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Abstract El Salvador and Central America in general are highly prone to landsliding. In

November 1998, Hurricane Mitch killed 240 people, displaced about 85,000 people,

caused more than $600 million in economic losses, and damaged about 60 % of the

nation’s roads (Rose et al. in Natural hazards in El Salvador. Geologic Society of America

of special paper 375, Boulder, 2004). An understanding of susceptibility of locations to

landsliding is critical for development and mitigation planning. This work presents the

development of the Normalized Landslide Index Method which is a derivative of the

bivariate statistical methods commonly used in landslide susceptibility assessment. The

resultant map was amended through a tangential analysis, also commonly used in landslide

susceptibility mapping, the Analytical Hierarchy Process (AHP), which reduces multi-

criteria analysis to pair-wise comparisons. The assimilation of results from the AHP

analysis into the statistically derived susceptibility map skewed the original results by

emphasizing the extremes already found. It was determined that addition of AHP results

did not increase the value of the derived susceptibility map. Finally, a physically based a

priori approach to landslide susceptibility mapping, developed by El Salvador National

Service of Territorial Studies, was compared to the statistically derived map developed

herein. It was found that the a priori approach was not sufficiently discriminant to be useful

for planners and regulators, as very large areas were designated high susceptibility that

included areas with low slope angles. The development of the normalized landslide index

is a significant improvement to the class of bivariate statistical strategies to assess regional

landslide susceptibility.
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1 Introduction

Shallow landslides are triggered by rainfall events of high intensity and short duration.

Although landslides may occur in small portions of a hilly or mountainous landscape, their

impact to the safety and well-being of inhabitants and the local economy is dispropor-

tionately felt (Meisina et al. 2013). The necessity to identify landslide-prone areas at the

regional scale is critical to plan mitigation measures and to alert populations during

extreme rainfall events.

Landslide susceptibility and/or hazard mapping has evolved dramatically with the

widespread availability of geographic information system technology and the availability

of spatial datasets including land classification and other information from remote sensing.

Methodologies for the development of landslide susceptibility maps can be divided into

statistical methods that use the locations of existing landslides along with land classifi-

cation databases for statistical analysis and physically based methods that predict landslide

susceptibility independent of the locations of previous landslide events and rely solely on

land, climate, and in some cases seismic activity geo-spatial classifications (Van Den

Eeckhaut et al. 2006). There are advantages and disadvantages to each strategy. Statistical

models are primarily limited due to the fact that the conceptual model on which they are

founded is that ‘‘the past (and present) landslide locations are the key to the future’’

(Carrara et al. 1995; Zêzere 2002). The accuracy and precision of physically based

methods are highly dependent upon the detail of available climatologic, hydrologic, and

geomorphologic temporally and spatially distributed datasets.

Approaches to landslide hazard/susceptibility mapping have evolved and now include

bivariate, multivariate logistic regression, fuzzy logic, and artificial neural network analysis

(van Westen 1997; Dai et al. 2001; Lee and Min 2001; Ercanoglu and Gokceoglu 2004; Lee

et al. 2004a, b; Komac 2006). A promising strategy comes from the Wharton School of

Business in the form of a decision-making tool known as the Analytical Hierarchy Process

(Saaty 1980). Yalcin (2008) compared the use of Analytical Hierarchy Process (AHP) with

two other commonly used methods for landslide susceptibility mapping: the statistical index

and waiting factor methods, and found that the Analytical Hierarchy Process did signifi-

cantly better than the statistical methods employed at predicting the locations of known

landslides based on topographic and geomorphologic features.

This paper describes the development of a statistical-based landslide susceptibility map,

which is subsequently refined using subjective criteria developed through use of the AHP.

The susceptibility map weights are compared both before and after implementation of

AHP, in order to assess the impact of its assimilation. Then, the statistically based

developed susceptibility map is compared to a physically based susceptibility map that was

developed by the El Salvador National Service of Territorial Studies (SNET).

2 Study area

The region of Central America is very prone to natural hazards (Rose et al. 2004). El

Salvador is located on the western side of Central America, and it is bounded by the Pacific

Ocean to the west, the Rı́o Sumpul to the east on its border with Honduras, the Rı́o Paz on

the northern border with Guatemala, and the Rı́o Goascorán on the southern border with

Nicaragua. Despite being Central America’s smallest country in area (21,040 km2), El

Salvador has the highest population density (*290 persons/km2).
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As a consequence of lying above the subduction zone between the Cocos and Carribean

tectonic plates, El Salvador is bisected by a linear belt of active volcanoes and associated

seismic zones, a coastal plain lying to the south and rolling mountains to the north (Rose

et al. 2004). The bedrock geology of much of El Salvador is unknown due to extensive

volcanic activity and the associated pyroclastic flows that cover much of the country with

ignimbrites up to 650 m thick (Baxter 1984). Geological surveying shows that the country

is composed of volcanic rocks, with a few exceptions (Fig. 1). With respect to landslide

susceptibility, these minerals are easily weathered to illite and smectite clays, which create

slip surfaces for overlying deposits.

The territory of El Salvador has pronounced relief, with four mountain chains of broken

and rugged terrain. Mountain chains include the coastal chain that parallels the coast

separated by alluvial plains comprising three separate masses that represent about 13 % of

the county’s total land mass. At approximately 12 % of the total area, the young volcanos

of Apaneca-Lamatpepc, San Salvador, San Vicente, Tecapa-San Miguel, and Conchagua

include calderas, high plains, and deeply eroded slopes. The country is also bisected by a

graben extending from east to west, characterized by steep slopes from 30 to 50 %. Finally,

in the northern part of the country, three large groups of mountains define the border with

Honduras and Guatemala, with the countries tallest mountain at 2730 m.

At approximately 13� north latitude, El Salvador lies just north of the northernmost

migration site of Intertropical Convergence Zone (ITCZ) in Central America. Here, a well-

defined annual cycle of precipitation is characterized by a rainy season from May to

October, with the remainder of the year being dry (Aguilar et al. 2009). The passage of

transient weather disturbances across the region is the result of meridional displacements

of the ITCZ, and the passage of hurricanes, tropical storms and depressions, and easterly

waves. Caribbean easterly waves are the most common disturbance, with approximately 60

tropical waves per year reaching the eastern part of Central America (Pasch et al. 1998).

Hurricanes and tropical depressions, when combined with the steep mountainous terrain,

primarily volcanic soils, and high population densities, have resulted in major loss of life,

the most recent example being the landfall of Hurricane Mitch during 1998 (Hellin et al.

1999; Bell et al. 1999).

Fig. 1 Broad geologic categories across El Salvador
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In the aftermath of Hurricane Mitch, the government of El Salvador created the Servicio

Nacional de Estudios Territoriales (SNET) to monitor seismic activity and investigate

landslides and landslide susceptibility. The SNET database includes a geo-referenced

database of 260 landslide occurrences dating from 1762 to August 2012. Of the 260

landslides, according to the database, 113 were rain-induced (Fig. 2).

In order to verify the locations of each landslide, point locations were entered into

Google Earth, where aerial imagery could be used to identify actual landslide locations. In

addition, field notes for each landslide location were reviewed along with historical aerial

imagery also available in Google Earth. Through this process, many of the point locations

were removed due to the fact that they were located within a municipality. This process

also permitted the delineation of polygons associated with the head escarpments of land-

slide locations. This delineation process resulted in the identification of 545 distinct

polygons (Fig. 2).

Data used in the development of susceptibility maps for El Salvador were limited by the

spatial resolution of the digital elevation model which is used to generate several geometric

characteristics of interest such as slope, aspect, tangential and profile curvatures. The

resolution of the available DEM is 30 m 9 30 m; therefore, all other variables were

transformed to this resolution. Delineated landslide polygons were converted to this

gridded representation resulting in 1231 grid cells (approximately 1 sq km total) where

landslides had occurred.

3 Landslide susceptibility mapping

3.1 Normalized Landslide Index Method

In order to identify what areas are most susceptible, or have the highest risk, of future

landsliding, the historic landslide database provided by SNET was used. In addition to

Fig. 2 All documented landslides by SNET with those rain-induced landslides identified. Landslide head
scarp polygons verified through aerial images and field visit report review, polygon sizes exaggerated so as
to be visible
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landslide point locations, additional attributes were provided such as the timing of the

landslide and the triggering mechanism (seismic or rain-induced), and in some cases a field

visit report were also available for review.

In selecting the causal factors for any geo-spatial investigation, Yalcin (2008) identified

five criteria researchers should ensure: (1) operational (has a certain degree of affinity with

the dependent variable, in this case landslide location), (2) complete (is represented across

the entire domain), (3) non-uniform (varies spatially), (4) measurable (can be expressed by

nominal, ordinal, interval, or ratio scales), and (5) and non-redundant (its effect should not

account for double consequences in the final result). Geo-spatial variables such as lithol-

ogy-weathering, distance to streams and roads, and land cover classes, along with DEM-

derived variables such as slope, aspect, plan, and profile curvatures, are commonly used to

derive landslide susceptibility researchers (Dai et al. 2001, 2002; Lee and Min 2001; Parise

2001; Cevik and Topal 2003; Lee et al. 2004a, b; Lan et al. 2004; Perotto-Baldiviezo et al.

2004; Ayalew et al. 2005; Ayalew and Yamagishi 2005; Komac 2006). Continuous

variables such as topographic slope must be classified into discrete classes for further

analysis (see Table 2). The aspect variable was broken into six classes based on their

orientation, with 0� representing directly east and moving around clockwise at 60� inter-

vals. The remaining continuous variables, slope, and tangential and profile curvatures were

classified by dividing all of the values into five equal size bins.

The core of the bivariate statistical analysis undertaken is an overlay of parameter maps

and calculations of landslide densities in order to assess the importance of each parameter.

By normalizing values, using the landslide density per parameter class in relation the

landslide density over the entire area, a total hazard map is created by the addition of

weights for individual parameters. The bivariate statistical analysis performed is often

referred to as the statistical or landslide index method (subsequently referred to as the

index method). In the index method, a weight value for a parameter class is defined as the

natural logarithm of the landslide density class, divided by the landslide density over the

entire map (van Westen 1997; Yalcin 2008; Rautela and Lakhera 2000; Quinn et al. 2010).

This is done using Eq. (1),

Wi ¼ ln
Landslide Class Density

Landslide Map Density

� �
¼ ln

Npix Sið Þ
Npix Nið ÞP
Npix Sið ÞP
Npix Nið Þ

0
B@

1
CA ð1Þ

where Wi, the weight given to a certain parameter class (i) (e.g., lithology, slope, etc.);

Npix(Si), number of pixels, which contain landslides, in a certain parameter class; and

Npix(Ni), total number of pixels in a certain parameter class.

Taking the natural logarithm of this relative density results in positive values where

landslides are highly represented in any given parameter class and negative values where

landslides are poorly represented. The index method is based on statistical correlation (map

crossing) of different parameter maps and the landslide inventory map with parameter class

attributes. Preprocessing of spatially distributed variables included the processing of a

digital elevation model to derive slope, aspect, profile, and tangential curvature categories.

These continuous variables were then divided into discrete classes (see Tables 1, 2, 3, 4, 5,

6, 7). Polygon vector geo-spatial representations of land use and geology were first lumped

into fewer classes by combining distinct classes, as there were 61 and 25 classes in the

original data provided by SNET, respectively (Tables 5, 6). After lumping classes based on

general characteristics, vectors were converted to raster-based representations to achieve

spatial continuity between all parameters. Each weight class was then normalized to the
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normal of classes in the parameter, as parameters such as land use, that have twice the

number of classes as slope; for example, weights were misrepresented in the final sus-

ceptibility map due to the dilution of weight value from not having the same number of

classes in each parameter.

In the present study, each parameter map was crossed with the landslide inventory map,

and the density of the landslides in each class was calculated. Correlation results were

stored in resultant rasters, and the density of the landslide per parameter class was cal-

culated. Then, the parameter weight (ln Wi) value of each attribute was calculated

(Tables 1, 2, 3, 4, 5, 6, 7; Fig. 3). Finally, all layers were overlaid and a resultant sus-

ceptibility map was obtained by summing the weights for each parameter (Fig. 3). The

final susceptibility map was divided into equal classes according to the total number of

elements. The classes are: low, medium, high, and very high susceptibility (Fig. 3).

Geo-spatial and statistical analysis were implemented through a combination of the

Quantum GIS (QGIS Development Team 2014), GRASS GIS (GRASS Development

Team 2012); MATLAB (2012); Microsoft Excel (2010).

3.2 Results

3.2.1 Slope factor

The slope factor was divided into five classes, with an equal number of pixels in each.

Results from the analysis indicate that representation of landslides in any given class is

significantly greater as slopes increase. Landslides are 3.7 times more likely to be repre-

sented in the steepest slope class than the lowest slopes according to this analysis.

3.2.2 Aspect factor

The aspect factor was divided into six equal classes. Aspect class ranges represent degrees

in a counterclockwise direction with 0� representing due east. Class discrimination was

decided based on the orientation of primary mountain chains in the region that extend in a

northwest to southeasterly direction. Weights for any particular aspect class are small with

no particularly strong signal coming from any direction. The aspects where landslides are

positively represented are those facing north and northeast.

Table 1 Variable class values from spatial domain of interest and weight calculations for slope

Slope n (pix) LS_n (pix) Weight LN
(weight)

Normalized
LN (weight)

AHP
factor
(wt)

Actual
(wt)

0–3.332 4,534,045 11 0.045 -3.108 -0.62165 0.52200 -0.32450

3.332–6.4813 4,534,050 55 0.223 -1.499 -0.29976 0.52200 -0.15648

6.4813–11.0874 4,534,062 125 0.508 -0.678 -0.13557 0.52200 -0.07077

11.0874–18.0498 4,534,054 197 0.800 -0.223 -0.04459 0.52200 -0.02328

[18.0498 4,534,054 843 3.424 1.231 0.24616 0.52200 0.12850

Sum 22,670,265 1231
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3.2.3 Profile curvature factor

Profile curvature represents the concavity or convexity of a slope in the down slope

direction (Fig. 4). Classes in the profile curvature parameter were divided into five discrete

classes representing planar, moderate, and high positive or negative profile curvature.

Classes were determined based on an equal number of pixels in each class bin. Results

indicate that landslides are slightly better represented in locations with high profile

Table 2 Variable class values from spatial domain of interest and weight calculations for aspect

Aspect n (pix) LS_n (pix) Weight LN
(weight)

Normalized LN
(weight)

AHP factor
(wt)

Actual
(wt)

0–59 3,930,630 215 1.002 0.002 0.00032 0.02929 0.00001

60–119 3,307,953 162 0.897 -0.109 -0.01811 0.02929 -0.00053

120–179 3,477,120 122 0.643 -0.442 -0.07368 0.02929 -0.00216

180–239 4,004,849 208 0.951 -0.050 -0.00831 0.02929 -0.00024

240–299 3,930,674 248 1.156 0.145 0.02412 0.02929 0.00071

300–359 3,842,172 273 1.301 0.264 0.04392 0.02929 0.00129

Sum 22,493,398 1228

Table 3 Variable class values from spatial domain of interest and weight calculations for profile curvature

Profile
curvature

n (pix) LS
n (pix)

Weight LN
(weight)

Normalized LN
(weight)

AHP factor
(wt)

Actual
(wt)

\-0.0028 4,534,053 257 1.044 0.043 0.00859 0.04480 0.00038

-0.0028 to
-0.00085

4,534,053 179 0.727 -0.319 -0.06375 0.04480 -0.00286

-0.00085 to
0.0006

4,534,053 155 0.630 -0.463 -0.09254 0.04480 -0.00415

0.0006–0.0026 4,534,053 221 0.898 -0.108 -0.02160 0.04480 -0.00097

[0.0026 4,534,053 419 1.702 0.532 0.10635 0.04480 0.00476

Sum 22,670,265 1231 1

Table 4 Variable class values from spatial domain of interest and weight calculations for tangential
curvature

Tangential
curvature

n (pix) LS
n (pix)

Weight LN
(weight)

Normalized LN
(weight)

AHP factor
(wt)

Actual
(wt)

\-0.0026 4,534,053 418 1.698 0.529 0.10587 0.08337 0.00883

-0.0026 to
-0.0006

4,534,053 158 0.642 -0.444 -0.08871 0.08337 -0.00740

-0.0006 to
0.00079

4,534,053 138 0.561 -0.579 -0.11578 0.08337 -0.00965

0.00079–0.0028 4,534,053 179 0.727 -0.319 -0.06375 0.08337 -0.00531

[0.0028 4,534,053 338 1.373 0.317 0.06338 0.08337 0.00528

Sum 22,670,265 1231
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curvatures, whether positive or negative, but almost an order of magnitude better repre-

sented in positively curved slopes.

3.2.4 Tangential curvature factor

Tangential curvature refers to the degree to which any given pixel is surrounded by pixels

that either feed into, or out of that pixel, hydrologically. Classes in the tangential curvature

parameter were also divided into five discrete classes representing planar, moderate, and

high positive or negative tangential curvature. Similar to the profile curvature, there is a

Table 5 Variable class values from spatial domain of interest and weight calculations for lithology

Lithology N (pix) LS
N (pix)

Weight LN
(weight)

Normalized
LN (weight)

AHP
factor
(wt)

Actual
(wt)

Limestones and marly
limestones

15,823 20 23.298 3.148 0.12593 0.1998 0.02516

Cones of accumulation
(slag, lapilli tuffs,
cinder)

79,957 116 26.741 3.286 0.13145 0.1998 0.02627

Effusive basic-
intermediate

3,433,106 1 0.005 -5.227 -0.20909 0.1998 -0.04178

Basic-intermediate
effusive, subordinate
pyroclastic

3,550,245 36 0.187 -1.677 -0.06709 0.1998 -0.01341

Effusive basic-
intermediate,
pyroclastic, volcanic
epiclasts

859,690 335 7.183 1.972 0.07887 0.1998 0.01576

Intermediate to acidic
effusive pyroclastic
intermediate

728,350 16 0.405 -0.904 -0.03616 0.1998 -0.00723

Volcanic and pyroclastic;
-basic-intermediate
effusive

2,247,609 90 0.738 -0.304 -0.01215 0.1998 -0.00243

Acidic to intermediate
pyroclastic

2,778,823 12 0.080 -2.531 -0.10123 0.1998 -0.02023

Pyroclastic acidic,
volcanic epiclasts

2,585,239 51 0.364 -1.012 -0.04047 0.1998 -0.00809

Pyroclastic acidic,
epiclasts volcanic (tuffs
brown color)

1,992,580 4 0.037 -3.297 -0.13187 0.1998 -0.02635

Pyroclastic acidic,
ignimbrites, volcanic
epiclasts

1,399,731 82 1.080 0.077 0.00307 0.1998 0.00061

Acidic to intermediate
intrusive rocks

85,263 15 3.243 1.176 0.04706 0.1998 0.00940

White Earth acidic
volcanic and
subordinate pyroclastic

599,576 452 13.895 2.632 0.10526 0.1998 0.02103

SUM 22,689,883 1231
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slight positive correlation to the high tangential curvatures in both the positive and negative

directions, with landslides being much better represented in negatively curved tangential

slopes Fig. 5.

Table 6 Variable class values from spatial domain of interest and weight calculations for land use

Land use N (pix) LS
N (pix)

Weight LN
(weight)

Normalized LN
(weight)

AHP
factor
(wt)

Actual
(wt)

Evergreen forests 288,707 31 1.9116 0.6479 0.0127 0.12072 0.0015

Coniferous forests 565,469 4 0.1259 -2.0720 -0.0406 0.12072 -0.0049

Mixed forests 153,626 73 8.4595 2.1353 0.0419 0.12072 0.0051

Coffee plantations 2,433,579 370 2.7067 0.9957 0.0195 0.12072 0.0024

Annual crops 797,478 9 0.2009 -1.6049 -0.0315 0.12072 -0.0038

Basic grains 3,451,866 361 1.8618 0.6216 0.0122 0.12072 0.0015

Mosaic of pasture
and farms

1,589,433 18 0.2016 -1.6014 -0.0314 0.12072 -0.0038

Natural pasture 1,781,610 2 0.0200 -3.9128 -0.0767 0.12072 -0.0093

Lava, rock 51,517 73 25.2266 3.2279 0.0621 0.12072 0.0075

Continuous urban
fabric

269,109 57 3.7708 1.3273 0.0255 0.12072 0.0031

Discontinuous
urban fabric

134,408 8 1.0596 0.0579 0.0011 0.12072 0.0001

Principally
agricultural lands

2,599,934 18 0.1233 -2.0935 -0.0403 0.12072 -0.0049

Low shrubs 822,877 5 0.1082 -2.2240 -0.0428 0.12072 -0.0052

Herbaceous
natural
vegetation

291,062 77 4.7097 1.5496 0.0298 0.12072 0.0036

SUM 19,707,584 1107

Table 7 Satty’s Scale for Comparison

Scales Degree of
preference

Explanation

1 Equally Two activities contribute equally

3 Moderately Experience and judgment slightly to moderately favor one activity to
another

5 Strongly Experience and judgment strongly or essentially favor one activity over
another

7 Very strongly One activity is strongly favored over another, and its dominance is showed
in practice

9 Extremely The evidence of favoring one activity over another is of the highest degree
possible of an affirmation

2, 4, 6, 8 Intermediate
values

Used to represent compromises between the preferences in weights 1, 3, 5,
7, and 9

Reciprocals Opposites Used for inverse comparisons
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3.2.5 Lithology factor

The lithology factor classes were not altered from the data provided by SNET. In general,

all of the area can be described as volcanic. However, this analysis shows that landslide

locations are significantly more likely to occur in volcanic cones and White Earth volcanic

epiclasts than any other lithology class type. In addition, there are two lithology classes that

are equally significant in their underrepresentation with landslides, basic-intermediate

epiclasts and brown color tuffs.

3.2.6 Land use factor

Of the 60 land use classes used to classify El Salvador by SNET, 14 of them contained

landslides. Of these 14 classes that contained landslides, eight classes are well represented,

(e.g. Slope)

Parameter Classes
Low

Medium
High

Landslide 
Class Density

Landslide Map 
Density

Factor Weight for each Class (i)
Normalized Factor Weight for 

each Class (i) Total Susceptibility
Continuous 

Susceptibility 
Weight 

Values to 
Discrete 
Classes

Landslide 
Inventory Map

Fig. 3 Flow chart of development of normalized landslide index landslide susceptibility map

Fig. 4 Profile curvature diagram to illustrate positive and negative values

Fig. 5 Tangential curvature diagram to illustrate positive and negative values
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with positive weight values, and six poorly represented with negative normalized weight

values. Normalization of LN weights based on the number of variable classes has a

dramatic impact on land use weights by reducing them significantly, making positive

values less positive and negative values less negative.

3.2.7 Normalized Landslide Index Method landslide susceptibility map

Each pixel in the spatial domain was given a total landslide hazard susceptibility weight

calculated by the sum of each variable class weight in each cell from Eq. (1) (Tables 1, 2,

3, 4, 5, 6; Column ‘‘Normalized LN Weight’’). Figure 6 shows the cumulative probability

of LN (Weights) and normalized weights across the entire domain, along with the values at

landslide locations. Figure 6 illustrates that normalization of variable class weights results

in a more even distribution of weights across the range of values, with shorter tails on each

end of the cumulative probability plot.

In order to assess the relative importance of any given parameter and the particular class

within that parameter, Fig. 7 is a plot of the results of the normalized and standard

landslide index method analyses Figure 7 illustrates that slope and lithology are the

strongest predictors of landslide location, with the third best predictor being a highly

negative tangential curvature followed closely by a highly positive profile curvature for the

Normalized Landslide Index Method. By contrast, land cover and lithology are the most

important variables found in the standard landslide index method.

Figure 8 represents the landslide hazard susceptibility map derived from the analysis

described above. Classification of the continuous weight values was done using the

cumulative distribution of those values across the domain (Fig. 6). Weight values below

the 50th percentile were considered low, between the 50th and 70th medium, the 70th and

90th high, and above the 90th percentile very high.

Low�� 0:1348

�0:1348\Medium� 0:01131

0:01131\High � 0:1948

0:1948�Very High

Fig. 6 Cumulative probability plots of weight values from landslide and Normalized Landslide Index
Methods, indicating landslide pixel values as red boxes
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The map clearly shows that locations adjacent to the large volcanos and other mountain

ranges, where steep slopes and unconsolidated material are most likely to be located, have

the highest susceptibility.

3.3 Analytical Hierarchy Process in landslide susceptibility mapping

Many researchers have used AHP to develop weighting factors for the causative param-

eters and used objective analyses such as the landslide index method to develop weights for

individual parameter classes (Akgun 2012; Hasekiogullari and Ercanoglu 2012; Bhatt et al.

-0.8
-0.6
-0.4
-0.2
0.0
0.2
0.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14N
or
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(W
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t)

Variable Class

Normalized LN(Weights): El Salvador

Slope
Aspect
Profile Curve
Tangential Curvature
Land Use
Lithology
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-4.0

-2.0

0.0

2.0

4.0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

LN
(W

ei
gh

t)

Variable Class

LN(Weights): El Salvador

Slope
Aspect
Profile Curve
Tangential Curvature
Land Use
Lithology

Fig. 7 Variable class weights
for six variables of interest from
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Fig. 8 Landslide susceptibility map for El Salvador from the Normalized Landslide Index Method
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2013). In other cases, AHP has been used to develop the causative factor and individual

class weights (Long and De Smedt 2012; Kayastha et al. 2013). The Analytical Hierarchy

Process (AHP) was developed at the Wharton School of Business by Thomas Saaty in the

late 1970s, as a decision-making tool for handling complex, unstructured, multi-criteria

decisions, allowing the incorporation of both objective and subjective considerations in the

decision-making process (Yalcin 2008; Yohsimatsu and Abe 2006). Use of this decision-

making strategy has become quite common for developing landslide susceptibility maps.

Saaty (1980) derived the AHP to standardize the multi-factor decision-making process,

by reducing multiple variable decisions into a series of couple/pair comparisons and uses

subjective priorities based upon the user’s judgment. Pair comparisons are made in an

effort to determine a relative preference of each factor in accomplishing the overall goal.

Using the numerical values established in the Fundamental Saaty’s Scale (Table 7),

values are assigned to each factor pair. Pair comparisons values are based on the preference

of the vertical axis to the horizontal axis (Table 8). The reciprocal of each degree of

preference indicates a preference for the horizontal factor over the factor on the vertical

axis. Table 8 represents the values determined for those factors used in determining

landslide hazard susceptibility and the pair-wise comparisons of each of those factors.

Once the factor preferences have been determined for each pair-wise comparison for

those variables used to estimate relative importance for landslide susceptibility, the next

step in the AHP is the arithmetic mean process. In this step, the values of each column of

coupled comparisons are summed. Then, the values of each cell of the pair-wise com-

parison matrix are divided by the summed value of the same factor column, and finally, the

factor mean values are derived in each row as an arithmetic average of the values in each

row (Table 9).

The AHP mean values were then multiplied by the factor weight class values derived

from the landslide index method according to Eq. (2) (Bhatt et al. 2013).

M ¼
Xn
i¼1

Yi � Xi ð2Þ

where, M, cumulative weight value = susceptibility coefficient; Xi, factor class weight

derived from quantitative assessment of landslide hazard susceptibility (e.g., normalized

landslide hazard index); and Yi, the AHP-derived weight value for each landslide sus-

ceptibility factor.

Table 8 Matrix shows the pair comparisons for each factor

Slope Aspect Tangential
curvature

Profile
curvature

Lithology Land
cover

Slope 1.0000 9.0000 9.0000 9.0000 7.0000 7.0000

Aspect 0.1111 1.0000 0.2000 0.3333 0.1667 0.3333

Tangential curvature 0.1111 5.0000 1.0000 4.0000 0.2000 0.2000

Profile curvature 0.1111 3.0000 0.2500 1.0000 0.1429 0.2500

Lithology 0.1429 6.0000 5.0000 7.0000 1.0000 3.0000

Land cover 0.1429 3.0000 5.0000 4.0000 0.3333 1.0000

Sum 1.6190 27.0000 20.4500 25.3333 8.8429 11.7833

Bold values indicate input values according to Saaty’s scale. Decimal values are reciprocals, indicating
preference on the vertical axis

Nat Hazards (2015) 79:1825–1845 1837

123



Each of these values is given in Tables 1, 2, 3, 4, 5, 6 in the last column. Figure 9 is

commensurate to Fig. 7, except that now each factor class weight has been multiplied by

the factor weight derived from the AHP. Figure 9 illustrates that the effect of including the

AHP factor weights increases the net importance of those factors already identified in the

statistical analysis.

3.4 Normalized Landslide Index Method comparison with physically based
method

In some cases, predetermined classes for each variable are associated with landslide sus-

ceptibility and are combined to determine overall susceptibility. In cases where there is

little information on existing landslides, this is the final and only option. In cases where

landslide locations are available, this strategy may still be used, and landslide locations

may be used to calibrate and validate variable class susceptibility ranking. This a priori

approach was undertaken by SNET in 2004, with additional factors representing the cli-

matology and level of seismicity (SNET 2004). Figure 10 represents the analysis by the

team at SNET who implemented an a priori approach to landslide hazard zonation

developed in Costa Rica, C.A., by Mora and Vahrson (1991). This approach uses Eq. (3) to

determine the overall susceptibility of any given grid cell in the spatial domain:

Susc ¼ S � L � Pð Þ � Si þ Ið Þ ð3Þ

Table 9 Second step of the Analytic Hierarchy Process is to determine the proportion of each factor by row

Slope Aspect Tangential
curvature

Profile
curvature

Lithology Land
cover

Mean

Slope 0.6176 0.3333 0.4401 0.3553 0.7916 0.5941 0.5220

Aspect 0.0686 0.0370 0.0098 0.0132 0.0188 0.0283 0.0293

Tangential curvature 0.0686 0.1852 0.0489 0.1579 0.0226 0.0170 0.0834

Profile curvature 0.0686 0.1111 0.0122 0.0395 0.0162 0.0212 0.0448

Lithology 0.0882 0.2222 0.2445 0.2763 0.1131 0.2546 0.1998

Land cover 0.0882 0.1111 0.2445 0.1579 0.0377 0.0849 0.1207

The mean of each row is calculated and indicates the subjective preference for each factor derived from pair-
wise comparisons
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Fig. 9 Variable class weights for six variables of interest from landslide index method and then multiplied
by their corresponding factor weight from AHP
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where, susc, landslide susceptibility weight; S, slope index; L, lithology index; P, index of

precipitation monthly averages then summed over the year; Si, seismicity index based on a

development regulatory map that indicates the maximum terrain acceleration in the past

100 years; I, rainfall intensity index based on the annual daily maximum values from

rainfall recording stations, interpolated across the country.

Each factor listed above is divided into five to ten classes. The range of values for each

factor class is based on the judgment of the researcher. Based on the factor class ranges, an

integer weight value is assigned, where zero or one represents very low impact to landslide

susceptibility, with increasing values for each subsequent factor class.

Results from the Mora–Vahrson, normalized and standard landslide index method

approaches are very similar in their identification of steep slopes at high elevations on

mountains and volcanos. However, Figs. 10 and 11 illustrate that the Mora–Vahrson

technique identifies large areas as high susceptibility, nearly as much area as identifies as

low susceptibility, and relatively little area as very high susceptibility. By contrast, the

Normalized Landslide Index Method susceptibility classes are distributed based on the

cumulative probability of values, whereby low values are highly represented, with the

remaining classes being approximately equally represented (Fig. 11).

3.5 Susceptibility map validation

Validation of the susceptibility map development techniques is first assessed through

comparison with the actual landslide locations. Given that the landslide index method

susceptibility weights are derived from the landslide locations, we expect there to be an

excellent correlation with high and very high susceptibility classes. An analysis of Figs. 11

and 12 shows that landslide locations are overrepresented in the expected susceptibility

classes, as landslide locations are skewed toward high and very high, while all grid cell

values are skewed toward medium and low susceptibility classes.

By contrast, the skew toward a large number of landslides occurring in the high sus-

ceptibility class, as derived by the Mora–Vahrson method, does not indicate success of the

Fig. 10 Landslide susceptibility map developed by SNET using approach developed by Mora and Vahrson
(1991)
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method due to the disproportionately large area designated high susceptibility in that

method. However, the very high susceptibility class does appear to capture very landslide-

prone areas, as the number of landslide found in that class is overrepresented when

compared to the number of grid cells designated very high.

AA commonly used method to validate susceptibility map development strategies is to

use the receiver operating characteristics (ROC) curve (Marjanovic 2013; Frattini et al.

2010). The ROC curve represents a validation metric that illustrates the relative trade-offs

between the benefits and costs of moving the threshold which describes the hit or miss of a

model, i.e., the true-positive rate (tprate of hit rate) and the false-positive rate (fprate or false

alarm rate). These rates are determined through development of a contingency table

(Table 10) at given probability threshold intervals, or scoring scales. The most common

numeric metric of evaluation in ROC space is the area under the curve (AUC). The closer

the AUC is to 1 (within the 0–1 span), the better the performance.

Fig. 11 Histogram of landslide susceptibility class values for the Mora–Vahrson, landslide index method,
and Normalized Landslide Index Method classification methods over El Salvador

Fig. 12 Histogram of landslide events within each of the susceptibility classes, as determined by the Mora–
Vahrson and landslide index methods
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This validation strategy required the landslide observation dataset to be divided into

training and test subsets. Of the 545 landslide polygons delineated, 232 were used as the

training dataset and 313 were used for the test dataset. Polygons were chosen randomly

across the domain. Figure 13 illustrates the ROC curves and AUC values for both the

standard and Normalized Landslide Index Methods. The AUC values are nearly identical

and very good for both methods, with the standard method being slightly better.

4 Discussion

Derivation of a landslide susceptibility map for El Salvador using the point locations of

landslides provided by in-country agencies and the standard landslide index method

resulted in several findings that were inconsistent with expectations based on known

factors controlling shallow landslide locations. These finding led to various enhancements

of the initial strategy. Foremost is the further investigation and validation of landslide

locations and their transfer from being represented as points to their representation as

polygons, providing a more robust representation of landslide spatial distribution in the

domain. This effort resulted in variable weights that were more consistent with expecta-

tions. However, inspection of variables that were most important in predicting landslide

susceptibility led to the discovery that the largest variable class weights were associated

with lithology and land cover. Using the standard landslide index method, the largest

variable class weights within the lithology and land cover variables were nearly three times

Table 10 Contingency table and ROC space coordinates

Landslide inventory ROC space coordinates

True False

Model Positive tp (true positive) fp (false positive) tprate = tp/(tp ? fn)

Negative fn (false negative) tn (true negative) fprate = fp/(fp ? tn)

Fig. 13 Receiver operating characteristics curves and area under the curve values for both standard and
Normalized Landslide Index Method
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as large as the largest weights found in the slope variable. This discovery led to the

determination that due to the number of classes within those variables, being much greater

than classes delineated within continuous variables associated with DEM-derived products,

landslides locations were more likely to be overrepresented in one class. Therefore, nor-

malization of the class weights based on the number of classes within that variable

redistributed class weights across variables resulting in a more evenly divided distribution

of weights across variables, along with the finding that slope is the most important factor in

determining landslide susceptibility.

Normalization of the variable classes also has a dramatic impact on the distribution of

continuous values (Fig. 6). The shorter tails and more even distribution associated with the

normalization process mean that fewer values are found at the extremes of the distribution.

Therefore, when classifying the continuous values based on the cumulative distribution

(i.e., greater than 90th percentile indicating very high susceptibility), a wider range of

values are found in this class. This fact results in the findings illustrated in Fig. 12, where

the standard landslide index method captures more landslides in the very high class than

the Normalized Landslide Index Method.

Classification of continuous values and the overall weight totals strongly determines the

importance of any given variable. There is no standard methodology for classifying con-

tinuous values in the derivation of landslide susceptibility maps. Several iterations were

completed in developing the methodologies presented herein. With respect to classification

of variables, the implementation of five equal bin sizes for classification resulted in the

third class representing a planar or mean class. Inspection of Tables 3 and 4 illustrates that

this third bin does represent a planar class, as values fall into a range above and below zero.

Inspection of Table 1 classification finds that the extreme slope class begins at approxi-

mately 18�. This classification is consistent with expectations for steep to mild slopes.

Classification of overall susceptibility weights was also completed over several itera-

tions. The use of the cumulative distribution to classify this continuous variable was both

logical and resulted in the capture of landslide locations in each susceptibility class at rates

consistent with expectations. This step in the process is an important determinant on how

conservative or liberal a susceptibility map is and therefore represents its utility. Having

large areas of high and very high susceptibility class may do an excellent job at capturing

landslide locations, but is not very informative for decision-making as, for example, too

many areas are eliminated from potentially useful land uses. In contrast, small of areas in

high and very high susceptibility classes may not capture areas that have a high threat of

landsliding. This may be the case for the classification used in the development of the

Mora–Vahrson susceptibility map. Unfortunately, for this work the authors were provided

only the final classified map and not the continuous weights derived from their analysis;

therefore, we were unable to assess how classification was done and what impact it may

have had on the distribution of weights both across the domain and at landslide locations.

The Analytical Hierarchy Process resulted in a slightly different ordering of variable

importance. Based on the AHP strategy, slope is the most important variable, followed by

lithology, land cover, tangential, profile curvature, and lastly aspect. This ordering is very

similar to the findings of the Normalized Landslide Index Method that also found slope to

have the highest positive association with landsliding, followed by lithology, profile,

tangential curvature, land cover, and then aspect. The finding that these two methods result

in a similar association with landslide susceptibility supports the need for normalization.

The standard landslide index method found lithology to be the most important factor,

followed by land cover, slope, profile, tangential curvature, and lastly aspect.
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The relative distributions of the number of pixels in each susceptibility class across the

entire domain compared to the number of landslides in a given susceptibility class provide

some insight into the skill of the model to detect landslide susceptibility. Normalization of

variable class weights reduces the number of total pixels in the low class and increases the

number of pixels in the very high class, relative to the standard method. This distribution

change is not consistent when looking in which class landslides occurred. Landslides are

overwhelmingly represented in the very high class of the standard method, with the

remaining landslides being nearly evenly divided between the other classes. In contrast, the

normalized method results in fewer landslides in the very high class, with the remaining

landslides reducing in number with reduced susceptibility. Distribution of susceptibility

class using the Mora–Vahrson method has two peaks in both the low and high class, having

slightly fewer medium and very little area in the very high class. Distribution of landslides

using the Mora–Vahrson method shows that the high and very high classes capture the

majority of landslides, where the number of landslides in the high class is nearly double

that of the very high class. Results from the ROC curve analysis show little difference

between the two methods, suggesting that the both have similar reliabilities; however,

ROC curves do not indicate accuracy of the methods tested.

5 Conclusions

The Normalized Landslide Index Method is a statistically based method that relies on a

landslide inventory map along with maps of other relevant factors including DEM-derived

parameters such as slope, aspect, and profile and tangential curvatures, as well as lithology,

land use, and road network. Normalizing the weights derived for each factor class, by the

number of classes in that factor, eliminates the importance of the number of classes for any

given factor. This conclusion was derived from the development of previous iterations of

this analysis that showed a significantly reduced importance of lithology and land use

factors due to the large number of classes. Normalization of variable class weights results

in a more conservative approach to delineating landslide susceptibility by creating a more

even distribution of weights and reducing the number of values, which represent areal

extent, of extreme weight values across the domain.

The result of this analysis also suggests that implementation of the AHP method in

conjunction with another statistical or physically based landslide susceptibility determi-

nation strategy, may reduce the effect of lower susceptibility factor classes and increase the

effect of higher susceptibility factor classes, as was the case when combined with the

normalized results. However, in other cases inclusion of the AHP factors may mitigate

unexpected results by increasing the weight of factors whose significance is known to be

high, such as the case of standard landside index method results. These impacts may be

determined to be advantageous or not by individual researchers in different regions. In El

Salvador, it was determined that incorporation of the AHP method diluted the results of the

Normalized Landslide Index Method and was therefore not used in development of the

final susceptibility map.

Finally, the physically based susceptibility map provided by SNET, as a result of the

Mora–Vahrson method, makes for an excellent opportunity to compare the two methods.

The Mora–Vahrson method results indicate that large portions of the area are in the high

susceptibility class, including areas with low percent slopes, whereas large areas around

the high-altitude slopes of the volcanos and other mountains are classified as only medium
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or high susceptibility. This is at least in part due to the linear relationship presented in

Eq. (3). This relation does not account for the number of classes in any given factor and

treats all factors the same. For example, the annual daily precipitation maximum and

rainfall intensity weights are both from 0 to 5, which results in areas of high rainfall

accumulating high susceptibility weights in very unlikely areas due to the absence of steep

slopes. By contrast, the Normalized Landslide Index Method relies solely on the landslide

location data that may not be representative of all of the areas where landslides are likely to

occur. This work supports the conclusion by Hervás et al. (2013) that rather than focusing

on the comparison of different statistical models, more attention should be paid to improve

the selection and preprocessing of the input variables because this has probably much more

effect on the model results than the statistical model used. However, implementation of a

statistical model is superior to its a priori physically based counterpart. In addition, nor-

malization of the standard landslide index method results in a more conservative approach

and more convincing overall landslide susceptibility map.
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