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Abstract The lateral force on stabilizing piles due to themovement of the landslide has been

studied by many researchers. One of the most widely used methods was proposed by Ito and

Matsui in 1975 based on the plastic deformation theory. This paper aims to extend the approach

of Ito and Matsui by considering the soil arching effects along the height of the sliding layer

between twoneighboring piles. The analysis is carried out in two stages. First stage involves the

plastic deformation of soil adjacent to piles. In this stage, considering the arching effects along

the height of the sliding layer, a typical cross section of the soil is employed to analyze the soil

stress in the rear of piles. In the second stage, the plastic deformation theory proposed by Ito and

Matsui is adopted to analyze the squeezing effects between two neighboring piles. Moreover,

the parametric analysis is performed to investigate the susceptibility of the governing factors,

which include the geometric and mechanical parameters. The results show that both the geo-

metric and mechanical parameters impart the significant influence on the lateral force. Finally,

both the numerical simulation results and the field experiment data from the literatures are

introduced to validate the proposed approach. The comparison charts illustrate that the pre-

dictions by the proposed approach are consistent with the experimental results.
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1 Introduction

Landslide occurring in both natural and cut slopes often results in serious damage to both

human lives and properties (Poulos 1973; Liu and Zhao 2013; Cai and Ugai 2004). Lots of

research has been carried out to reduce the damage of landslide disasters. Stabilizing piles,

as one of the most widely used countermeasure in reinforcement engineering of slopes,

have been proved to be an efficient solution to landslides (Guo 2013). Stabilizing piles as

passive piles are embedded into a stable base of slope to provide additional stability. The

distributions of the lateral force acting on passive piles are dependent on soil movements.

Due to the complex plastic deformation of soil, estimation of the lateral force on passive

piles cannot be easily solved.

Several previous researchers have attempted to estimate the lateral force exerted on sta-

bilizing piles. Ito and Matsui (1975) proposed an analysis to evaluate the lateral force acting

on a single row of piles due to soil movement. Their analysis was carried out in light of the

theory of plastic deformation, and simultaneously, the interaction between piles and soil was

considered. It is convenient to estimate the ultimate soil pressure on pile segment embedded

in the sliding soil layer using this method, because the pressure depends on only four

parameters: the cohesion c, the internal friction angle u, pile diameter, and spacing between

piles. This method has been widely referred by other researchers (Hassiotis et al. 1997; Cai

and Ugai 2000; Hazarika et al. 2000). Poulos (1995) presented a method in which a boundary

element method was employed to analyze the response of a row of passive piles incorporated

in limit equilibrium solutions of slope stability in which the pile is modeled as a simple elastic

beam. Themethod evaluates the maximum shear force that each pile can provide based on an

assumed input free field soil movement (Ashour and Ardalan 2012). Poulos (1995) revealed

the existence of three modes of failure: (i) the ‘‘flow mode,’’ (ii) ‘‘intermediate mode,’’ and

(iii) the ‘‘short-pile mode.’’ These three modes of failure highlighted by Polous definitely

promote the application of analysis of stabilizing piles. This classification of failure modes

was diffusely adopted by researchers (Chen and Poulos 1997; Ashour and Norris 2000;

Ashour et al. 2004;Won et al. 2005; Jeong et al. 2003; Nian et al. 2008; Suleiman et al. 2014).

In this paper, a row of piles in the deforming ground with the ‘‘flow mode’’ mechanism is

analyzed, and here the soil movement is larger than the pile deflection. In addition, the soil

arching effects along the height of the sliding layer between two neighboring piles are

considered to provide the nonlinear distribution of lateral force on each pile.

In this study, the lateral force on a row of piles under lateral movement of the sliding

layer is analyzed. The analysis is carried out in deforming ground considering the arching

effects in the rear of piles. The distribution of the soil stress exerted on the piles is

nonlinear based on the soil arching theory. From parametric analysis of the factors utilized

in the proposed formulae, it reveals that all the factors including the internal friction angle,

the cohesion, the pile diameter, the height of the unstable soil layer influenced the lateral

stress enormously. What’s more, the numerical simulation results together with field

experiments from literatures are introduced to validate the proposed approach.

2 Force on stabilizing piles undergoing lateral soil movement

2.1 General descriptions

When the sliding layer moves laterally, the soil around the piles deforms. Between two

neighboring piles, the soil arching occurs along the height of the sliding layer. In the rear of
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piles, the direction of major and minor principal stress of the soil rotates in the soil arching

zone. In this analysis, the soil arching zone in the rear of piles is shown as the dashed area

in Fig. 1. The plane view of soil deforming between two neighboring piles is depicted in

Fig. 2. In addition, a typical cross section, UU0, as shown in Fig. 3, is employed to display

the soil stress in the rear of the plane AA0 (Fig. 2). In the present paper, the analysis is

conducted in two stages. Firstly, the soil pressure acting on the plane AA0 is analyzed based
on the soil arching theory. Secondly, considering the squeezing effect between the piles,

the lateral force acting on the piles is calculated.

2.2 Soil arching effects

Soil arching was described by Terzaghi (1943) as one of the most universal phenomenon in

the field of soil mechanics. Transferring of soil pressure from a yielding support to an

adjacent non-yielding support is the essence of this phenomenon (Bosscher and Gray

1986). However, as to the geometrical feature of soil arch, Terzaghi used shadow to

represent the zone of soil arching instead of drawing a real arch (Terzaghi 1936, 1943). In

the present paper, a circle-shaped arch is employed, and the limit equilibrium of the

differential element in the soil arching zone is analyzed to investigate the lateral active soil

stress.

In silos and ditches, some researchers have set up differential equations to estimate the

soil pressure by considering the soil arching effects, without defining the shape of the soil

arching (Janssen 1895; Marston and Anderson 1913). However, the shape of the soil

arching is crucial for lateral stress analysis. It has been investigated by many researchers,

and several geometrical models, such as elliptic, catenary, and parabolic, have been pro-

posed to describe the shape of the arch (Livingston 1961; Walker 1966; Stević et al. 1979;

Handy 1985). The trajectory of the arch was examined theoretically by Kingsley (1989). It

is shown that the minor principal stress arch can be approximated by a catenary or a circle.

Recently, the soil arching theory has been developed to study on retaining wall based on

the catenary and circle-shaped arch, respectively (Handy 1985; Wang 2000; Paik and

Salgado 2003). In the present paper, some concept of previous study is adopted to evaluate

the soil stress behind a row of stabilizing piles. The trajectory of soil arching is assumed to
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Fig. 1 The soil arching zone in
the rear of stabilizing piles
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be an arc of a circle. In addition, in order to analyze the soil stress on the plane AA0

(Fig. 2) due to the soil layer deformation, the plane AA0 (Fig. 2) is assumed in active

condition. Furthermore, it is assumed that only the area between the two parallel lines

AG and A0G0 (Fig. 2) is considered, when the active stress on the plane AA0 is analyzed.
It is noted that assumption of the active stress is same to that of Ito and Matsui (1975).

Moreover, they assumed that the Rankine’s earth pressure theory was applied on the

plane. However, some recent research indicates that the active earth pressure predicted

by soil arching theory provides more accurate result than that by Rankine’s theory. It has

been proved in the study of silos, ditches, and retaining walls (Janssen 1895; Marston

and Anderson 1913; Paik and Salgado 2003). Based on soil arching theory proposed by

Fig. 2 Plastic deformation of
soil between neighboring piles
(after Ito and Matsui 1975)
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FFig. 3 Cross section of the
deformation in soil ground in the
rear of piles
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Paik and Salgado (2003), the active stress on plane AA0 (Fig. 2) in deforming ground is

discussed.

When soil layer deforms, the actual soil arching zone would be complicated. In this

study, assumption mentioned previously is utilized to simplify the analysis. The cross

section UU0 is shown in Fig. 3. The angle between sliding plane and the horizontal is b. In
the deforming soil layer, the rotation of the principal stress on the line FF0 (Fig. 3) is

described as Fig. 4. In the rear of the line FF0, the shape of the soil arching is an arc of a

circle which dips downward instead of upward. The trajectory of minor principal stress on

the differential element is represented by the dotted lines, while the direction of major

principal stress is the normal of the arch.

The active earth pressure acted on the line FF0 includes two components: the active

lateral stress rh and the shear stress s. A theoretical approach has been proposed by Paik

and Salgado (2003) to estimate the active lateral stress rh behind a retaining wall for

cohesionless soil. This approach is adopted herein and extended for c–u soil.

Considering the force equilibrium in the triangular element at point A in Fig. 4, the

lateral stress is obtained as:

rh ¼ r1 cos
2 hþ r3 sin

2 h ð1Þ

At an arbitrary point D of the arch, whose original location is point B, a similar equation

is given by

rah ¼ r1 cos
2 wþ r3 sin

2 w ð2Þ

′

Fig. 4 Stress on differential
element in the soil arching zone
(after Paik and Salgado 2003)
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where w is the angle between the normal of the arch at point D and the horizontal, rah is the
lateral stress at point D. Considering that the soil is in active state, the Mohr–Coulomb’s

yielding criterion is applied:

r3 ¼ r1N � 2cN1=2 ð3Þ

where N = tan2(p/4 - u/2) and c is the cohesion of soil. Substituting Eq. (3) in Eq. (1),

the lateral stress at point D (Fig. 4) is obtained:

rah ¼ ðcos2 wþ N sin2 wÞr1 � 2cN1=2 sin2 w ð4Þ

Since rah-r3 = r1-rav, substitution for rah gives

rav ¼ ðsin2 wþ N cos2 wÞr1 � 2cN1=2 cos2 w ð5Þ

where rav is the vertical stress at an arbitrary point D. As depicted by Eq. (5), the vertical

stress varies with angle w, which changes from h to p/2. In this problem, it seems

impossible to calculate the vertical stress at every point in the analyzing zone, so the

average vertical stress �rv is introduced, which can be expressed as:

�rv ¼
V

S
ð6Þ

in which V is the total vertical stress across the differential element and S the width of the

differential element. The total vertical stress V of the differential element can be calculated

by the following formula:

V ¼
Z p=2

h
dV

¼
Z p=2

h
ravdA

¼
Z p=2

h
½r1ðsin2 wþ N cos2 wÞ � 2cN1=2 cos2 w�ðR � dw � sinwÞ

ð7Þ

where dV is the differential vertical force on the shaded portion at arbitrary point B and dA

the width of the shaded portion at point B.

Substituting Eq. (7) in Eq. (6), and considering S = R 9 cosh, the average vertical

stress is obtained as follows:

�rv ¼
Z p=2

h
r1ðsin2 wþ N cos2 wÞ sinw

cos h
� dw �

Z p=2

h
2cN1=2 cos2 w

sinw
cos h

� dw ð8Þ

Integrating of Eq. (8) yields

�rv ¼ r1 1� 1� N

3
cos2 h

� �
� 2c

3
N1=2 cos2 h ð9Þ

Equation (9) can be rewritten as:

r1 ¼
3�rv þ 2cN1=2 cos2 h
3� ð1� NÞ cos2 h ð10Þ

Substituting Eqs. (3) and (10) in Eq. (1), the lateral stress is obtained
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rh ¼
3ðcos2 hþ N sin2 hÞ
3� ð1� NÞ cos2 h ð�rv þ

2c

3
N1=2 cos2 hÞ � 2cN1=2 sin2 h ð11Þ

in which h = 45� ? u/2 when the line FF0 is in active condition. It is noted that in Paik

and Salgado’s research (2003), the angle h is defined as a function of wall friction angle.

However, in this study, the friction force is induced by the soil particles on the line FF0;
namely, it is identical to the condition that the wall friction angle equals to 0 in Paik and

Salgado’s model. In order to simplify the expression of Eq. (11), let

Kan ¼
3ðcos2 hþ N sin2 hÞ
3� ð1� NÞ cos2 h ð12Þ

and

T ¼ 3ðcos2 hþ N sin2 hÞ
3� ð1� NÞ cos2 h � 2c

3
N1=2 cos2 h� 2cN1=2 sin2 h

¼ 2cN1=2ð1
3
cos2 h � Kan � sin2 hÞ

ð13Þ

Then, Eq. (11) can be expressed as:

rh ¼ Kan �rv þ T ð14Þ

Equation (14) shows that the active lateral stress consists of two components: the

cohesion effect and non-cohesion effect. In cohesionless soil, the relation between active

lateral stress and average vertical stress on the line FF0 is succinct, which can be written as

rh ¼ Kan �rv.

2.3 Limit equilibrium equation in the soil arching zone

The stress on the differential element in the soil arching zone is shown as Fig. 5. The angle

b is assumed to be 45� ? u/2. It has been proved that the right edge of the differential

element, namely the triangular area ABC, is in the state of limit equilibrium, so that the

Fig. 5 Soil stress on differential
element
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stress in this area can be neglected when total stress on the differential element is analyzed.

At left edge of the differential element, the shear stress along the line FF0 should be taken

into account, which can be expressed as:

s ¼ rh tanuþ c ¼ ðKan �rv þ TÞ tanuþ c ð15Þ

In the vertical direction of Fig. 5, considering the width of soil arching zone, all the

vertical force must be in equilibrium. The equation is set up as follows:

cS � D2dz ¼ ðKan �rv þ TÞ tanu � D2dz þ cD2dzþ S � D2d�rv ð16Þ

in which �rv is the average vertical stress, S is the width of the differential element, D2 is the

clear interval between two neighboring piles, dz is the thickness of the differential element.

Dividing by D2 in both sides of Eq. (16), and considering S = (H-z)/tanb (Fig. 5), the

general solution of Eq. (16) is obtained:

�rv ¼ ðH � zÞKan tanu tan b

� �c
ðH � zÞ1�Kan tanu tan b

1� Kan tanu tan b
� ðT tanuþ cÞ tan b

Kan tanu tan b
ðH � zÞ�Kan tanu tan b þ C1

" #
ð17Þ

where H is the thickness of the sliding soil layer, z is the depth below the surface of the

soil, c is the unit weight of the soil, C1 is an integration constant. Considering the condition

of overload acting on the surface of the ground (Fig. 6), substituting the boundary con-

dition that �rv ¼ q when z = 0, the constant C1 is obtained

C1 ¼ qH�Kan tanu tan b þ c
H

1�Kan tanu tan b

1� Kan tanu tan b
þ ðT tanuþ cÞ

Kan tanu
H�Kan tanu tan b ð18Þ

in which q is the overloading exerted on the surface of the ground. The average vertical

stress at an arbitrary depth is given by Eq. (19)

′

Fig. 6 Soil stress on differential
element with overloading on the
surface of the ground
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�rv ¼
cH½ð1� z

H
ÞKan tanu tan b � ð1� z

H
Þ�

1� Kan tanu tan b
þ ðT tanuþ cÞ

Kan tanu
1� z

H

� �Kan tanu tan b
�1

� �

þ q 1� z

H

� �Kan tanu tan b
ð19Þ

Combining Eq. (14) with Eq. (19), the active lateral stress is obtained

rh ¼
KancH½ð1� z

H
ÞKan tanu tan b � ð1� z

H
Þ�

1� Kan tanu tan b
þ ðT tanuþ cÞ

tanu
1� z

H

� �Kan tanu tan b
�1

� �

þ Kanq 1� z

H

� �Kan tanu tan b
þ T ð20Þ

It is noted that, when Eq. (20) is utilized to estimate the active lateral stress in pure

cohesive soil whose internal friction angle equals to zero, the parameter u should be

substituted by a value close to 0, such as 0.01�.

2.4 The squeezing effects of the soil between neighboring piles

In order to analyze the lateral force acting on the piles, the squeezing effects of the soil

between neighboring piles should be taken into account. Some assumptions have been made

by Ito andMatsui (1975) to estimate the squeezing effects. In this analysis, the assumptions of

the deforming soil around the piles made by Ito and Matsui are adopted. Based on these

assumptions and soil arching theory, the active stress on plane AA0 (Fig. 2) in the theory of
plastic deformation proposed by Ito and Matsui (1975) is replaced by Eq. (20). Then, the

lateral force acting on a stabilizing pile p per unit thickness of the layer in the direction of x-

axis can be estimated by new formula. As derived in ‘‘Appendix’’, the equations to estimate

the lateral force including the squeezing effects between two neighboring piles for cohe-

sionless soil and c-u soil can be expressed as Eqs. (30) and (31), respectively.

Cohesionless soil (c = 0):

p ¼ cHKan

1� Kan tanu tan b
� 1� z

H

� �Kan tanu tan b
� 1� z

H

� �� �
þ Kanq 1� z

H

� �Kan tanu tan b
� 	

� D1ð
D1

D2

ÞN
1=2
1

tanuþN1�1 � exp
D1 � D2

D2

N1 tanu tan
p
8
þ u

4

� �� �
� D2

� 	

ð21Þ

c–u soil:

p¼ cD1

D1

D2

� �N
1=2
1

tanuþN1�1
(
ð2N1=2

1 tanuþ 1Þ
N1 tanu

� exp
D1�D2

D2

N1 tanu tan
p
8
þu

4

� �� �
� 1

� �

þ 2tanuþ 2N
1=2
1 þN

�1=2
1

N
1=2
1 tanuþN1� 1

)
� cD1

2 tanuþ 2N
1=2
1 þN

�1=2
1

N
1=2
1 tanuþN1� 1

þrh

� D1

D1

D2

� �N
1=2
1

tanuþN1�1

�exp
D1�D2

D2

N1 tanu tan
p
8
þu

4

� �� �
�D2

" #

ð22Þ

in which z is the arbitrary depth of the sliding soil layer, rh can be obtained by Eq. (20),

and N1 = tan2(45� ? u/2).
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3 Parameter analysis

Equations (21) and (22) show that the lateral forces exerted on the stabilizing piles vary

with many parameters. In both cohesionless soil and c-u soil, the common parameters are

unit weight c, the height of the unstable soil layer H, the depth of the analyzed soil z, pile

diameter D1–D2, and the interval between two neighboring piles D1. Besides, there are two

mechanical parameters: the internal friction angle u and the cohesion c. In the present

paper, the effects of all the parameters are evaluated.

3.1 The height of the unstable soil layer

Figure 7 displays the distribution of the lateral force along the normalized depth of unstable

soil with respect to differentH. In both cohesionless soil and c–u soil, the height of the sliding

soil layer changes from 2 to 8 m, but the shape of distribution of the lateral force does not

change much with the variation of H. However, the magnitude of the lateral force increases

with the growth of the heightH. It is found from Fig. 8 that the magnitude of the lateral force

Fig. 7 The distribution of lateral
force along the unstable soil layer
with respect to different height of
unstable layer, a cohesionless soil
(c = 0 kN/m2) and b c–u soil
(c = 10 kN/m2)
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in c–u soil is greater than that in cohesionless soil in the same depth with the same internal

friction angle. In addition, peak value of the force is always in the range of 0.6–0.8H.

3.2 Internal friction angle and cohesion

As the Mohr–Coulomb’s criterion is utilized to estimate the lateral force, the internal

friction angle and cohesion are the most affecting parameters for the lateral force. Figure 8

displays the lateral force distribution on pile with the internal friction angle varying from

5� to 40�, and the depth of the sliding layer is 6 m. Figure 8a, b displays the lateral forces

on piles in cohesionless soil and c–u soil, respectively. It reveals that for both cohesionless

soil and c–u soil as the internal friction angle increases, the lateral force acting on the

stabilizing pile increases at every depth. The magnitude of the lateral force in both kinds of

soils in the same depth is in the same order. The maximum value of the lateral force is in

the range of 0.8–0.85H when the internal friction angle is\20�. The height of the point of
the peak value decreases, while the internal friction angle increases. When u = 40�, the
maximum value of the force is in the range of 0.6–0.7H.

As mentioned above, the peak value is in the range of 0.6–0.8H, and the lateral forces at

depth 0.7H versus ratio D2/D1 are shown in Fig. 9. The two figures show that when the

ratio D2/D1 is less than 0.7, and the internal friction angle u more than 20�, the lateral force

Fig. 8 The distribution of lateral
force versus the internal friction
angle along the height of the
sliding soil for a cohesionless soil
(c = 0 kN/m2) and b c–u soil
(c = 10 kN/m2)

Nat Hazards (2015) 79:1981–2003 1991

123



calculated from Eq. (21) and (22) may be a big value. The trend of the lateral force versus

internal friction angle on basis of the proposed method is similar to that of Ito and Matsui’s

analysis (1975).

The effect of the cohesion is shown in Fig. 10. It is found in the figure that the lateral

force increases while the cohesion grows. However, the increment of the lateral force due

to the effect of cohesion is less than that due to internal friction angle. Note that a value of

u closes to 0� that 0.01� is substituted to calculate the force, and it is because the internal

friction angle cannot be zero in Eq. (22).

The total lateral force on a stabilizing pile is shown in Fig. 11. It is clear that the total

lateral force increases with the increase in internal friction angle u and the cohesion c of

the soil. Note that the four curves in Fig. 11 are nearly parallel to each other. It implies that

the increment between two curves is nearly constant. For instance, when u = 10�, the
increment of the force at c = 5 kN/m2 and c = 10 kN/m2 is about 1.5 t. Comparing that

when u = 30�, the increment is 1.6 t.

3.3 Pile diameter

The lateral force on the depth 0.7H with different pile diameter is presented in Fig. 12. In

both cohesionless soil and c–u soil, the increase in the pile diameter leads to the rise of the

lateral force. Generally speaking, it means the piles in greater diameter provide more

Fig. 9 The effect of internal
friction angle for a cohesionless
soil (c = 0 kN/m2) and b c–u
soil (c = 10 kN/m2)

1992 Nat Hazards (2015) 79:1981–2003
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additional resistance than the smaller ones. For instance, Fig. 12b shows that when the

diameter is 0.3 m and D2/D1 = 0.3, the lateral force is nearly 10 t/m; when the diameter is

1.2 m and D2/D1 = 0.3, the lateral force is nearly 40 t/m, which is 4 times larger than the

previous condition. It reveals that the lateral force increases in proportion to the pile

diameter.

Fig. 10 The effect of cohesion
for a cohesive soil with internal
friction angle approximates 0�
(u = 0.01�) and b c–u soil with
u = 10�

Fig. 11 The total lateral force
on the stabilizing piles
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3.4 The range of effective height

A limitation of Eq. (22) may exist when this equation is applied in c–u soil in which the

value of internal friction angle u is small. It means that when Eq. (22) is utilized to

calculate the lateral force acting on a stabilizing pile in c–u soil with small value of

internal friction angle, a negative value might be obtained in the depth that z is very close

to the height of the sliding soil layer H. In this paper, the critical depth in which the

positive lateral force on piles can be calculated by Eq. (22) is defined as the effective

height. What’s more, the depth where the negative value exists is defined as the negative

value area. In the negative value area, the lateral force is let equal to 0. That’s because in

many field experiments and numerical simulation results (Fukumoto 1972, 1974; Lirer

2012), it is shown that when the depth that z is very close to the height of the sliding soil

layer H, the value of lateral force on the piles is small. We will demonstrate in the

following section that the negative value area is quite tiny that can be ignored so the

treatment of the lateral force in the negative value area does not affect the prediction of the

force. The calculated negative value between the effective height and the failure surface is

considered to be a limitation of this approach because the prediction of the lateral force on

the pile in the ground above the failure plane should be positive. However, this limitation

Fig. 12 The effect of diameter
of pile for a cohesionless soil
(c = 0 kN/m2) and b c–u soil
(c = 10 kN/m2)
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can be neglected because the effective height always approximately equal to the real height

of the sliding layer. The value of the effective height is studied as follows.

The ratio Hc/H versus H with respect to different mechanical parameters is shown in

Fig. 13, in which Hc is the effective height, H the height of the sliding soil layer. Figure 13

displays that the effective height varies with the mechanical parameters, and the ratio Hc/

H changes from 0.99 to 1. The variation of the ratio Hc/H indicates that only a tiny

discrepancy exists between effective height and the real height of sliding soil layer. It

means that Hc & H.

It should be noted that if the calculated value on the failure plane is positive, it means

there is no negative value area in these kinds of soils. In these soils, the effective height Hc

equals to H, and there is no need to modify the calculated value on the failure surface.

4 Numerical and experimental verification

4.1 Verification for cohesionless soil

In order to validate the proposed approach for cohesionless soil, the literature data are

introduced. A numerical simulation on the response of piles subjected to mudslide was

Fig. 13 Change of effective
height with mechanical
parameters for a pure cohesive
soil with internal friction angle
approximates 08 and b c–u soil
with u = 10�
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carried out by Lirer (2012). The dimensions of the numerical model are 300 m in length,

8 m in width, and 25 m in height. The sliding soil layer in this model is 4.5 m. The

material properties are listed in Table 1. The pile used in the numerical simulation has a

diameter of 0.4 m and a length of 10 m. The center-to-center interval between two

neighboring piles in a row is 1.3 m. The source reference gives details of the numerical

model. The prediction of the lateral force and the numerical results are compared one

another as shown in Fig. 14.

Ignoring the negative force within the top few meter of the ground, Fig. 14 displays that

in cohesionless soil the prediction by the proposed approach coincides with numerical

results. Both the numerical results and the prediction show that the lateral force decreases

near the sliding surface after the first gradually increases along the depth of the sliding soil

layer. In the depth of 3.5–4 m, both the prediction and the numerical results reach the peak

value. The trend of the distribution of the force estimated by the proposed method shows a

high degree of consensus with the numerical simulation data.

4.2 Verification for the c–u soil and cohesive soil

In Ito and Matsui’s research (1975), the theoretical values were compared with the

experimental results, which was originally given by Fukumoto (1972, 1974) for the typical

landside areas in Japan, including Katamachi, Higashitono, and Kamiyama landside areas.

In this research, for the purpose of comparison, the measured data of Fukumoto (1972,

1974) are used again. The conditions of the stabilizing piles in these areas are summarized

Table 1 Material properties in
Lirer’s numerical model (Lirer
2012)

Sliding body Shear zone Stable layer Pile

c (kN/m3) 19 19 19 –

E (Pa) 2 9 107 1 9 107 5 9 107 2 9 1011

m 0.34 0.34 0.34 0.25

c (Pa) 0 0 1 9 106 14 9 107

u (8) 28 25 30 0

w (8) 0 0 0 0

Fig. 14 Calculated and
numerical simulated lateral force
on a pile

1996 Nat Hazards (2015) 79:1981–2003

123



as follows. In Katamachi landslide area, the hollow concrete piles with diameter of

300 mm and wall thickness of 60 mm were adopted. In the other landslide areas, the steel

pipe piles with the diameter of 318.5 mm and wall thickness of 6.9 mm were adopted. All

the piles were set up zigzag in two rows at 4-m intervals, and the line space between two

rows was 2 m. Furthermore, the head of the Katamachi B pile is 2.17 m depth under the

ground, and the Kamiyama No. 2 pile and the Higashitono No. 2 piles are both 1 m depth

under the ground.

The soil properties are given in Table 2. Note that the internal friction angles in

Kamiyama and Higashitono landslide areas are 0.01�, while the original values of the

angles are 0�. As mentioned previously, in the pure cohesive soil, when the internal friction

angle equals to zero, a value approximated 0 is substituted.

Generally speaking, in Fig. 15a–c the experimental results display the similar trend of the

distributions of lateral force. Ignoring the negative force exerted on the pilewithin the top few

meters, the lateral force by the experiment increases gradually and then reduces near the

sliding surface after reaching the peak value. The predictions of the lateral forces by the

proposed method in several landslides area are almost in line with the experimental results.

In Fig. 15a–c, it is obvious that the distributions of the lateral force computed by Ito and

Matsui’s approach are linear along the stabilizing piles from top of the soil to the sliding

surface. Furthermore, the maximum values calculated by Ito andMatsui’s method are on the

sliding surface. However, the experimental results show that the value of the force reduces

radicallywhen it reaches themaximum.Especially on the sliding surface, it usually appears to

be a small value. The lateral force by the proposed method shows the nonlinear distribution,

which results from the soil arching effect. Both the values due to the two theoretical methods

are in the same order ofmagnitudewith the observed ones. In Fig. 15a, themaximum force of

the experimental result is about 3.18 t/m in the depth of 7 m below the ground, while the

prediction of the proposed approach shows amaximum force of 4.97 t/m, which occurs in the

depth of 7 maswell, comparing that themaximum force by Ito andMatsui’smethod is 6.46 t/

m in the depth of 8.4 m, i.e., on the sliding surface. In Fig. 15b, the total lateral force on the

pile in the sliding layer by the experiment, the proposed approach, and Ito&Matsui’s method

is about 14.85, 19.21, and 20.94 t, respectively. The peak value of the experimental result is

about 4.30 t within the depth of 4.6–5.5 m, while themaximum value by the prediction of the

proposed approach is about 5.0 twithin the depth of 4–5 m, comparing themaximum force of

6.29 t in the depth of 6.47 m by the traditional prediction.

The study of case histories indicates that the predictions by the proposed method are

consistent with the field measurements for both c–u soil and pure cohesive soil. Particu-

larly, the proposed method shows the nonlinear distribution of the force, i.e., the phe-

nomenon of the distribution that decreases after the first gradually increases, which

compares well with the measurements.

Table 2 Soil properties of plastically deforming ground

Pile Katamachi B Kamiyama Higashitono
No. 2 No. 2

Unit weight c (kN/m3) 19 19 19

Angle of internal friction degree u (8) 2 0.01 0.01

Cohesion c (kN/m2) 25 41 44
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5 Conclusions

The estimation of the lateral force acting on the stabilizing pile due to the soil layer

movement is discussed in this paper. The previous theoretical method shows the linear

distribution of the lateral force along the sliding soil layer, which can evaluate the mag-

nitude of the lateral force. In this paper, the plastic deformation theory proposed by Ito and

Fig. 15 Comparison between
the observed and the theoretical
values of lateral force acting on
stabilizing piles in typical
landslide areas in Japan.
a Katamachi B pile, height of
unstable soil layer H is 8.4 m;
effective height Hc is 8.399 m.
b Kamiyama No. 2 pile, height of
unstable soil layer H is 6.47 m;
effective height Hc is 6.452 m.
c Higashitono No. 2 pile, height
of unstable soil layer H is
6.07 m; effective height Hc is
6.045 m

1998 Nat Hazards (2015) 79:1981–2003

123



Matsui is modified by considering the soil arching effect between two neighboring piles.

The prediction by the modified approach provides the nonlinear distribution of the lateral

force, which is more consistent with the field measurement.

For cohesionless and c–u soil, the lateral forces on the pile are discussed separately, and

two new formulae are proposed. The parameters in these formulae are studied for each soil.

Generally speaking, the parametric study shows the lateral force increase with the growth

of the height of the unstable soil layer H, the internal friction angle u, the cohesion c, and

the pile diameter D1–D2.

The comparisons for cohesionless soil, c–u soil and pure cohesive soil are carried out,

respectively. The calculated value shows highly consistent with the numerical simulation

result. The comparisons in the c–u soil and pure cohesive soil indicate that the prediction

by the proposed approach compares well with the experimental result; particularly, the

maximum force and the corresponding position calculated by the proposed method is in

line with the field measurement. In addition, all the comparisons in this paper display that

in the flow mode the nonlinear distribution of the force on the stabilizing pile in the sliding

soil layer is predicted by the proposed approach, which shows a satisfactory agreement

with the experimental value. What’s more, the proposed method reveals that the lateral

force on the pile segment embedded in the sliding soil layer would increase from the top of

the ground surface and then decrease to a small value on the sliding surface after culmi-

nates. This behavior of the distribution of the lateral force coincides with the experimental

data, ignoring the negative force within the little depth below the ground surface.
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Appendix

The squeezing effects between two neighboring piles [derivation of Eqs. (21)
and (22)]

The squeezing effects have been proved by Ito and Matsui (1975). It is summarized as

follows.

Firstly, all the assumptions they made are adopted in this paper. In the zone EBB0E0

(Fig. 1), the equilibrium of the forces in x direction on a differential element is considered

(as shown in Fig. 16):

2dx ra tan
p
4
þ u

2

� �
þ ra tanuþ c

h i
� Ddrx � rxdD ¼ 0 ð23Þ

The normal stress ra on the surface EBB0E0 (Fig. 1) is assumed to equal to the principal

stress rx. The Mohr–Coulomb’s yield criterion is expressed as:

ra ¼ rxN1 þ 2cN
1=2
1 ð24Þ

in which N1 = tan2(p/4 ? u/2). The geometrical condition gives:

dx ¼ dðD=2Þ
tanðp=4þ u=2Þ ð25Þ
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Substituting Eq. (24) and (25) in Eq. (23) and then making integration,

rx ¼
ðC1DÞðN

1=2
1

tanuþN1�1Þ � cð2 tanuþ 2N
1=2
1 þ N

�1=2
1 Þ

N
1=2
1 tanuþ N1 � 1

ð26Þ

where C1 is an integration constant.

Then, in the zone AEE0A0 (Fig. 1), the equilibrium of the forces on a small soil element

in x direction is also considered, as shown in Fig. 17.

D2drx ¼ 2ðra tanuþ cÞdx ð27Þ

Substituting Eq. (34) in Eq. (27) and integrating it,

rx ¼
C2 expð2N1 tanu

D2
xÞ � cð2N1=2

1 tanuþ 1Þ
N1 tanu

ð28Þ

where C2 is an integration constant.

The solution for lateral force acting on stabilizing pile in cohesionless ground

For cohesionless soil, the active earth pressure acts on the plane AA0 is obtained by

Eq. (20), namely:

½rx�x¼0 ¼ rh

¼ cHKan

1� Kan tanu tan b
1� z

H

� �Kan tanu tan b
� 1� z

H

� �� �
þ Kanq 1� z

H

� �Kan tanu tan b

ð29Þ

in which z is an arbitrary depth below the ground surface, c the unit weight of the soil, q the
vertical pressure exerted on the surface of the ground. Equation (29) is considered as the

boundary condition of Eq. (28), and then,

Fig. 16 Differential element
(EBB0E0) between two
neighboring piles (Ito and Matsui
1975)
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C2 ¼ rhN1 tanu ð30Þ

Substituting Eq. (30) in Eq. (28) yields

½rx�x¼D1�D2
2

tanðp
8
þu

4
Þ ¼ ðrhN1 tanuÞ exp

D1 � D2

D2

� N1 tanu tan
p
8
þ u

4

� �� �
ð31Þ

The constant C1 in Eq. (26) is obtained by considering Eq. (31) as the boundary con-

dition. Then,

ðC1D2ÞðN
1=2
1

tanuþN1�1Þ ¼ ðN1=2
1 tanuþ N1 � 1Þ

N1 tanu
rhN1 tanu � exp D1 � D2

D2

N1 tanu tan
p
8
þ u

4

� �� �� �

ð32Þ

Equations (26) and (32) are used to obtain the solution of lateral force PBB0 acting on the

plane BB0 per unit thickness of layer in x direction, which is shown as follows:

pBB0 ¼ D1

D1

D2

� �ðN1=2
1

tanuþN1�1Þ
rh � exp

D1 � D2

D2

N1 tanu tan
p
8
þ u

4

� �� �� �
ð33Þ

Finally, subtracting the active lateral force acting on the plane AA0 from PBB0, the lateral

force acting on a pile per unit thickness of layer in x direction is obtained.

p ¼ pBB0 � D2½rx�x¼0

¼ cHKan

1� Kan tanu tan b
� 1� z

H

� �Kan tanu tan b
� 1� z

H

� �� �
þ Kanq 1� z

H

� �Kan tanu tan b
� 	

� D1

D1

D2

� �N
1=2
1

tanuþN1�1
(

� exp
D1 � D2

D2

N1 tanu tan
p
8
þ u

4

� �� �
� D2

	

ð34Þ

Fig. 17 Differential element
(AEE0A0) between two
neighboring piles (Ito and Matsui
1975)
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Equation (34) is the solution for lateral force acting on a pile in the cohesionless ground.

Similarly, in the c–u soil ground, the solution is obtained,

p¼ cD1

D1

D2

� �N
1=2
1

tanuþN1�1
(
ð2N1=2

1 tanuþ 1Þ
N1 tanu

� exp
D1�D2

D2

N1 tanu tan
p
8
þu

4

� �� �
� 1

� �

þ 2tanuþ 2N
1=2
1 þN

�1=2
1

N
1=2
1 tanuþN1� 1

)
� cD1

2 tanuþ 2N
1=2
1 þN

�1=2
1

N
1=2
1 tanuþN1� 1

þrh

� D1

D1

D2

� �N
1=2
1

tanuþN1�1

�exp
D1 �D2

D2

N1 tanu tan
p
8
þu

4

� �� �
�D2

" #
ð35Þ

References

Ashour M, Ardalan H (2012) Analysis of pile stabilized slopes based on soil-pile interaction. Comput
Geotech 39:85–97

Ashour M, Norris G (2000) Modeling lateral soil-pile response based on soil-pile interaction. J Geotech
Geoenviron Eng ASCE 126(5):420–428

Ashour M, Pilling P, Norris G (2004) Lateral behavior of pile groups in layered soils. J Geotech Geoenviron
Eng ASCE 130(6):580–592

Bosscher P, Gray D (1986) Soil arching in sandy slopes. J Geotech Eng 112(6):626–645
Cai F, Ugai K (2000) Numerical analysis of the stability of a slope reinforced with piles. Soils Found

40(1):73–84
Cai F, Ugai K (2004) Numerical analysis of rainfall effects on Slope stability. Int J Geomech ASCE

4(2):69–78
Chen LT, Poulos HG (1997) Piles subjected to lateral soil movements. J Geotech Geoenviron Eng

123(9):802–811
Fukumoto Y (1972) Study on the behavior of stabilization piles for landslides. Soils Found 12(2):61–73 (In

Japanese)
Fukumoto Y (1974) On the lateral resistance of piles against a land-sliding erosion control section, Niigata

Pref. J Jpn Landslide Soc 11(2):21–29 (In Japanese)
Guo WD (2013) Pu-based solutions for slope stabilizing piles. Int J Geomech ASCE 13(3):292–310
Handy RL (1985) The arch in soil arching. J Geotech Eng ASCE 111(3):302–318
Hassiotis S, Chameau JL, Gunaratne M (1997) Design method for stabilization of slopes with piles.

J Geotech Geoenviron Eng 123(4):314–323
Hazarika H, Terado Y, Hayamizu H (2000) A new approach to the finite element slope stability analysis

incorporating the slice and pile deformations. In: Proceeding of the tenth international offshore polar
engineering conference Seattle, USA, 630–636

Ito T, Matsui T (1975) Methods to estimate lateral force acting on stabilizing piles. Soils Found 18(4):43–59
Janssen HA (1895) Versuche uber getreidedruck in silozellen. Z Ver Deut Ingr, 39:1045–1049. (partial

English translation in Proceeding of the Institute of Civil Engineers, London, England)
Jeong S, Kim B, Won J, Lee J (2003) Uncoupled analysis of stabilizing piles in weathered slopes. Comput

Geotech 30(8):671–682
Kingsley HW (1989) Arch in soil arching. J Geotech Eng 115(3):415–419
Lirer S (2012) Landslide stability piles: experimental evidences and numerical interpretation. Eng Geol

149–150:70–77
Liu F, Zhao J (2013) Limit analysis of slope stability by rigid finite-element method and linear programming

considering rotational failure. Int J Geomech ASCE 13(6):827–839
Livingston CW (1961) The natural arch, the fracture pattern, and the sequence of failure in massive rock

surrounding an underground opening. Proc Symp Rock Mech Pa State Univ Bull 76:197–204
Marston A, Anderson AO (1913) The theory of loads on pipes in ditches and tests of cement and clay drain

tile and sewer pipe. Iowa Engineering Experiment station Bulletin, Iowa State College, Ames No 31
Nian TK, Chen GQ, Luan MT, Yang Q, Zheng DF (2008) Limit analysis of the stability of slopes reinforced

with piles against landslide in nonhomogeneous and anisotropic soils. Can Geotech J 45(8):1092–1103

2002 Nat Hazards (2015) 79:1981–2003

123



Paik KH, Salgado R (2003) Estimation of active earth pressure against rigid retaining walls considering
arching effects. Geotechnique 53(7):643–653

Poulos HG (1973) Analysis of piles in soil undergoing lateral movement. J Soil Mech Found Eng ASCE
99(5):391–406

Poulos HG (1995) Design of reinforcing piles to increase slope stability. Can Geotech J 32(5):808–818
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