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Abstract This study focuses on the sensitivity of tropical cyclones (TCs) simulations to

physics parametrization scheme for TCs in the Bay of Bengal (BOB). The goal of this

study was to arrive at the optimum set of schemes for the BOB region to increase forecast

skill. Four TCs, namely Khaimuk, Laila, Jal and Thane have been simulated through the

weather research and forecasting (WRF) model with all the physics parametrization

schemes available in WRF, and the optimum set of schemes is arrived at. The analysis

shows the cumulus, microphysics and planetary boundary layer parameterizations exert a

very significant influence on the TC simulations than land surface, short-wave radiation

and long-wave radiation parameterizations. With this optimum set of physics schemes, the

impact of assimilation of National Centers for Environmental Prediction Automatic Data

Processing upper air observations data in the TC simulations has been studied by using

three-dimensional variational (3DVAR) data assimilation technique. The control run

(without assimilation) and the 3DVAR-simulated tracks and maximum sustained wind

speed have been compared with the Joint Typhoon Warning Center observed tracks and

wind data. The model-simulated precipitation is validated with Tropical Rainfall Mea-

suring Mission 2A12 surface rain rate and 3B42 daily accumulated rain data. Bias score

and equitable threat score have been evaluated for both instantaneous rain rate and 72-h

accumulated rain.
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1 Introduction

Prediction of TC track and intensity is very essential to give prior warning to people with a

view to mitigate loss of life and property. Lately, mesoscale weather models and com-

puting facilities available have increased prediction skill considerably. Even so, numerical

weather prediction (NWP) models get their initial (IC) and boundary (BC) conditions from

a low-resolution global forecast system (GFS) and are interpolated into the model domain

of interest, and thereafter the basic conservation and momentum equations with specified

physics parametrization schemes and time step are solved. The uncertainties in the ICs,

physics parameterization schemes and limitations in numerical techniques like truncation

and discretization errors and round-off errors from the computation are the major causes of

reduced forecast skill in NWP models. While numerical and round-off errors can be

reduced only to certain extent, it is possible to reduce the uncertainty in the physics

schemes and the ICs through the sensitivity studies and data assimilation techniques.

The NWP models have different physics parameterization schemes to represent the

atmospheric processes, but these schemes have been developed by different groups with

different assumptions and are region specific. Sensitivity studies are a rational way to

determine the best set of physics parameterization schemes for a specific region and reduce

the uncertainties in subgrid-scale process.

Srinivas et al. (2007) simulated the Andhra severe cyclone (2003) using the fifth-

generation Penn State/National Center for Atmospheric Research (NCAR) Mesoscale

Model (MM5) with four PBL parametrization schemes, namely Blackadar (BL), Mellor–

Yamada (MY), medium-range forecast (MRF) and Burk–Thomson (BT), and two con-

vective parametrization schemes, namely Grell (GR) and Kain Fritisch 2 (KF2). All the

PBL experiments underpredicted the intensity. The error in 72-h simulation was 206 km

for MRF, 289 km for MY, 310 km for BL and 432 km for BT. The MRF thus predicts the

track with reasonable accuracy. The 72-h track error in convective studies was 63 km for

the KF2 scheme and 63 km for the GR. From the above studies, they concluded that a

combination of KF2 and MRF gives better prediction.

Raju et al. (2011) analyzed the severe cyclone Nargis by using WRF with 11 different

combinations of CU, PBL and MP parameterization schemes. They inferred that the

convective process is a very important factor in the prediction of track and intensity of the

cyclone. They indicated the Kain Fritisch (KF) scheme is able to represent the subgrid-

scale feature of updraft and downdraft processes better than other convective schemes,

namely Betts–Miller–Janjic (BMJ) and Grell–Devenyi (GD). They finally concluded that

the combination of KF, Yonsei University scheme (YSU) and Ferrier schemes gives best

results with an average track error of 64 km and MSWS error of about 11.7 m/s.

Osuri et al. (2012a) studied the influence of the CU and PBL processes on five different

cyclones over the BOB by using the WRF model. They observed that these processes play

a significant role in the genesis and intensification of tropical cyclones and concluded that

the combination of KF and YSU gives better prediction.

Deshpande et al. (2010) studied the impact of CU and MP parametrization on the

simulation of the Orissa super cyclone in terms of track and intensity prediction by using

MM5. They tested three different cumulus schemes, namely GR, BMJ and KF2, and four

microphysics parametrization, namely mixed phase, Goddard microphysics with Graupel

(GG), Reisner Graupel (RG) and Schultz (SC). From the studies, they concluded that the

CU and MP parametrization schemes have more impact on the track and intensity
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prediction and the combination of KF2 in CU, mixed phase schemes in MP and MY from

PBL gives better prediction.

Srinivas et al. (2013) conducted sensitivity studies on five different cyclones over BOB

through 65 numerical experiments with combinations of CU, PBL, MP and LS parame-

terizations. From the sensitivity studies, they concluded that the combinations of KF, YSU,

LIN and NOAH schemes simulate the cyclones close to observations. They also analyzed

21 cyclones in the same region with the best set of physics schemes arrived at from their

study and observed that the best set of schemes overestimated the intensity of cyclone with

the mean error ranging from 1 to 22 m/s corresponding to 24- and 72-h simulations and the

mean track errors are 244 km at 48-h and 250 km at 72-h simulations.

Rao and Prasad (2007) simulated the Orissa super cyclone with different convective and

PBL schemes by using MM5 model. They concluded that the combinations of MY from

PBL and KF2 from CU give better simulations in terms of track. The model-predicted

precipitation also gave good agreement with observations.

Chandrasekar and Balaji (2012) conducted sensitivity studies of cyclone Jal to physics

schemes and arrived at the best set of physical parameterizations for both track and

intensity prediction by using the WRF. They concluded that (1) the best schemes arrived

for the track overpredict the intensity of the same cyclone and (2) the results differ, when

the grid size and number of nesting are changed. According to them, the performance of

physics schemes depends on the grid resolutions and number of nesting and the best

schemes arrived from any sensitivity study will give the best results only when the same

model configuration is used. Furthermore, they indicated that the CU, PBL and MP

parameterizations play a crucial role in TC simulations.

Srinivas et al. (2012) simulated two TCs, viz. Fanoos and Nargis in the region of BOB

with and without 3DVAR assimilation. They conducted the following three experiments:

(1) control run initialized with 0.5� GFS data, (2) assimilation of conventional surface

and upper air observations, and (3) assimilation of Quicksat scatterometer (QSCAT)

surface wind speed and direction. They concluded that assimilation has a negative impact

in terms of track and intensity when assimilating conventional observations, largely

because most of the conventional data are located in the land. They also mentioned that

assimilation gives positive impact in terms of track and intensity when the QSCAT

surface wind speed and direction are assimilated into the model. They reasoned that this

is due to the fact that assimilation reduces the initial vortex position error and corrects the

wind direction.

Osuri et al. (2012b) studied the impact of assimilation of satellite-derived wind data on

the track, intensity and structure of TCs over the north Indian Ocean. They analyzed four

TCs, namely Nargis, Gonu, Sidr and Khaimuk with and without 3DVAR assimilation.

They used QSCAT and Special Sensor Microwave/Imager (SSM/I) data for the assimi-

lation and concluded that the assimilation of surface wind gives positive impact on the

track simulation and improves the initial position of cyclone near 34 %; furthermore, 72-h

mean error of track simulation improved by 41 %, and the landfall prediction improved by

32 %. The assimilation improved the intensity prediction between 10 and 20 %. They also

concluded that assimilation also improves precipitation with the equitable threat score

(ETS) being 0.2 up to a rainfall threshold of 90 mm, when 24-h accumulated rainfall

simulations are compared with TRMM-observed rainfall.

Singh et al. (2008) used 3DVAR and assimilated QSCAT and SSM/I surface wind data

for simulating the Orissa super cyclone. They concluded that the surface wind data

assimilation increases the sea-air heat flux in the initial stages of the cyclone and it helps

improve the intensity prediction. The wind vector from the QSCAT and SSM/I reduces the
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Table 1 Model physics param-
eterization schemes

Cumulus (CU)

1. Kain Fritisch (new Eta) scheme (KF)

2. Betts–Miller–Janjic scheme (BMJ)

3. Grell–Devenyi ensemble scheme (GD)

4. New Grell scheme (GRELL)

Microphysics (MP)

1. Kessler scheme (KS)

2. Lin et al. scheme (LIN)

3. WRF Single Moment 3 class simple ice scheme (WSM3)

4. WRF Single Moment 5 class scheme (WSM5)

5. Ferrier (new Eta) microphysics (FERRIER)

6. WRF Single Moment 6 class Graupel scheme (WSM6)

7. Goddard GCE scheme (GODDARD)

8. Thompson Graupel scheme 2 moment (THOM2)

9. Morrison 2-moment scheme (MORRISON)

10. Double moment, 5 class scheme (DM5)

11. Double moment, 6 class scheme (DM6)

12. Thompson scheme (THOMP)

Planetary boundary layer (PBL)

1. Yonsei University scheme (YSM)

2. Mellor–Yamada–Janjic (Eta) TKE scheme (MYJ)

3. Quasi-Normal Scale Elimination (QNSE)

4. Mellor–Yamada–Nakanishi Niino 2.5 level TKE (MYNN2.5)

5. Mellor–Yamada–Nakanishi Niino 3 level TKE (MYNN3)

6. Asymmetrical Convective Model version 2 (ACM2)

7. Bougeault and Lacarrere (BOULAC)

Surface layer physics (SL)

1. Monin Obukhov scheme (MON)

2. Monin Obukhov (Janjic Eta) scheme (JAN)

3. Quasi-Normal Scale Elimination (QNSE_ SF)

4. Mellor–Yamada–Nakanishi Niino scheme (MYNN_ SF)

5. PleimXu scheme (PLEIM_ SF)

Land surface physics (LS)

1. Thermal diffusion scheme (TD)

2. Unified Noah land surface model (NLS)

3. Rapid Update Cycle land surface model (RUC)

4. PleimXu scheme (PLEIM)

Short-wave radiation (SWR)

1. Dudhia scheme (DS)

2. Goddard short wave (GSW)

3. Rapid Radiative Transfer Model for Global (RRTMG)

Long-wave radiation (LWR)

1. Rapid Radiative Transfer Model (RRTM)

2. Rapid Radiative Transfer Model for Global (RRTMG)
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initial errors in the wind direction in the cyclonic region and thus reduces the mean track

error in the simulation.

Singh et al. (2011) studied the impact of the QSCAT sea surface winds and SSM/I-

derived total precipitable water (TPW), and Meteosat-7-derived atmospheric motion

vectors (AMVs) in the track and intensity simulation of four TCs over the north Indian

Ocean. They concluded that assimilation of (1) QSCAT surface wind gives positive impact

on both track and intensity prediction and (2) SSM/I and AMVs gave negative impact in

three cyclones out of four.

From the above studies, it is clear different sets of physics parameterization schemes are

used for simulating TCs even within the region of BOB and the performance of these

physics schemes mainly depends on the grid resolution and the number of nesting. So, in

the first part of this study we try to determine the optimum physics schemes for the region

of BOB for the specific grid resolution and number of nesting through sensitivity studies.

For doing this, four TCs in the region of BOB, viz. Khaimuk, Laila, Jal and Thane have

been analyzed.

The second part of the study focuses on the impact of the assimilation of NCEP ADP

upper air data in TC simulations by using the 3DVAR assimilation technique. These three

TCs, viz. Laila, Jal and Thane are simulated with and without assimilation, and the results

are compared with the observations. The optimum physics schemes arrived from the

sensitivity studies have been used in the assimilation studies (Table 1).

Fig. 1 Model domain used in the present study
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2 Model domain and dynamic options

The WRF has been used for simulating the TCs. The physics schemes and dynamic options

are detailed in the model technical note (Skamarock 2008), and the governing equations

and the numerical technique used in the models are described in Skamarock and Klemp

(2008). Figure 1 shows the model domain, and Table 2 lists the number of nesting, grid

resolutions and dynamic options used in this study.

3 Data used

The United States Geological Survey (USGS) 3000 resolution topographical data have been

used in the WRF preprocessing system (WPS). The GFS 0:5� resolution model forecast

data from the NCEP have been used for generating the initial and boundary conditions. The

JTWC-observed track and wind data have been taken to be the truth for validating the

simulated tracks and MSWS. The NCEP ADP upper air observational data have been used

in the 3DVAR assimilation. These data sets have the variables of pressure, geopotential

height, air temperature, dew point temperature, wind direction and speed available from

1000 hpa to 10 hpa level. They include radiosondes, satellite data from the National

Environmental Satellite Data and Information Service (NESDIS) and aircraft reports from

the Global Telecommunications System (GTS). The TRMM 2A12 surface rain rate and

3B42 daily accumulated rain data have been used to validate the model-simulated

precipitation.

4 Data assimilation methodology

Data assimilation is an optimization technique to improve the initial conditions by com-

bining the available high-resolution observation data and model background data (GFS

initial conditions) through iterative methods. The 3DVAR assimilation technique is a

Table 2 Model dynamics and domain details

Dynamics

Equation Non-hydrostatic

Time integration scheme Third-order Runge–Kutta scheme

Horizontal grid type Arakawa-C grid

Domain

Map projection Mercator

Central point of the domain 85 E, 15 N

No of domains 2

No of vertical layers 27 Sigma levels

Horizontal grid distance 30 km in domain 1 and 10 km in domain 2

Time step 90 s

No of grid points 101 in both (E–W) and (N–S) in domain 1

151 in both (E-W) and (N-S) in domain 2
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calculus-based method and minimizes the error through minimizing J, Eq. 1 given below. J

is frequently referred to as the objective function. In 3DVAR, the conjugate gradient

method is used for minimizing the objective function. Details of the techniques are

available in Barker et al. (2004).

Jx ¼ Jb þ Jo ¼ ðx� xbÞTB�1ðx� xbÞ þ ðyo � HxÞTR�1ðyo � HxÞ ð1Þ

where

x = vector of analysis variables (n-dimensional)

xb = vector of background variables (n)

yo = observation vector (m-dimensional)

B = background error covariances matrix (n x n)

R = observation error covariances matrix (m x m)

H = observation operator

Jb = error in the back ground(n)

Jo = error in the observations(n)

Jx = total error(n).

5 Synoptic history of cyclones

5.1 Khaimuk

TC Khaimuk began as a low pressure in the southeast BOB and on November 13, 2008, the

low pressure moved toward north Tamilnadu. On the next day, i.e., 14 November, morning

it intensified into a deep depression and was expected to cross north Tamilnadu or south

Andhra Pradesh. The system was named as Khaimuk by Indian Meteorological Department

(IMD) on 15 November after the system became a cyclonic storm and had its land fall over

south Andhra Pradesh. The GFS data for 2008 November 14 06 UTC (Coordinated

Universal Time) have been used for providing ICs and BCs, and the simulations were

carried out for 42 h up to 12 UTC on November 16, 2008.

5.2 Laila

Cyclone Laila formed as a depression in BOB at May 17, 09 UTC. After 3 h, it became a

deep depression with a maximum sustained wind speed of 15.2 m/s. The system further

developed as a tropical cyclonic storm on 17 May and moved west. The convection

increased throughout the day, and the system intensified into a severe cyclonic storm on 19

May and hit the Andhra Pradesh coast on 20 May. For this TC, 72-h simulations have been

done with the 2010 May 18 00 UTC as ICs.

5.3 Jal

Jal developed from a low pressure area in the South China Sea and organized into a tropical

depression on October 28. The system further strengthened on November 04 18 UTC, and

the JTWC declared it as a tropical storm with a maximum wind speed of 19.16 m/s. Later

the storm moved west, gained energy from the warm waters and strengthened again as a

category 1 storm on November 06 00 UTC and continued till November 07 06 UTC as a
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category 1 storm. The system weakened and became a deep depression after its landfall

near Chennai at 18 UTC on November 07. The GFS data for 18 UTC, November 4, 2010,

have been used as ICs, and simulations were run up to 72 h.

5.4 Thane

Thane was the strongest tropical cyclone of the year 2011 in the region of north Indian

Ocean. Initially, it developed as a tropical disturbance in the west of Indonesia. The system

gradually developed and attained the tropical depression states on 25 December, and the

next day, it further developed into a tropical storm. On 28 December, the system became a

very severe cyclonic storm and moved toward the Tamilnadu and Andhra Pradesh coasts

and made landfall over the Tamilnadu coastal area between Cuddalore and Puducherry in

the early hours of December 30, 2011. For Thane, simulations are done for 72 h starting

from 00 UTC on December 27, 2011.

6 Experimental design

In the sensitivity study, the WRF model has been run for the various physics schemes in a

particular parameterization and the simulated tracks have been compared with the JTWC

observation tracks. The physics schemes have been chosen based on the minimum RMSE

Fig. 2 Comparison of simulated track propagation with the best, optimum and literature physics schemes
a Khaimuk, b Laila, c Jal, d Thane
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between simulated and JTWC tracks. The experiment and selection procedure of physics

schemes are based on the procedure followed by Chandrasekar and Balaji (2012). For each

cyclone, totally 24 experiments were conducted and the optimum physics parameterization

schemes for BOB have been arrived at through these sensitivity experiments for these

cyclones with minimum RMSE as the performance metric. The set of physics schemes

arrived at by Srinivas et al. (2013) based on the sensitivity studies in the region of BOB is

considered as the literature physics schemes. The four cyclones are also simulated with this

literature scheme, and the results are compared with the individual best and optimum

physics schemes simulation for all cyclones.

For assimilation, the WRF has been initialized with GFS before 6 h of all the actual ICs

which are used in the control run. WRF simulations at the end of six hours have been used

as the first guess or the back ground, and a three-hour time window has been set in the

3DVAR. The default NCEP global background error covariances matrices (B) are used in

this study. The B estimated with the difference between 24- and 48-h GFS forecast with

T170 resolution valid for the same time for 357 cases distributed over a period of one year

and the NMC method (Parrish and Derber 1992) are used to estimate the error covariances

statistics.

7 Results and discussion

7.1 Sensitivity experiments

A series of systematic experiments with various physics schemes have been conducted for

the above-mentioned cyclones. The physics schemes have been chosen based on the

minimum track error between JTWC-observed track data and the simulated track. Fig-

ure 2a–d shows the track propagation of four cyclone simulations with the best schemes

arrived from the respective sensitivity experiments of the cyclones. All the cyclones

propagate westerly, as expected. Table 3 lists the track error and relative mean square error

(RMSE) between the observed and simulated track for four cyclones. In the case of cyclone

Khaimuk, the initial error in the cyclone position is 28 km and the landfall error is 44 km.

The total 42-h RMSE of simulations with the best schemes is only 63 km. In the case of

cyclone Laila, the 72-h total RMSE in the track simulation is 127 km and the landfall error

is only 44 km. The best physics scheme from the Jal cyclone simulates the cyclone with a

relatively smaller error, with the total 72-h RMSE of track prediction being only 48 km

and the landfall error being 50 km even though the initial position error is 43 km. Cyclone

Thane gives poor simulation results, and even with the best set of schemes, the RMSE in

Table 3 Track error in the individual best physics scheme

Time (hr) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE
(km)

Khaimuk 28 154 61 46 42 82 45 44 63

Laila 61 163 256 249 225 177 65 32 39 147 85 102 44 127

Jal 43 25 66 94 99 62 4 19 31 36 70 25 50 48

Thane 29 77 50 51 127 159 168 168 211 226 208 213 186 144

The bold values represent error at the time of landfall
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track prediction is 144 km and the landfall error is 186 km even though the initial position

error was only 29 km.

Figure 3a–d shows the time series MSWS (m/s) of all simulated cyclones, and Table 4

lists the error between the JTWC-observed and model-simulated wind and the total RMSE

in wind simulations. Overall, the wind prediction in all the cases seems to be done with

better skill in terms of the total RMSE. The maximum RMSE value is 9 m/s in the case of

cyclone Laila and Jal, whereas for Khaimuk and Thane, it is only 6 and 4 m/s, respectively.

The maximum winds are simulated well at the time of landfall for three cyclones, and the

errors are 5, 2 and 2 m/s for the cyclones Khaimuk, Laila and Thane, respectively, but for

cyclone Jal, it is 22 m/s.
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Fig. 3 Time series of simulated maximum sustained wind speed with the best, optimum and literature
physics schemes a Khaimuk, b Laila, c Jal, d Thane

Table 4 Error in the maximum sustained wind speed in the individual best physics schemes

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE
(m/s)

Khaimuk 6 8 8 8 4 5 6 5 6

Laila 5 8 11 14 18 12 10 3 7 10 10 7 2 9

Jal 4 8 10 7 7 6 6 8 6 12 8 18 22 9

Thane 1 2 2 4 2 2 7 6 7 11 5 3 2 4

The bold values represent error at the time of landfall
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7.2 Optimum physics scheme for BOB

From the sensitivity studies for the above four cyclones in the BOB, it can be inferred that

the best set of physics scheme in each cyclone is not the same. However, there are some

schemes common to all the cases. So, it clear that it is possible to arrive at an optimum

combination of physics schemes for the region of BOB. Table 5 lists the individual best

physics schemes of four cyclones. The optimum physics schemes have been chosen based

on better predictions for at least two or more than two cyclone cases from a particular

parameterization.

7.2.1 Sensitivity of CU

From Table 5, it is seen that the KF scheme from the CU parameterization gives good

results for cyclones Laila, Jal and Thane, but in the case of Khaimuk, the GRELL

scheme gives better results. So, the KF scheme has been considered as the optimum

scheme in CU parameterization.

7.2.2 Sensitivity of MP

For MP parameterization, the FERRIER scheme gives better results for Khaimuk and Jal,

while WSM3 and LIN give better results for Laila and Thane, respectively. Hence, the

FERRIER scheme has been chosen for the region of BOB.

7.2.3 Sensitivity of PBL

The MYNN2.5 scheme from PBL gives good results for Jal and Thane. Cyclone Khaimuk

and Laila are simulated well with MYNN3 and MYJ, respectively. The MYNN2.5

scheme has been taken as the optimum scheme from the PBL parameterization.

7.2.4 Sensitivity of other parameterizations

From Table 5, it is seen that there is no significant variation in the results in respect of the

other physics parameterization schemes. The MYNN_SF scheme from SL parameteriza-

tion, TD scheme from LS, DS scheme from SWR and RRTM from LWR give good results

Table 5 Best schemes arrived at
from the individual cyclone sen-
sitivity study

Schemes Cyclone

Khaimuk Laila Jal Thane

CU GRELL KF KF KF

MP FERRIER WSM3 FERRIER LIN

PBL MYNN3 MYJ MYNN2.5 MYNN2.5

SL MYNN_SF JAN MYNN_SF MYNN_SF

LS TD TD TD TD

SWR DS DS DS DS

LWR RRTMG RRTM RRTM RRTM

Nat Hazards (2016) 80:223–247 233

123



for all the cyclones considered. The results clearly indicate that the tropical cyclone pre-

dictions are more sensitive to CU, MP and PBL parameterization than the others.

From the detailed sensitivity studies, the optimum set of physics schemes have been

arrived at for the region of BOB and its performance is compared with the best schemes

arrived from the individual cyclone cases and the literature physics schemes. Table 6 lists

the optimum set of physics scheme for the region of BOB and the literature physics

schemes. The optimum physics scheme is similar to the individual best scheme arrived for

the case of cyclone Jal.

Figures 2 and 3 show the track propagation and MSWS of all the cyclones simulated

with the best, optimum and literature physics schemes. Tables 7 and 8 list the track error

between JTWC track data and simulated tracks with the optimum and literature physics

schemes. Tables 9 and 10 list the MSWS error between the JTWC-observed wind and

simulated MSWS for the optimum and literature physics schemes. From the tables, it is

clear that both the optimum and literature physics schemes do not simulate the cyclones as

good as the individual best scheme arrived from the particular cyclones studies.

Table 11 lists the landfall error and RMSE for the cases of Laila, Jal and Thane, and the

RMSE for the 72-h track simulation for the best, optimum and literature schemes. The

average errors in landfall are 93, 185 and 251 km in case of best, optimum and the

literature schemes, respectively. The average of the RMSE is 106 km for the best

scheme and 136 km in the case of optimum physics scheme, and for the literature schemes,

it is 151 km. Table 12 gives the average error in the MSWS at the time of landfall. This is 9

and 16 m/s in the case of best and optimum, respectively, and 11 m/s in the case of

literature schemes. The average RMSE is 7, 6 and 8 m/s for the best, optimum and

literature physics schemes, respectively.

From the results, it is clear that the optimum physics schemes simulate the TCs in BOB

better than the literature physics in terms of track and intensity with this specific model

configuration. Furthermore, it is seen that the optimum set is worse off compared to the

individual best scheme, but the latter cannot give any guidance for simulation of future

cyclones. Under these conditions, the optimum set arrived in these schemes is recom-

mended for track and intensity predictions of TCs in the BOB.

7.3 Impact of assimilation

The NCEP ADP upper air observational data have been assimilated into WRF model by

using 3DVAR assimilation technique as explained earlier, and the optimum physics

Table 6 Optimum physics schemes for BOB and the literature schemes

Optimum scheme for BOB Literature schemes

CU Kain Fritisch (new Eta) scheme Kain Fritisch (new Eta) scheme

MP Ferrier (new Eta) microphysics Lin et al. scheme

PBL Mellor–Yamada–Nakanishi Niino 2.5 level Yonsei University scheme

SL Mellor–Yamada–Nakanishi Niino scheme Monin Obukhov scheme

LS Thermal diffusion scheme Unified Noah land surface model

SWR Dudhia scheme Dudhia scheme

LWR Rapid Radiative Transfer Model Rapid Radiative Transfer Model
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schemes arrived from the sensitivity studies have been used in the study. The ADP data

have been preprocessed before assimilation through 3DVAR observation preprocessor

(OBSPROC). The OBSPROC will remove the data out of the model domain and in a way

does some quality control. Figure 4a–c shows the locations of ADP satellite data after the

Table 7 Track error in the optimum physics schemes for BOB

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE (km)

Khaimuk 28 170 102 63 93 72 204 156 111

Laila 61 154 310 285 196 126 108 82 117 221 154 165 161 165

Jal 43 25 66 94 99 62 4 19 31 36 70 25 50 48

Thane 29 87 50 78 183 201 220 231 243 265 289 321 343 195

Table 8 Track error in the literature physics schemes

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE (km)

Khaimuk 28 168 83 133 111 228 93 251 137

Laila 61 154 256 227 164 116 140 159 190 315 257 309 339 207

Jal 43 18 62 85 88 73 56 72 79 110 132 168 199 91

Thane 29 81 42 61 162 159 174 204 208 226 227 224 214 155

Table 9 Error in the maximum sustained wind speed in the optimum physics schemes for BOB

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE
(m/s)

Khaimuk 6 8 7 8 2 4 4 3 5

Laila 5 7 10 13 18 15 5 9 7 18 24 14 18 12

Jal 4 8 10 7 7 6 6 8 6 12 8 18 22 9

Thane 1 0 0 5 5 2 11 13 8 14 10 3 8 6

Table 10 Error in the maximum sustained wind speed in the literature physics schemes

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE
(m/s)

Khaimuk 6 7 8 8 3 3 3 0 5

Laila 5 8 10 10 8 3 5 3 11 10 11 4 14 8

Jal 4 10 8 12 10 10 13 12 7 9 14 12 18 11

Thane 1 3 1 2 1 1 7 6 6 9 8 1 1 4
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quality control, and it seems that dense quality data are in the edge of the model domain

(90 E–95 E). Laila, Jal and Thane cyclones have been simulated with 3DVAR assimilation,

and the results are compared with the control run simulation and JTWC observations.

Figure 5a–c shows the propagation of simulated track for control run and 3DVAR

assimilated along with JTWC-observed track. Table 13 lists the track error and the RMSE

in the control run and 3DVAR simulations for the all three cyclones. It is worth mentioning

that in the case of Laila, the initial error in the position of the cyclone is only 61 km for the

control run, but after assimilation, it became 142 km and the 72-h forecast error in the

simulation with assimilation is 185 km. However, this error is only 44 km in case of the

control run. The total RMSE is nearly 40 % large for the 3DVAR simulation than the

control simulation. Hence, assimilation gives a negative impact on track simulations in the

case of cyclone Laila. For Jal, the assimilation reduces the initial position error from 43 to

39 km and it gives good results up to first 30-h simulation; after that, it starts deviating

from the observations and gives large error compared to the control run. The 72-h forecast

error is 50 km in the control run, but it is 99 km in 3DVAR simulation and also the total

RMSE is 21 % larger than control run simulations. In the case of cyclone Thane, the initial

position error is larger in 3DVAR, but it gives better results than control run in terms of

72-h forecast and RMSE. The error in the 72-h forecast is 253 km in the control run, but it

is only 135 km with the use of 3DVAR and also the total RMSE is 18 % smaller than the

control run. So, data assimilation gives mixed results.

Figure 6a–c shows the time series of the MSWS of control, 3DVAR simulations and

JTWC observation. Table 14 lists the error in the wind forecast of control and 3DVAR

simulations. It can be inferred that 3DVAR gives better results in the case of cyclone Laila.

The 72-h MSWS error is only 4 m/s in 3DVAR, but it is 14 m/s in the control run. The

total RMSE of MSWS is small in 3DVAR compared to the control run. The results from

Table 11 Landfall (km) error and RMSE (km) in track simulation with the best, optimum and literature
physics schemes

scheme Laila Jal Thane Average

Landfall RMSE Landfall RMSE Landfall RMSE Landfall RMSE

Best 44 127 50 48 186 144 93 106

Optimum 161 165 50 48 343 195 185 136

Literature 339 207 199 91 214 155 251 151

Table 12 Landfall (m/s) error and RMSE (m/s) in maximum sustained wind speed simulation with the best,
optimum and literature physics schemes

scheme Laila Jal Thane Average

Landfall RMSE Landfall RMSE Landfall RMSE Landfall RMSE

Best 2 9 22 9 2 4 9 7

Optimum 18 2 22 9 8 6 16 6

Literature 14 8 18 11 1 4 11 8
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Fig. 4 NCEP ADP upper air
observations used in the 3DVAR
assimilation a Laila, b Jal,
c Thane
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Fig. 5 Comparison of track
propagation for control run and
3DVAR simulations a Laila,
b Jal, c Thane
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b Jal, c Thane
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3DVAR have larger error in wind speed for the case of cyclone Jal than those from the

control run. The initial error in wind after assimilation is 15 m/s, but is only 4 m/s in the

control run, and the total RMSE in 3DVAR is 25 % larger than in the control run.

Simulations with 3DVAR in the case of cyclone Thane show a larger error in terms of

initial and RMSE. The initial error in the assimilation is 6 m/s, but it is 1 m/s in the control

run and also the error in the RMSE is 40 % larger than in the control run.

Table 15 lists the landfall error and total 72-h RMSE of all cyclone simulations and

average of them for the both control and 3DVAR track simulations. It seen that the average

landfall error in the control run simulations is 116 km and it is 140 km in 3DVAR. The

average RMSE is 113 km in the control run, but in 3DVAR, it is about 134 km and 16 %

larger than in the control run. Table 16 gives the average landfall and RMSE of MSWS

simulations for both the control and 3DVAR, and it can be inferred that the 3DVAR

simulations have RMSE 20 % larger than control run on the average.

Figures 7, 8 and 9 show a comparison of TRMM 2A12 surface rain rate data, WRF

control and 3DVAR-simulated surface rain rate in different time periods for the cases of

cyclones Laila, Jal and Thane, respectively. The figures show that WRF is able to capture

the circulation pattern in the all the cyclones. Furthermore, the precipitation patterns look

similar to the TRMM 2A12 pattern, but the position of the system varies in all cases. The

WRF 72-h accumulated rain (mm) has also been quantitatively validated with TRMM

3B42 daily accumulated rain (mm) data through the BS and ETS as followed by Gandin

and Murphy (1992). The corresponding TRMM 3B42 daily data for all the cyclone days

have been collected. This is based on 24-h accumulated rainfall, and so all the data have

been combined to get 72-h accumulated rainfall for every cyclone. The 72-h accumulated

rainfall for all the cyclones from WRF model has been estimated and collocated with the

TRMM grid pixels. The statistical skills in the prediction can be estimated through the

Table 14 Error in the maximum sustained wind speed in the control run and 3DVAR simulation

Time (h) 0 6 12 18 24 30 36 42 48 54 60 66 72 RMSE (m/s)

Laila(Ctrl) 5 8 11 13 18 14 11 6 4 3 8 3 14 9

Laila(3DVAR) 5 4 8 11 11 14 11 5 4 8 2 4 4 7

Jal(Ctrl) 4 8 10 7 7 6 6 8 6 12 8 18 22 9

Jal(3DVAR) 15 13 13 6 10 6 8 8 9 11 13 21 20 12

Thane(Ctrl) 1 0 0 4 5 2 11 12 8 16 8 1 8 6

Thane(3DVAR) 6 3 3 9 8 7 13 14 16 20 14 5 9 10

Table 15 Landfall error (km) and RMSE (km) in track simulation for control run and 3DVAR simulation

Scheme Laila Jal Thane Average

Landfall RMSE Landfall RMSE Landfall RMSE Landfall RMSE

Control 44 127 50 48 253 165 116 113

3DVAR 185 208 99 61 135 134 140 134
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contingency table shown in Figure 10. Mathematically, BS and ETS are given in Eqs. 2

and 3.

BS ¼ total forecast events

total observed events
¼ H þ F

H þM
ð2Þ

ETS ¼ H � Hrandom

H þM þ F � Hrandom

ð3Þ

where

Hrandom ¼ ðtotal forecast eventsÞ � ðtotal observed eventsÞ
N

¼ ðH þ FÞ � ðH þMÞ
N

H ¼ Correct prediction of rain occurrence(Hit)

F ¼ Precipitation of rain for which no rain occurrence, (False alarms)

M ¼ Rain occurrence which not predicted, (Misses)

Z ¼ Correct forecast of no rain (correct rejection)

N ¼ Sample size ðH þ F þM þ ZÞ:

BS is this ratio of frequency of total forecast rain events to frequency of observed rain

events, and a value of BS = 1 indicates perfect forecast and that means prediction is

unbiased. If BS\1, it means underprediction, and BS[1 means overprediction. BS = 0

refers to no skill, and BS can vary from 0 to 1. The ETS gives an estimation of the

fraction of correct prediction of rain occurrence (hits), adjusted for hits associated with

random chance Hrandom. An ETS of 1 indicates perfect skill, and ETS B 0 means that

prediction has no skill. ETS varies between � 1
3
and 1.

Figure 11 shows the BS and ETS histograms for 72-h accumulated rainfall for the

control run and 3DVAR simulations for Laila, Jal and Thane, respectively. It also shows

the average BS and ETS over all three cyclones. From the histograms, we have the

following observations.

1. For Laila, WRF overpredicts rain and control run returns better values of BS and ETS

than 3DVAR.

2. For Jal, 3DVAR returns better estimates than control run.

3. For Thane, both WRF and 3DVAR return low estimates.

Table 16 Landfall error (m/s) and RMSE (m/s) in the maximum sustained wind speed simulation for
control run and 3DVAR simulation

Scheme Laila Jal Thane Average

Landfall RMSE Landfall RMSE Landfall RMSE Landfall RMSE

Control 4 9 22 9 8 6 15 8

3DVAR 4 7 20 12 9 10 11 10
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Based on the above observations, it is seen that 3DVAR and WRF can give good

rainfall prediction in the case of medium rain (60–160 mm accumulated rain) for these

cyclone cases. In future, more studies are required to arrive at more broader and general

conclusions.

Fig. 7 Surface rainfall (mm/h) for cyclone Laila. TRMM 2A12 (left column), WRF control (middle
column), WRF 3DVAR simulation (right column)
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8 Conclusions

Sensitivity studies were conducted with four westward cyclonic cases in the BOB. The

results show that the prediction of TC with considerable accuracy is possible if the correct

physics parameterization schemes are chosen. However, the results clearly show that best

scheme for one cyclone is not suitable for the other. So, it is difficult to fix a single set of

physics schemes without compromising on the accuracy. Furthermore, track predictions

are more sensitive to CU, MP and PBL schemes as opposed to other parameterization

Fig. 8 Surface rainfall (mm/h) for cyclone Jal. TRMM 2A12 (left column), WRF control (middle column),
WRF 3DVAR simulation (right column)
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Fig. 9 Surface rainfall (mm/h) for cyclone Thane. TRMM 2A12 (left column), WRF control (middle
column), WRF 3DVAR simulation (right column)

Fig. 10 Contingency table
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Fig. 11 Bias score and ETS for both control run and 3DVAR a Laila, b Jal, c Thane, d average for all the
cyclones
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schemes. From the sensitivity studies of four cyclones, an optimum set of physics

parameterization schemes has been arrived at for the region BOB. This optimum set gives

better performance compared to the literature and is recommended for use in forecasting

TCs in the BOB region.

With the optimum physics schemes, the impact of assimilation of NCEP ADP upper air

observation data on TC prediction has been analyzed through 3DVAR, and the results are

mixed in respect of forecast of track, intensity and both instantaneous and accumulated

rainfall simulations. The rainfall validation shows both WRF and 3DVAR have good

statistics skill scores in the range of medium rain (60–160 mm accumulated rain).
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