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Abstract According to the forest statistic data, the forest degradation in West Kali-

mantan has been increasing since 2006. The satellite remote sensing data can provide

information more effective and economical input rather than direct field observation that is

difficult to access. In this research, we applied a spectral index derived from remote

sensing satellite data, the Normalized Difference Fraction Index (NDFI), then compared it

with the widely used forest degradation index, the Normalized Burn Ratio (NBR) and the

Normalized Difference Vegetation Index (NDVI), in order to have an enhanced detection

of forest canopy damage caused by selective logging activities and associated forest fires in

West Kalimantan, especially in Kapuas Hulu and Sintang districts. The NDFI was derived

from combination of green vegetation, shadow, soil, and non-photosynthetic vegetation

(NPV) fractions images from spectral mixture analysis model. The NBR and NDVI were

generated from spectral reflectance values of near-infrared, shortwave infrared, and red

spectrums. The satellite data used for monitoring forest degradation were Landsat-year

2006–2009 and then continued with 4-year SPOT 2009–2012. The result showed that the

forest degradation was detected initially in 2008 up to 2012 in the research area. Spectral

indices analysis (NDFI, NBR, NDVI) was tested and verified by ground survey data in

2012. We found that NDFI has higher accuracy (95 %) to classify the degradation forest

due to logging and burning activities rather than NBR or NDVI. The forest degradation

mapping also conducted using mosaic of Landsat data year 2000–2009 for whole of West

Kalimantan province. This method is suitable for a forest degradation monitoring tool in

tropical rainforest.
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1 Introduction

Tropical rainforest in Indonesia is one of the very precious natural resources to the world.

Tropical rainforest is known as the ‘‘lungs of the planet’’ containing a rich variety of flora and

fauna, which helps to counter weight global warming which occurs in the recent decade (Cox

et al. 2013). The area of Indonesian forest in 2012 reached 130.61million hectares, contributing

68.6 %of the total land area to become one of the natural resource potentialwhich is vulnerable

to damage due to human activities in meeting their needs (Ministry of Forestry 2012).

The rate of deforestation and forest degradation in Indonesia between 1998 and 2002

reached 1.1 million per year or equivalent to approximately 3.5 million hectares (Ministry of

Forestry 2013). Meanwhile, according to Indonesian forestry statistics in 2011 (Ministry of

Forestry 2012), the area of critical land in Indonesia was 27.3 million ha, of which reflects

land degradation that was damaged due to vegetation loss, resulting in reduced forest

functionality as water reservoir, erosion control, nutrient cycles, micro-climate regulator, and

carbon retention. There are three provinces with the largest critical land in Indonesia between

2006 and 2011. These area are Central Kalimantan (4.6 million ha), South Sumatra

(3.9 million ha), and West Kalimantan (3.2 million ha). With regard to the above findings,

observations on forest condition and forest status need to be done in order to maintain its

condition, to provide an input for forest management and forest/land damaged handling.

Forest degradation is different to deforestation. In order to demonstrate and understand the

difference between these two phenomena, meaning and definition of forest should initially be

well understood. Bajracharya (2008) has conducted a study based on several literatures,

expert meetings and laymen assumptions to obtain comprehensive definition of forest

degradation. Forest degradation is concluded as canopy cover change and decline in biodi-

versity caused by human activities such as logging and forest fires that lowers carbon stocks

and forest productivity in the long run. Selective logging is a form of timber extraction on a

group of trees in the forest, in which tree species have been selected because of its economic

benefits. Selective logging is usually located in a natural forest where there are access roads

and logging tracks. In selective logging, at least about 10–46 % of living biomass is harmed

or died during harvesting season (Verı́ssimo et al. 1992, 1995; Nepstad et al. 1999; Gerwing

2002). Selective logging damages a land area of 1503–2275 m2/ha (Johns et al. 1996), so that

the forest canopy will be reduced by approximately 40–50 % of the original condition

(Verı́ssimo et al. 1992; Gerwing 2002). The other man activities that caused forest degra-

dation is forest fire which usually performed by humans after opening the forest through

logging. Forest fire can be deadly to more than 98 % of trees with a diameter greater than

20 cm, and leave living trees of 10–40 % of the forest canopy (Cochrane et al. 1999). Many

studies have confirmed the definition of deforestation as the non-temporal change from forest

use to others landuse, whereas forest degradation is the decline in forest quality (Turner II

et al. 1993; Verolme and Moussa 1999; Lanly 2003).

Utilization of remote sensing data to identify forest degradation due to selective logging

and forest fires has been developed by researchers in mapping the degradation. Visual

classification in the era of 2000 is the first technique performed for forest cover monitoring

and selective logging (Achard and Hansen 2012). However, visual interpretation can be done

when trace of logged area is visible on the satellite image data. In general, the trace of logged

area will appear one or 2 years after the actual logging. Visual classification is more time-

consuming and has potential bias/error during data interpretation. Furthermore, digital image

processing techniques such as the minimum distance and maximum likelihood have been

developed and utilized to map selective logging practice, as was done by Stone and Lefebvre
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(1998), Roberts et al. (1998) and Shimabukuro et al. (1998). The use of such techniques is

prone to errors due to value similarity between selective logging areas with various different

vegetation age and intensity of logging, as well as natural forests. In degraded forest, several

other phenomenon and objects coexist such as forest regeneration, dead vegetation, and open

land, resulting in greater difficulty for satellite data identification (Souza et al. 2003).

Analysis of forest degradation mainly caused by forest fires have been frequently made

through remote sensing satellite data collection, with the use of satellite remote sensing in low-

to-medium spatial resolution such as: MODIS (Martı́n et al. 2002; Roy et al. 2002; Sá et al.

2003; Chuvieco et al. 2005), NOAA-AVHRR (Barbosa et al. 1998; Roy et al. 1999; Fuller and

Fulk 2001; Nielsen et al. 2002), SPOT VEGETATION (Stroppiana et al. 2002; Silva et al.

2004), Landsat (Conese and Bonora 2005). Miettinen (2007) who have successfully mapped

burned forest area in Kalimantan and Sumatera utilized multi-temporal MODIS, SPOT4, and

SPOT 5 serta Landsat ETM? data by applying index sensitive to vegetations behavior such as:

NDVI, EVI (Huete et al. 2002), andGEMI (Pinty andVerstraete 1992). Suwarsono et al. (2009)

has also successfully identified burned areas in Central Kalimantan, Indonesia, using NDVI

method. On the other hand, Key and Benson (1999) employed Normalized Burn Ratio (NBR)

indexwhich is sensitive towater content level in plants to indentify burned areas. Furthermore,

Miller and Yool (2002), Cocke et al. (2005), and Escuin et al. (2008) have used NBR to

determine the level of forest damage due to fire. Suwarsono et al. (2011) has also applied NBR

method successfully using Landsat data to identify burned areas in Kalimantan, Indonesia.

Although this vegetation index can be used to identify forest fire, it cannot be applied to identify

logging activities. Therefore, more efficient and representative method is required to describe

the two main causative phenomenon of forest degradation namely forest fire and logging.

A type of land cover classification techniques to identify degradation of satellite data is

spectral mixture analysis (SMA). This technique can solve the problem arising in the visual

classification and digital processing techniques. SMA method is an appropriate method for

mapping degraded lands in the subpixel scale (Adams et al. 1995). This technique is able to

detect changes in relatively small land area and provides physical value of the spectral

satellite data. SMA techniques have also been applied by Souza et al. (2003) to map forest

degradation due to selective logging and forest fires. Degradation analysis has been done

using SMA technique in the Brazilian Amazon forest by using four fractions: the green

vegetation fraction, canopy shadow fraction, soil fraction, and non-photosynthetic vegetation

(NPV) fraction (Souza et al. 2003). Soil fraction obtained from SMA can sharpen spot

detection and logging track (Souza and Barreto 2000). Asner et al. (2002) developed a gap

fraction of green vegetation (GV) to estimate the fraction of forest canopy damage associated

with selective logging, but the results tend to be overestimated. Furthermore, Souza et al.

(2003) demonstrated the ability of NPV fraction to map selective logged forest. Souza et al.

(2005) also integrated several fractions into Normalized Difference Fraction Index (NDFI)

which gives better accuracy (94 %). Identification of forest degradation that occurs in a small

area is very difficult to do, by merely relying on satellite data. Hence, complementary data in

terms of field information or high-resolution spatial data are highly required.

The use of SMA and NDFI research method conducted by Souza et al. (2003, 2005) was

applied in this study to indicate whether four fractions (GV, SHADE, SOIL, and NPV) and

indices used in the study will be applied to identify forest degradation in West Kalimantan,

Indonesia. Improvements were made in this study in applying the method to determine the

threshold value of fraction and indices that correspond to forest degradation condition in

Indonesia. The purpose of this study was (a) to identify the degraded forest area based on

SMA approach, (b) to compare results of SMA approach, NDFI, with the widely used

forest degradation index, the Normalized Burn Ratio (NBR) and the Normalized
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Difference Vegetation Index (NDVI) in order to have enhanced detection of forest canopy

damage caused by selective logging activities and associated forest fires in Kapuas Hulu

and Sintang districts, West Kalimantan, Indonesia.

2 Datasets and methods

2.1 Study area

West Kalimantan province is one of provinces in Indonesia which lies on the equator. It

has tropical climate with high temperature and high humidity. Most part of West

Fig. 1 Research area in Kapuas Hulu and Sintang districts, West Kalimantan
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Kalimantan is lowland with a total area of approximately 146,807 km2, covering 7.53 % of

the total area of Indonesia. Forest predominantly covers approximately 42.42 % of West

Kalimantan (BPS 2012). The research area is located in Kapuas Hulu and Sintang districts

of West Kalimantan province (Fig. 1). Geographically Sintang district is located at

110�370E–113�170E and 1�030S–1�160S (Sintang district), while Kapuas Hulu is located at

111�260E–113�590E and 1�350N–0�070N.
Sixty percent (60 %) of watershed in West Kalimantan have experienced some kind of

crisis as a result of exploitative actions by opening and developing watershed areas. The

damage is due to activities such as illegal gold mining, logging, forest conversion to palm

oil plantations, industrial activities, coastal erosion, destruction of mangroves, damaged to

coastal areas, and coral reefs. The activity also has an impact on the occurrence of natural

disasters along the Kapuas watershed such as: flood, landslides, and drought. The

hydrology system of Kapuas River has the characteristics of wet months between 9 and

12 months with a fairly high rainfall between 3000 and 4500 mm/year. Kapuas watershed

is essential because its upstream region is a water catchment area for West Kalimantan

province and Kalimantan region as a whole (BPS 2012).

There were three classes of forest that was found by ground checking in the study area

on October 9–14, 2012, as shown in Table 1.

2.2 Datasets

Satellite data used in this study are attained from Landsat-7 ETM? path/row 120/60,

acquisition date: July 23, 2006, May 7, 2007, August 5, 2008, July 31, 2009, and

continued with SPOT-4 data acquired on July 31, 2009, May 16, 2012, and October 15,

2012. Such data were acquired from satellite ground station of Indonesian National

Institute of Aeronautics and Space (LAPAN) in Pare–Pare, South Sulawesi. The study

area also considers the topography data from DEM SRTM 90 m, and forest map area

obtained from General Directorate of Planology, Ministry of Forestry in 2009. The

location of protected forest and production forest in the upstream region was determined

by the forest map area with relatively higher topography compared to the surrounding

area. The area requires close supervision on forest conditions to prevent the expansion of

plantation areas, particularly in the areas of production forest that is closely located to

the area for other uses. For wider scale mapping, i.e., the West Kalimantan province,

Landsat mosaic imagery and free cloud masking from 2000 to 2009 were used. The data

were obtained from Indonesian National Carbon Accounting System Space activities

conducted by LAPAN.

Table 1 Characterization of the forest degradation classes defined in the field scale

Forest degradation
classes

Field description

Intact forest (IN) Undisturbed forest

Managed logging
(ML)

Planned selective logging where a tree inventory is conducted, there are roads in the
area

Logged and burned
(LB)

Either non-mechanized or conventionally logged forest that have subsequently been
damaged by forest fire
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2.3 Methods

2.3.1 Preprocessing remotely sensed imagery

The initial preprocessing of satellite data was performed empirically, which consists of:

radiometric correction, geometric correction, and then the cloud masking. In the geometric

correction, we used an image that already geometric corrected as the reference of uncor-

rected images. We performed the rectification using linear polynomial transformation and

put 16 of ground control points in the image with the root-mean-square errors less than 0.5

pixel.

In this study, terrain correction step was conducted based on C-correction algorithm

(Wu et al. 2004) as follows:

LH ¼ LT( cosðszÞ þ cÞ=ðcosðiÞ þ cÞ ð1Þ

where LH is corrected radiance in flat surface, LT is uncorrected radiance in sloping

surface, sz is sun zenith angle, i is the norm angle of the surface to the sun, and c is the

coefficient value from ratio of b to a taken from the equation of LT = a cos(i) ? b.

We also performed the radiometric correction to avoid radiometric errors or distortions

due to the sun’s azimuth and elevation, atmospheric conditions such as fog or aerosols and

sensor’s response which influence the observed energy. In this study, we performed the

radiometric correction due to sensor sensitivity and also due to sun angle which can be

done in two steps, i.e., (1) converting the digital values into spectral radiance value, (2)

converting the spectral radiance value into reflectance value. This is called as top-of-

atmosphere (TOA) reflectance value (Edwards1999; Chander et al. 2009). The formula can

be seen as follows:

L ¼ ðDN=AÞ þ B ð2Þ

q ¼ pd2L
ESUN cos h

ð3Þ

where L is spectral radiance (W/m2/sr/lm), DN is digital number of satellite data, A is the

absolute calibration gain value, and B is absolute calibration offset value.

In this study, cloud and smoke haze masking was done by applied the threshold of the

green and SWIR reflectants of the SPOT-4 taken from Sofan et al. 2011. They found that

the green channel was good to separate the cloud from the others object such as cloud

shadows, non-vegetation, and vegetation area, while the ad SWIR channel was good to

represent the cloud shadow area. The threshold value of green and SWIR reflectance of

thin to thick cloud and cloud shadow can be seen in Table 2.

Table 2 Threshold of thin to thick cloud and cloud shadow masking from SPOT-4 data (Sofan et al. 2011)

SPOT-4 Thin cloud/smoke haze Thick cloud Cloud shadow

Minimum Maximum Minimum Maximum Minimum Maximum

Green channel [ 0.13 [0.19 [0.20 [0.26

SWIR channel \0.07 \0.09
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2.3.2 Endmember extraction

Endmember is a spectral value representing the material in the earth’s surface. The end-

members can be received from the spectral images values and collections of laboratory

and/or field spectra. The endmembers generated from images are called as image end-

members (Adams and Gillespie 2006). In this study, we generated the endmember from

Landsat-7 and SPOT-4 satellite data images based on principle component analysis (PCA)

method. There are four kinds of endmember images extracted in this study, i.e., GV, soil

(SOIL), shadow (SHADE), and NPV.

2.3.3 Spectral mixture analysis (SMA)

In this study, each of satellite image was extracted into four fractions of GV, NPV, SOIL,

and SHADE. The SMA model assumes that the image spectra are generated by a linear

combination of n pure spectra. For example, a pixel is made up of 35 % of material A,

15 % of material B, and 50 % C material. The spectrum value of the pixel is the sum of

weight of material A (0.35) against a spectrum of material A, weight of the material B

(0.15) against material B spectrum, and weight of material C (0.50) against material C

spectrum. Mathematically, image spectra can be formulated in Eqs. 4 and 5. The error in

each image pixel can be calculated based on the root-mean-square error with Eq. 6 formula

(Adams et al. 1993; Souza et al. 2005). The endmember fractions are then summed

together for each pixel.

Rb ¼
Xn

n¼1

FiRi; bþ eb ð4Þ

Xn

i¼1

Fi ¼ 1 ð5Þ

where n is the number of the samples. Rb is reflectance of band-b; Ri, b is reflectance value

of endmember-i at band-b. Fi is fraction of endmember-i. eb is residual error of band-b.

RMS ¼ n�1
Xn

b¼1

eb

" #1=2

ð6Þ

where RMS is root-mean-square error, N is the number of samples, eb is residual error of

channel-b.

Residual bands each pixel is calculated based on the difference between measured DN

with DN modeled on each band. Residual of all bands are summed to give RMS error. The

model is justified as a good model if: (a) residual band or RMS error is low, (b) fraction is

not less than 0 or greater than 1. Pixels that have a high RMS error and fractions\0 or[1

indicate compositional variations that are not modeled on the scene (Adams et al. 1993).

2.4 Normalized Difference Fraction Index (NDFI)

Souza et al. (2005) developed a Normalized Difference Fraction Index which can be

formulated from several fractions of SMA models. This is aimed to obtain sharper

degradation signal due to selective logging and forest fire. The NDFI can be formulated

using Eqs. 7 and 8.
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NDFI ¼ GVshade � NPVþ SOILð Þ
GVshade þ NPVþ SOIL

ð7Þ

where GVshade is a fraction of GV normalized with SHADE fraction, given by,

GVshade ¼
GV

100� SHADE
ð8Þ

NDFI value ranges between -1 and 1. NDFI of natural forests shows a high value (1)

due to the combination of high GV and SHADE (high GV and high SHADE) and a low

value of NPV and SOIL. Degraded forest will have increased value of NPV and SOIL

fraction, lowering down NDFI value in comparison with that of natural forest.

2.5 Normalized Burn Ratio (NBR) and Normalized Difference Vegetation
Index (NDVI)

Other thanNDFI index resulting fromSMA fraction, this study also used the burned area index,

which isNormalizedBurn Ratio andNormalizedDifferenceVegetation Index. NBR index can

be obtained by calculating NIR and SWIR channel reflectance presented in Eq. 9 (Key and

Benson 1999). NDVI can be obtained by calculating NIR and RED channel reflectance pre-

sented in Eq. 10 (Heiskanen 2006; Jensen 1986; Rouse et al. 1973).

NBR ¼ qnir � qswirð Þ= qnir þ qswirð Þ ð9Þ

NDVI ¼ qnir � qredð Þ= qnir þ qredð Þ ð10Þ

whereNBR isNormalizedBurnRatio,NDVI isNormalizedDifferenceVegetation Index,qnir is
NIR channel reflectance,qswir is SWIR channel reflectance, andqred isREDchannel reflectance.

2.6 Statistical analysis

Tukey’s test was performed to evaluate whether natural forests and degraded forests can be

separated at 95 % confidence level (P[ 0.05). Tukey’s test known as Tukey’s honest

significant difference test (HSD) is shown in Eq. 11. The test compares the means of every

treatment to the means of every other treatment, that is applies simultaneously to the set of

all pairwise comparisons (Hogg and Craig 1994; Ott 1992).

Test: H0 : li ¼ lj; H0 : li 6¼ lj

where the subscripts i and j represent two different populations.

Test statistic: HSD ¼ q

ffiffiffiffiffiffiffiffiffiffi
MSE

n

r
ð11Þ

Decision: Reject H0 if jli � ljj [ HSD ð12Þ

where q is the value from attached studentized range table, MSE is the mean-square error

from ANOVA table, n is the number of replicates per treatment.

In this research, we have a limitation for the ground survey due to the difficulty to

access the road to the expected location. Thus, it can affect the accuracy of the calculation

results. In the future research, it can be developed and carried out detailed observations in

order to obtain better accuracy.
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3 Result and discussion

3.1 Multi-temporal analysis of imagery composite of Landsat-7 and SPOT-4

Figure 2 presents a composite colored image of RGB 542 Landsat-7 obtained multi-

temporally in 2006, 2007, 2008, and 2009. The preserved forests or natural areas with high

canopy density (dark green color) appeared in a good condition in 2006–2007. However,

land opening started to occur in 2008, which expanded in 2009 (purple color). Subse-

quently in 2012, forest conditions in the study area can be seen from color composite

image RGB 412 SPOT-4, and a significant change was evident from vegetation (green)

becomes non-vegetation (pink color).

3.2 Endmember extraction from Landsat-7 and SPOT-4

Based on PCA analysis between bands 1–2, bands 1–3, and 3–4 bands of Landsat imagery,

spectral endmember of GV, SOIL, SHADE, and NPV can be obtained. The endmember

spectral profiles of all of SPOT bands presented in reflectance units are shown in Fig. 3a–e.

The peak spectral reflectance of SOIL occurs at the fifth band (SWIR short-wave infrared:

1.55–1.75 lm) with mean and standard deviation values of 0.030 ± 0.0183. The same

spectral profile of SOIL is the NPV in which peak of reflectance presents in the SWIR

band. The SWIR spectral reflectance value at NPV endmember is lower than that of SOIL.

SWIR spectral reflectance on NPV endmember has mean ± standard deviation of

0.1573 ± 0.0188. The GV endmember has similar profile to the SHADE endmember,

which has a peak reflectance at the fourth band (Near-Infrared: 0.75–0.90 lm). However,

NIR reflectance on GV endmember has higher value than that of SHADE endmember. The

average value of NIR spectral reflectance at GV endmember was 0.3709 ± 0.0206, while

the average value at SHADE endmember was 0.2258 ± 0.0067.

The endmember spectral profiles of all of SPOT bands presented in reflectance units are

shown in Fig. 3f–j. SOIL spectral has peak reflectance at XS-4 band (short-wave infrared

or SWIR channel) with mean and standard deviation value of 0.3232 ± 0.008. Same as

SOIL spectral, the NPV spectral reaches its peak reflectance at SWIR channel, and the

SWIR spectral reflectance values of the NPV are lower than that of the SOIL. SWIR

spectral reflectance on NPV endmember has mean and standard deviation value of

0.2091 ± 0.0270. GV endmember shows similar profile SHADE endmember, which has a

peak reflectance at band XS-3 (Near-Infrared), but NIR reflectance of GV endmember has

higher value than that of SHADE endmember. The mean value of NIR spectral reflectance

at GV endmember was 0.3625 ± 0.0148, while SHADE endmember was

0.2474 ± 0.0066. Mean value analysis on each spectral endmember is subsequently used

as a spectral reference in SMA-based classification process.

According to the result of Landsat and SPOT-4 data, the endmember of GV has a high

value in NIR spectrum and low value in visible spectrum (blue, green, red). The live

vegetation strongly reflects light in the near-infrared part of the spectrum, while the visible

spectrum are efficiently absorbed by live vegetation. The SWIR spectrum is efficiently

absorbed by water that content in the leaf. Different with GV, the senescent or dead

vegetation (NPV) will reflect strongly in the SWIR spectrum due to less water content in

the vegetation. Water is vital for many plant processes, in particular, photosynthesis.

Generally, the vegetation of the same type with greater water content is more favorable and

less prone to burn. Leaf water affects plant reflectance in the near-infrared and short-wave
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infrared regions of the spectrum. Water has maximum absorptions centered near 1.400 and

1.900 lm. Water features has centered spectral around 0.970 and 1.190 lm are pro-

nounced and can be readily measured from hyper spectral sensors. That is way, the open

Fig. 2 542 RGB composite image of multi-temporal Landsat in 2006, 2007, 2008, 2009, and the 412 RGB
composite image multi-temporal SPOT 4 in 2009 and 2012 in the study area
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land that represented by SOIL endmember has a high reflectance in SWIR spectrum due to

the lowest water content in the area.

3.3 Results of Spectral Mixture Analysis classification method on Landsat-7
and SPOT-4 data

Classification using SMA method is based on endmember spectral reference value of GV,

NPV, SHADE, and SOIL in the study area. The results of endmember fraction ranges from

0 to 100 %, where the closer the value to 100 %, the higher the percentage of a fraction

located at a pixel. An example is shown in Fig. 4, whereby each image of the four fractions

dated July 23, 2006 which represents a natural forest condition, and dated July 31, 2009

which represents a degraded forest condition. GV image showed vegetation at their growth

phase located outside the natural forest. GV fraction values outside the natural forest area

in 2006 and 2009 were relatively similar (green color). Within the natural forests, vege-

tation generally has reached its maximum growth, so that GV fraction tends to be low

Fig. 3 Profile linkages between the reflectance and the wavelength bands of Landsat-7 and SPOT-4 on
endmember analysis results with PCA method i.e., GV, NPV, SHADE, SOIL, and mean of spectra values
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(cyan–blue). In the natural forest areas, noticeable differences were evident in GV imagery

in 2006 and 2009. In 2009, there were a few areas with lower GV (blue) than that in 2006.

NPV image clearly showed that in 2009 there was additional NPV fraction area in natural

forest marked with yellow and red coloration. In addition, SOIL fraction image in 2009

also showed increased percentage of SOIL fraction in natural forest sites, marked with

yellow to red color. Meanwhile, through SHADE image it was observed that natural forests

(A) GV - July 23, 2006
(Landsat-7)

(B) GV - July 31, 2009
(Landsat-7)

(C)GV - May 16, 2012 
(SPOT-4)

(D) GV - October 15, 
2012  (SPOT-4)

(E)SOIL - July 23, 2006
(Landsat-7)

(F)SOIL - July 31, 2009
(Landsat-7)

(G) SOIL - May 16, 
2012 (SPOT-4)

(H) SOIL - October 15, 
2012 (SPOT-4)

(I) NPV - July 23, 2006
(Landsat-7)

(J)NPV - July 31, 2009
(Landsat-7)

(K)NPV - May 16, 2012
(SPOT-4)

(L)NPV - October 15, 
2012 (SPOT-4)

(M) SHADE - July 23, 
2006 (Landsat-7)

(N) SHADE - July 31, 
2009 (Landsat-7)

(O) SHADE - May 16, 
2012 (SPOT-4)

(P) SHADE - October
15, 2012 (SPOT-4)

Frac�ons percentage (%)

0  100

Fig. 4 Fraction images of GV, NPV, SOIL, and SHADE from Landsat data on July 23, 2006 and July 31,
2009 and from SPOT-4 data on May 16, 2012 and October 15, 2012 in the study area
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generally have a high fraction values (red), but inside the forest, there were several visual

difference. In 2009, there was a decrease in the SHADE fraction value (green to blue)

compared to the previous condition in 2006.

Based on SPOT-4 data, endmember fractions image of GV, NPV, SHADE, and SOIL

were acquired multi-temporally between period of May 16, 2012 and October 15, 2012, as

also shown in Fig. 4. Range of SMA fraction image value is between 0 and 100. Non-

vegetative land cover was observed at GV fraction image dated October 15, 2012 at low

value (blue). Meanwhile, the NPV fraction image dated October 15, 2012 showed vege-

tation area at high NPV fraction values (red). This indicates that there is a decrease in

vegetation canopy closure. SOIL fraction image in non-vegetation area demonstrated

expansion of high fraction value (red) on October 15, 2012, indicating extension of ground

objects area. Furthermore, in SHADE fraction image, part of the non-vegetative area shows

a high SHADE fraction value (red). It indicates that the non-vegetative land has darker

color soil than the surrounding soil, which may be due to slash and burn agriculture.

Based on RMS error analysis, results of SMA classification on Landsat-7 and SPOT-4

showed a relatively low error rates with maximum error of 0.05 % on each pixel. Based on

its location, the maximum RMS error is 0.05 % on all Landsat-7 and SPOT-4 data are

located in non-vegetative area. The error rate is relatively low, so it can be concluded that

the fraction of GV, NPV, SOIL, and SHADE can be properly modeled with SMA.

3.4 Comparison of NDFI, NBR, and NDVI

Other index like NBR and NDVI were also analyzed. Figure 5 shows the results of the

analysis of all three indices, ranging between the values of -1 (blue) to 1 (red). The index

value of-1 indicates high levels of forest degradation. The value of 1 indicates good forest

condition with dense vegetation canopy cover. The NDFI image showed that the non-

vegetation land has lower fractions value, while vegetation land area has high value.

Meanwhile, from the NBR and NDVI image indices, it can be visually seen that the index

value shows almost the same pattern: in non-vegetated territory, both indices showed a low

value, whereas in vegetated land area, the indices showed high value. Based on the above

description, visually and spatially, NDFI, NBR, and NDVI may represent forest conditions

in both vegetated and non-vegetated area. Further statistical analysis is presented to assess

the performance of these spectral indices.

3.5 Field survey

Spatially, the result of checking and determination of sampling points in field survey in

Kapuas Hulu and Sintang districts can be seen in Fig. 6. During field survey conducted in

October 10–15, 2012 in Kapuas Hulu and Sintang districts, several degraded forest were

found, with damage due to logging and fires in the forest region. The degraded forest is

located in Nanga Dangkan, and Kapuas Hulu is part of protected forest area according to

forest mapping by General Directorate of Planning in 2005. The forest in Kapuas Hulu

district is located in highland area.

From field survey conducted in West Kalimantan province, three kinds of forests were

found and used a reference in this study, namely: (a) forest with good condition, has not

been exploited, and serves as protection of water system, flood prevention, and erosion

control (Intact Forest); (b) regularly harvested forests and selected with good management

(Managed Logging). Access road and heavy equipment are available in site; (c) Forests

that are cut down and burned (Logged and Burned).
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Fig. 5 Comparison of NDFI (a),
NBR (b) and NDVI (c) analyzed
from SPOT-4 data, October 15,
2012
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Figure 7 shows the control field at Managed Logging activity in the area at the Kapuas

Hulu district, West Kalimantan. Based on RGB SPOT-4 image dated October 15, 2012, the

vegetated areas close to the non-vegetation land generally is secondary forests where the

tree diameters sized less than 20 cm and vegetation canopy are not densely closed. The

NDFI index values in the region are low. Figure 7 shows the inspection results of Logged

and Burned forest area in Sintang district, West Kalimantan. It can be seen from the photo,

the logged, and burned area has dark colored soil, with some remaining pieces of tree roots.

Based on RGB SPOT-4 image, the logged and burned area is shown in dark red color, with

low the degradation index (NDFI) (blue).

3.6 Class separability, Tukey test, and accuracy results

The analysis of Tukey test was done to understand statistical difference between GV

fraction, NPV, SHADE, SOIL, and also NDFI, NBR, and NDVI indices extracted within

Fig. 6 NDFI image in Managed Logging area of Kapuas Hulu was analyzed from SPOT-4 image data
acquired on October 15, 2012. The field photograph was taken on October 11, 2012. The yellow and black
circles indicate the location of the ground survey
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natural forest and degraded forest (IN and LB). Analysis of Tukey test at significance

level (P) \0.05 showed that GV fraction, NPV, SOIL, SHADE and NDFI, NBR and

NDVI index are statistically significant in Intact Forest and Logged and Burned forest. In

Table 3, significant difference was marked on the average values with different letter

sign (a, b, c). Tukey test results indicated that the hypothesis Ho is rejected for all

fractions and indices with significantly different value on Intact Forest and Logged and

Burned forest. It means that they can be used to separate the Intact Forest and the

degraded forest.

According to the statistical analysis, the composition of logged and burned forest

consist of more than 50 % of SHADE and SOIL fractions, while the managing logged

forest has high portion of NPV and GV fractions. We found that Intact Forest mostly

consists of SHADE and GV fractions. Based on the fraction composition then, the NDFI

has the lowest value (-0.96) in Logged and Burned forest and high values in Intact

Fig. 7 NDFI image in logged and burned area of Sintang was analyzed from SPOT-4 image data acquired
on October 15, 2012. The field photograph was taken on October 12, 2012. The black circles indicate the
location of the ground survey
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Forest (0.72). The other indices, i.e., NBR show the negative value in Logged and

Burned forest due to the lowest water content in the area. The key spectrum in NBR is

SWIR spectrum that mostly absorbed by the water. In case of logged and burned area in

which there is no water content, the SWIR is much reflected by the ground into the

atmosphere and received by the satellite sensor. Meanwhile, the NDVI which represents

the greenness level of vegetation indicated by high reflectant of NIR spectrum shows low

NDVI in logged and burned area due to the low reflectant of NIR spectrum.

Based on Table 3, we found that the degraded forest in West of Kalimantan is in the

range of negative and positive value of NDFI. This result is quite similar with the

condition of degraded forest in Brazilian Amazon forest (Souza et al. (2005)) where they

found the degradation forest classes in the range of positive value of NDFI. However, we

also found the different for example the percentage of GV in LB area in our study area is

differ with the Souza et al. 2005 result. In LB area, we got very few of GV fraction

(average 1 %), while in Brazilian Amazon the GV fraction was around 25 % in LB area.

Another facts that we found in LB area, the SOIL fraction was high (average 35 %) so

when the forest logged and burned, there was no vegetation left and only left few NPV

with the burned land cover. The lower negative of NDFI referred to the higher degraded

intensity in the forest (Logged and Burned). The forest degradation could have the

similar NDFI with the logged and burned forest, because they appeared same as the

opened land without vegetation. For further research and to enhance the forest degra-

dation caused by logged and burned activities, the deforestation sample area should be

analyzed in this study.

The classification results of this research can be divided into two classes, namely: forest

degradation (Managed logging forest, logged and burned forest) and non-forest degrada-

tion. Accuracy calculations are required to determine the accuracy of the classification

results. The accuracy can be obtained by calculating Kappa, which is a matrix of con-

tingency or confusion matrix. The calculation is done to test the significance of the clas-

sification results with the sample observations. The sampling was done by purposive

sampling, with the purpose to obtain information related to whether or not the results of the

classification. In these conditions, the location of the sample is determined by the ease of

access road to the few locations that have been classified as experiencing changes due to

forest degradation.

Table 4 shows the accuracy analysis that conducted toward the results of the degra-

dation mapping of several indices, i.e., NDFI, NBR, and NDVI in forest areas Managed

Logging (ML), Logged and Burned (LB), and Intact Forest (IN). NDFI results showed that

Table 4 Accuracy of forest types classification (managed logging/ML, logged and burned/LB, and intact
forest/IN) from different indices (NDFI, NDFI-a, NBR, NDVI)

NDFI NBR NDVI Amount of data

ML 70.20 69.80 67.65 745

LB 94.91 66.10 74.58 118

IN 80.34 69.27 68.17 641

cFig. 8 a Forest region map from Ministry of Forestry (2009) in West Kalimantan province. b Spatial
distribution of NDFI image in West Kalimantan province from Landsat 2000–2009
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the index can provide better classification of forest ML, LB, and IN than other indices.

Classification NDFI has the highest accuracy, with 95 % accuracy of forest-LB, 80 % of

forests IN, and 70 % of ML.

3.7 Applications of NDFI for forest degradation mapping in province scale

Based on mosaic and cloud-free Landsat-7 data in the period of 2000–2009, NDFI method

was applied to map degraded forest areas throughout the West Kalimantan province.

Furthermore NDFI image was then integrated with forest maps obtained from the Ministry

of Forestry in 2009, to determine the condition of forest types based on its NDFI value

(Fig. 8).

Several forest types listed in the map according to the Ministry of Forestry in 2009 are:

(1) Preservation forest whereby forest is preserved to maintain its protection functions

principally as a life support system to adjust water cycle, prevent floods, control erosion,

prevent seawater intrusion and maintain soil fertility; (2) Production forest, which refers to

forest areas maintained to produce forest products for the benefit of public & industry

consumptions, and exports; (3) Convertible production forest, the forest area reserved for

the development of transmigration, settlements, agriculture and plantations; (4) Permanent

production forest, a forest that can only be exploited by means of selective logging; (5)

Natural conservation area, which is a forest area with certain characteristics, which located

both in land and in water area, that have a protective function of life support systems,

preserve diversity of plants and animals, and as support sustainable use of natural resources

and its ecosystem.; (6) Non-forest area, i.e., an area of plantation, agriculture, and set-

tlement. The forest map released by the Ministry of Forestry in 2009 showed that forest

area in West Kalimantan reached about 60 % of the total area, or about 8.9 million ha.

Non-forest area covers approximately 5.6 million ha or 38 %, and the rest are marine

national parks and water body (rivers, lakes) 1 % each. In forest area, protected forest and

production forest contribute 15 % each, while the limited production forest reaches 16 %,

natural conservation area reaches of about 10 %, and convertable production forest area

covers approximately 3 %.

We overlaid the NDFI imagery from Landsat with the forest map to investigate the

mean value of NDFI for each types of forest used. The result of statistic values is presented

in Table 5. We found that the preservation forest has the highest NDFI value

(0.928 ± 0.231), while the lowest NDFI value is in the non-forest land (0.573 ± 0.466).

The production forest has the lower value of NDFI compared with the other types of forest

used. It related to the activities for forest consumption in production forest.

Table 5 NDFI statistic values
(mean and SD) analyzed from
Landsat-year period 2000–2009
in West Kalimantan per forest
type

Forestry types Mean SD

Non-forest 0.573 0.466

Preservation forest 0.928 0.231

Production forest 0.696 0.448

Convertible production forest 0.804 0.348

Permanent production forest 0.863 0.298

Natural conservation area 0.863 0.397
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4 Conclusions

The forest degradation was detected initially from 2008 until 2012 using Landsat 7

ETM ? and SPOT-4 in Kapuas Hulu and Sintang districts, West Kalimantan. The spectral

indices analysis (NDFI, NBR, NDVI) were tested and verified by ground survey data in

2012. The statistical test showed that those indices are statistically significant to distinguish

the changes from intact forest to degraded forest. We found that NDFI has higher accuracy

to classify the Logged and Burned area (95 %), Managed Logging area (70 %), and Intact

Forest (80 %) than NBR or NDVI. Thus, it shows that the NDFI is significantly capable of

detecting forest degradation in the tropical rainforest of West Kalimantan.

Furthermore, the application index NDFI with the value threshold has been applied

using Landsat ETM ? 7 to map each type of forest conditions either still undisturbed or

degraded throughout the West Kalimantan province between 2000 and 2009. The use of

NDFI methods is quite accurate in monitoring forest condition. Through remote sensing

satellite data, updated information on latest forest condition in large area coverage can be

obtained. Any indication of forest degradation which is mainly caused by fire and logging

can be detected earlier without the need of directly visiting the area, and hence can pass the

information to the responsible officials for rehabilitation and better forest management.
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Silva JMN, Cadima JFCL, Pereira JMC, Grégoire JM (2004) Assessing the feasibility of a global model for
multitemporal burned area mapping using SPOT-VEGETATION data. Int J Remote Sens
25:4889–4913

Sofan P, Zubaidah A, Vetrita Y, Yulianto F, Diah SKA (2011) Remote sensing application for mapping the
burnt area. Internal report of National Institute of Aeronautics and Space (LAPAN) (in Bahasa
Indonesia)

Souza C, Barreto P (2000) An alternative approach for detecting and monitoring selectively logged forests in
the Amazon. Int J Remote Sens 21:173–179

Souza C Jr, Firestone L, Silva ML, Roberts DA (2003) Mapping forest degradation in the Eastern Amazon
from SPOT 4 through spectral mixture models. Remote Sens Environ 87:494–506

Souza C Jr, Roberts DA, Cochrane MA (2005) Combining spectral and spatial information to map canopy
damage from selective logging and forest fires. Remote Sens Environ 98:329–343

Stone TA, Lefebvre PA (1998) Using multi-temporal satellite data to evaluate selective logging in Para,
Brazil. Int J Remote Sens 13:2517–2526
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