vulnerability

The flood vulnerability analysis performed revealed nearly half (8530 km2, or 46 %) of

Illinois’s SFHA (18,500 km2) had low flood vulnerability (few people affected, with only

minor flood losses). The flood vulnerability results here also suggest that Hudson Village,

in Kane County, was one of the least flood vulnerable jurisdictions, and Madison City in St.

Clair County was one of the most flood vulnerable jurisdiction in Illinois (Fig. 4). The least

and most flood vulnerable counties in Illinois were Brown and Pulaski, respectively

(Supplemental Materials Appendices 1 and 2).

4 Discussion

The FVI developed here is useful as an initial screening tool to identify areas of low,

elevated, or high relative flood vulnerability. The flood-vulnerability assessment performed

in this study provides a picture of relative flood vulnerability across the entire state of

Illinois at three different scales of analysis (county, jurisdiction, and census block). Within
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FEMA’s SFHAs, the estimated building-related flood exposure is *$300 billion. Sixty-

four percent ($191 billion) of Illinois’ building-related flood exposure is concentrated

within the six counties which include and surround the city of Chicago. The building-

related flood losses within the SFHA are estimated to be $18.4 billion.

Unlike the flood losses, which are concentrated around Chicago, the communities in

Illinois with the largest relative flood loss ratios (flood losses proportional to total flood-

plain exposure) were the rural jurisdictions located along Illinois’s larger rivers. This

suggests that the economic impacts related to riverine flooding would be more severe in

these rural jurisdictions, relative to their total economic base, and it may be inferred,

relative to the economic resources those communities could muster for flood recovery and

reconstruction. This result is similar to the Cross (2001) finding that smaller communities

often have a higher proportion of their populations vulnerable to natural hazards.

Three spatial scales of analysis were undertaken in this flood vulnerability analysis. The

county and/or jurisdiction scales are the common spatial resolution for flood risk assess-

ments performed in support of hazard mitigation plans (Frazier et al. 2013; Remo et al.

2013). In addition to these scales of flood risk assessment, we also evaluated flood vul-

nerability at the census block scale. While the results of the flood vulnerability analysis at

these three scales mirrored one another (i.e., counties with high flood vulnerability had a

substantial number of its jurisdictions and census blocks relatively ranked as highly vul-

nerability to flooding), the census block assessment revealed pockets (a small number of

census blocks) of potential high flood vulnerability in all counties and a substantial number

of jurisdictions with low-to-moderate flood vulnerability. This result suggests aggregation

of flood risk or vulnerability assessments to the county or even the jurisdictional scale can

potentially mask areas which have substantial flood vulnerability.

The jurisdictional flood vulnerability analyses revealed potential flood losses were a

more substantial driver of flood vulnerability in rural floodplain communities than in urban

jurisdictions. In urban jurisdictions such as Chicago and East St. Louis, social vulnerability

was responsible for the relatively high FVI scores. This finding suggests that different

mitigation strategies may have to be employed to reduce flood vulnerability in these

communities. For example, in rural, relatively unprotected floodplain communities, partial

or full community relocations may be required to substantially reduce flood vulnerability,

while targeted buyouts may be sufficient to substantially reduce flood vulnerability in

generally better protected urban floodplain communities.

4.1 Limitations of the flood-vulnerability assessment

In this and any similar studies, flood loss estimates and social vulnerability indicators are

associated with broad uncertainty. Evaluation of modeling results is difficult, because

external validation of regional flood loss models for hypothetical flood scenarios [i.e.,

specific return period(s)] is rarely possible, and social vulnerability has tangible symptoms,

but no metric exists to directly measure it (Tate 2012). In the sections below, we discuss

the specific sources of uncertainty in the flood-vulnerability assessment here.

4.1.1 Uncertainty in flood exposure and flood loss estimates

A variety of uncertainty and sensitivity analyses has been undertaken on the Hazus-MH

flood loss model (e.g., URS Group 2007; Ding et al. 2008; Association of State Floodplain

Managers [ASFPM] 2009; 2010a, b; Tate 2014). Tate (2014) showed that flood loss

estimates can vary by up to a factor of three, and uncertainty generally increased with
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increased spatial resolution (FEMA 2012b). The primary sources of uncertainty in Hazus-

MH flood exposure and flood loss estimates are related to: (1) the quantification of the

flood hazard; (2) the use of the national-level infrastructure data for the building inventory;

and (3) the assumption of an even distribution of inventory across each census block.

In this study, we chose to quantify the flood hazard using the SFHA because it was the

only flood hazard definition readily available for the entire state of Illinois. National-level

infrastructure data provided with Hazus-MH are coarse approximations of structure,

contents, and inventory replacement values for a specific census block and maybe sus-

tainably different than local values (FEMA 2012b). In addition, the Hazus-MH infras-

tructure data model assumes that buildings are evenly distributed throughout each census

block which is attributed with being a substantial source of uncertainty. In Illinois, pre-

vious research has shown that building-related loss estimates can average up to 50 %

greater than loss estimates using individual structure data with assessed values for regio-

nal-level assessments (Remo et al. 2012). Hence, the flood exposure and flood loss values

presented in this study should be seen as coarse estimates useful for comparative purposes.

4.1.2 Uncertainty in the social vulnerability index

US Census of Population and Housing (2000) data contained within Hazus-MH were used

to calculate the SVI in this study. Two main issues arise with using these data for such an

analysis. The first is the age of the data. It has been approximately 15 years since these data

were collected. Changes in populations and housing have changed over this period,

increasing the uncertainty in the SVI values here. The second issue is that the US Census

Bureau has long recognized chronic data collection error as a result of undercounts and

overcounts (Clark and Moul 2003). The undercounts have historically been the greatest

with racial and ethnic minorities, children, renters, and migrant farm workers, the home-

less, and undocumented immigrants (Hannah 2001; Passel 2005).

Other sources of uncertainty in the social vulnerability analysis performed here include

interaction between variables and compensability. The assumption of no interaction

between variables in a social vulnerability analysis can be an issue because the magnitude

of several vulnerability dimensions can vary relative to socioeconomic status (Phillips

et al. 2005; Elliot and Pais 2006). Compensability occurs when high levels of one indicator

mask a high value of another indicator. For example, the elderly in different circumstances

can either be highly vulnerable or less vulnerable depending on income. In addition, some

indicators will likely have greater significance than others depending on the hazard and its

magnitude (Tate 2013).

4.2 Future flood-vulnerability assessment research

In this study, we developed a flood-vulnerability assessment framework to evaluate the

spatial distribution of relative flood vulnerability across a large region and at multiple spatial

scales. As indicated above, there are significant uncertainties and consequently room for

improvement in the FVI developed here. The index was intended as a screening tool; it was

not intended to be an absolute measure of flood vulnerability or mitigation potential. How-

ever, the modeling framework developed here allows for the use of improved data and the

addition of assessment tools which could lead to improved modeling in the future that could

better assess the mitigation potential of individual communities or areas.

Future improvements to the flood-vulnerability assessment performed here should begin

with a global sensitivity and uncertainty analyses of the FVI construction and its associated
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models (indices). Such analyses would be useful in evaluating the effects of epistemic

uncertainty in our flood-vulnerability assessment and limiting uncertainty in the FVI

methodology (Hall et al. 2005; Tate 2014). Given the large spatial scale of this study and

the consequent resource needs, no comprehensive global sensitivity and uncertainty

analyses were attempted here. However, global sensitivity and uncertainty analyses of the

individual components of our flood vulnerability model are currently a focus of ongoing

research.

Other improvements to the flood-vulnerability assessment performed here could include

a more comprehensive assessment of the flood hazard and improvements to the Hazus-MH

general building stock. The addition of a realistic annualized flood loss assessment would

increase the resolution of the flood hazard assessment. However, the hydrologic and

hydraulic analyses required to realistically estimate annualized flood losses for the entire

state of Illinois would be substantial undertakings. The Hazus-MH flood loss estimations

could be improved by applying dasymetric mapping techniques (Sleeter 2008; Mennis

2009) or updating the GBS with local tax assessors’ data. Applying dasymetric techniques

to the census block-level data could potentially help reduce the uncertainty related to

current assumption of uniform distribution of building stock. Updating the GBS with

assessor data can improve measures of the number of buildings, building values, and other

pertinent building parameters (i.e., square footage, number of stories, and foundation type;

FEMA 2012b; Tate 2014).

Future studies should further investigate the spatial patterns of flood vulnerability. We

only looked at broad spatial trends in flood vulnerability due to the limitations with the data

and methods applied in this study. Future studies, with presumably higher fidelity of flood

vulnerability, may have the potential to infer more information and insights about spatial

relationships between the physical and socioeconomic divers of flood vulnerability.

Another consideration for future flood-vulnerability assessments is integrating future

changes in flood risk. Executive Order (EO) 13690 issued by President Obama in January

2015 established a new Federal Flood Risk Management Standard (FFRMS). The new

standard amends the previous EO 119988 issued in 1977 and aims to reduce the risk and

cost of future flood disasters by ensuring that Federal investments in and affecting

floodplains meet higher flood risk standards. The new standard requires agencies, when

using federal funds, to use utilize best available, actionable hydrologic and hydraulic data

and methods that integrate current and future changes in flooding based on climate science

or substantially exceed the current (100-year flood level) standard (i.e., use the 500-year

flood level or add more than 2 feet to the 100-year flood level).

5 Conclusions

The purpose of this flood-vulnerability assessment was to develop a reconnaissance tool to

aid planners in screening for vulnerability over a large geographic region, so that resources

can be focused on areas with the greatest need. We found that 46 % (8530 km2) of

Illinois’s 18,500 km2 SFHA had low flood vulnerability (i.e., few people affected, with

little or no flood losses), reducing by *half the area which Illinois planners may need to

focus their mitigation efforts. The relative flood vulnerability across the three spatial scales

evaluated in this study generally echoed each other (i.e., counties with high flood vul-

nerability had a substantial number of its jurisdictions and census blocks with high flood

vulnerability). However, comparison of these analyses also revealed that counties and a

Nat Hazards (2016) 81:265–287 283

123



substantial number of jurisdictions with moderate-to-low relative flood vulnerability often

had pockets (one to a few census blocks) of high relative flood vulnerability. This suggests

flood-vulnerability screening should be performed to at least the census block scale to

ensure all areas with substantial flood vulnerability might be identified.

Jurisdictional flood loss ratios (flood losses proportional to total floodplain exposure)

were generally largest in rural and relatively unprotected floodplain communities located

along Illinois’s large rivers. This suggests the economic impacts related to riverine flooding

would be more severe in these rural jurisdictions, relative to their economic base. Given the

relative severity of flooding impacts on these rural communities, the damages would likely

exceed the economic resources these communities could amass for flood recovery and

rebuilding.

The jurisdictional level analysis revealed that flood losses were a more substantial driver

of flood vulnerability in the rural floodplain communities than in urban communities. In

urban areas with high FVI scores, social vulnerability was responsible for the high flood

vulnerability scores. This suggests different mitigation strategies or mitigation efforts may

be required to reduce flood vulnerability in these respective community types.
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