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Abstract Using geospatial technologies to assess geological hazard risk has been proved

feasible and effective. In this paper, a geospatial information quantity model is proposed to

assess landslide risk, which includes nine triggering factors: slope, aspect, cumulative

catchment area, formation lithology, seismic intensity, distances to water, precipitation,

vegetation, and land use/land cover type, in which the last three triggers are dynamic ones

and need to be extracted from up-to-date remote sensing images. These triggering factors

are then taken as geospatial information quantities and used to construct an information

quantity-based model to assess and predict the landslides in Fuling District, Chongqing

City, China, resulting in a risk distribution map. Finally, ROC curve is used to validate the

model. With the AUC of success-rate ROC of 0.839 and the AUC of prediction-rate ROC

of 0.807, the model is proved reliable to interpret and predict the landslide occurrences in

the study area.

Keywords Landslide � Risk assessment � Geospatial information quantity model

1 Introduction

China, especially the mountainous areas with dense population, is prone to geological

hazards, which threatens the safety of human life and property and damages ecological

environment (Yin and Zhu 2001). Since its construction, the Three Gorges Dam has

undergone frequent geological hazards including landslides, mudslides, breakdowns,

unstable rocks, high cut slopes, and collapses due to geological, geomorphological, and
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climatic reasons, among which landslide is the major hazard type. In recent years,

computer technology and spatial information technology represented by geographic

information sciences (GIS) and remote sensing have been extensively applied to risk

assessment of landslides. The quantitative methods of risk assessment mainly include

artificial neural networks (Pradhan and Lee 2010; Yilmaz 2010; Bui et al. 2012; Sdao

et al. 2013; Conforti et al. 2014), information quantity-based model (Gao et al. 2006;

Niu et al. 2011; Chen et al. 2013; Deng et al. 2014; Gao et al. 2014; Wang et al. 2014),

multivariate regression analysis (Lee and Min 2001), and logistic regression analysis

(Pradhan and Youssef 2010; Bai et al. 2011; Bui et al. 2011). Among them, the infor-

mation quantity-based model is gaining increasing attention for its simple implemen-

tation and high accuracy. Information quantity model is a general model and can be used

in many fields. However, few applications have been done in the field of landslide risk

assessment in the past. Some applications in landslide risk assessment are: Yin and Liu

(2000) extended the traditional landslides stability analysis to Monte Carlo probability

simulation analysis and established a multifactor information analysis system based on

information theory to predict hazard occurrences. Yuan and Huang (2001) integrated

GIS with information quantity-based model and applied it to the delineation of geo-

logical hazard risk areas. Dai (2013) improved the traditional information theory by

implementing GIS and remote sensing technologies.

This paper adopts the information quantity-based landslide risk assessment model

improved by Dai (2013) but utilizes dynamic triggering factors derived from timely

remote sensing images to assess landslide hazards in Fuling District, Chongqing City,

China. This is the first time that information quantity model is applied in a small study

area in the Three Gorges Dam Reservoir region. If it is proved to be successful, this

method will be used for the entire reservoir region in the future and will greatly benefit

the preparedness and management of natural hazards in this area. First, the triggering

factors of landslide were extracted from different data sources in the study area. Second,

hazard risk was predicted using the improved model, and a risk distribution map was

generated. Finally, accuracy assessment was performed to test the fit and reliability of

the information quantity model.

2 Study area

Fuling District, in the hinter land of the Three Gorges Dam Reservoir region, is located in

the middle east of Chongqing City and is historically called the ‘gateway’ to the southeast

Sichuan Province as it sits where the Yangzi River and Wujiang River converge. It covers

an area of more than 2900 square kilometers, with an east–west direction extending

74.5 km and a north–south direction extending 70.8 km (Fig. 1). Fuling District belongs to

the subtropical humid climatic with distinct seasons. Summer is hot and wet, while winter

is cold and dry. The yearly average temperature is around 18.1 centigrade, and the yearly

average rainfall is about 1070 mm, with the purple and mountain yellow soil as two main

soil types. The study area is characterized by undulating low hills with elevation ranging

from 200 to 800 m. Its relief gradually decreases from southeast to northwest with the

maximum and minimum elevations of 1977 m and 138 m above the mean sea level,

respectively. Major landform classes include hilly or table lands (54.4 %), low hills

(31.3 %), mid hills (13.3 %), and plain (1.2 %). Sitting atop of the old Yantz metaplat-

form, crust of our study area is very stable. Bedrock exposures are mainly of upper
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Paleozoic, Mesozoic, and Cenozoic strata. The major geologic structures are mainly

controlled by the north–south trending Sichuan–Guizhou structure belts, which extend

northward into the fault belts in the eastern Sichuan. The former structure belts are located

in the south to the Yangtze River, including north–south trending and east–west trending

folds. Faults are mainly reverse. Major faults in this area include Koushi and Jiaoshiba

reverse faults.

In past years, project construction for resettling immigrants, the experimental water

recharging of the reservoir, and human activities have exacerbated many geological

hazards, bringing huge threats to local human safety and property. For example, more

than 200 landslide occurrences were caused by road or house constructions in the study

area from 2008 to 2014. After the phase III geological hazard and reservoir bank

prevention project, the geological hazard risks have been substantially reduced. How-

ever, with the 175-m water storage of the Three Gorges Dam Reservoir, landslides still

exist in Fuling District, severely interrupting the area’s stability and sustainable

development.

Fig. 1 Study area
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3 Methodology and data

3.1 The geospatial information quantity model for landslide risk assessment

In this paper, a geospatial model, based on information theory, was built to predict the

probability of landslide occurrences by decreasing the entropy during the development of

landslides. It is a statistical prediction model to evaluate the risk of landslide by calculating

the information value of each individual triggering factor and overlaying these information

values. Higher information value implies greater possibility of landslide occurrences

(Wang et al. 2014). The information value was estimated using the probability of existing

landslide occurrences as in Eq. (1):

I y; x1x2. . .xnð Þ ¼ log2

pðyjx1x2. . .xnÞ
pðyÞ ð1Þ

Equation (1) can also be expressed as Eq. (2):

I y; x1x2. . .xnð Þ ¼ I y; x1ð Þ þ Ix1
y; x2ð Þ þ . . .þ Ix1x2...xn y; xnð Þ ð2Þ

where I(y, x1x2…xn) is the information value provided by the combination of triggering

factors x1x2…xn of landslides; P(x1x2…xn) is the probability of landslide occurrences under

the combination x1x2…xn of triggering factors; and Ix1(y,x2) is the information value

provided by triggering factor x2 with the existence of triggering factor x1.

There were various triggering factors causing landslides. By overlaying the individual

information values, we obtain the total information value provided by the combined impact

of the triggering factors. If we use Ii to denote the information value of triggering factor i,

we get Eq. (3):

I y; x1x2. . .xnð Þ ¼
Xn

i¼1

Ii ð3Þ

The basic unit of regional landslide risk assessment in the study area is grid, that is, all

evaluation factors should be assigned to each individual grid. Therefore, the grid size

should be carefully defined, as large grid size may cause information confusion, while

small grid size will affect efficiency. The appropriate grid size can be obtained from

empirical formulas, such as that given by Li and Zhou (2003), which is taken to define the

grid size in the paper, as Eq. (4):

Gs ¼ 7:49 þ 0:0006S� 2:0 � 10�9S2 þ 2:9 � 10�15S3 ð4Þ

where Gs is the size of suitable grid, and S is the denominator of contour line scale (in this

paper, S is 50,000).

In practice, frequency was used to represent probability as in Eq. (5):

I y; x1x2. . .xnð Þ ¼
Xn

i¼1

Ii ¼
Xn

i¼1

log2

Ni=N

Si=S
ð5Þ

where S is the total area of an evaluation unit; N is the total number of landslide sites in the

study area; Si is the area that triggering factor i occupies in the evaluation unit; and Ni is the

number of landslide sites caused by triggering factor i.
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3.2 Derivation of trigging factors of landslides

Previous research in the study area indicated that the major triggering factors were land-

forms, rock and soil types, geological structure, precipitation, vegetation, human activities,

hydrogeological conditions, and tectonic belts, etc. (Ren et al. 2011; Wang et al. 2012;

Dieu et al. 2012). Based on field work and comprehensive analysis of the spatial rela-

tionship between trigging factors and landslide, nine trigging factors were selected to

assess the landslide risk. They were slope, aspect, cumulative (or total) catchment area,

formation lithology, seismic intensity (earthquake intensity), normalized difference veg-

etation index (NDVI), stream/river buffers, land use/land cover type, and precipitation.

Slope and aspect were first derived from the 1:50,000 contour map with a 20-m contour

interval using ArcGIS 10.0 software. The results were then classified based on the criteria

that the information quantities computed from every categories follow normal distribution

and maximize standard deviation (Figs. 2, 3). As a result, slope was classified into five

categories: 0–5, 5–10, 10–15, 15–20, 20–25, and larger than 25 degrees. Aspect was

classified into eight classes: flat, 0–30, 30–150, 150–200, 200–250, 250–310, 310–330, and

330–360 degrees.

Cumulative catchment area (Fig. 4) was obtained using the Hydrology toolbox in

ArcGIS 10 software and then reclassified according to the number of grids. A formation

lithology map was extracted from the geological map of the Three Gorges Dam Reservoir

area. This map was then reclassified into 14 categories according to the geological for-

mations in Fuling District (Fig. 5).

Streams and rivers with single or double channel were extracted from 1:2000 topo-

graphic maps. Four buffer zones (0–150, 150–250, 250–400 m, and larger than 400 m)

were created along the channels. Such buffer zones were then used to generate a stream

Fig. 2 Slope
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and river buffer map, showing the influences of the surface stream and river network

(Fig. 6).

A pan-sharpened image was created from a 2-m panchromatic band (0.45–0.90) and 4-

to 8-m multispectral bands (0.45–0.52, 0.52–0.59, 0.63–0.69, 0.77–0.89) of a Chinese GF-

Fig. 3 Aspect

Fig. 4 Cumulative catchment area
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1 image, obtained on December 24, 2013, in ENVI 5.1 using Gram–Schmidt spectral

sharpening method. This pan-sharpened image was subsequently classified into five cat-

egories: construction area, vegetation, water, barren land, and other, (Fig. 7) based on

Fig. 5 Formation lithology

Fig. 6 Multiple buffer zones of surface stream and river network
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maximum likelihood classification method with an overall accuracy of 95.276 % and a

Kappa index of 0.9241.

NDVI was derived from the above-mentioned GF-1 fusion image. The NDVI ranges

from -1 to 1, with higher positive numbers representing more vegetation (Fig. 8).

Fig. 7 Land use/land cover

Fig. 8 NDVI
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The Chinese seismic intensity zoning map, published by the China Earthquake

Administration in 1990, was scanned, georeferenced, and digitized using ArcGIS 10.0

software. The map showed that over 99 % of the study area, as well as all the landslide

sites, were located in the area with a seismic intensity of scale V (Fig. 9).

Average precipitation data from December 1 to December 24, 2013, were obtained from

the precipitation stations located throughout the study area. And the inverse distance

weighting (IDW) spatial interpolation method was employed to create a precipitation map.

3.3 Methodology flowchart

The basic steps of the methodology in this research were listed below (Fig. 10):

1. Derive the triggering factors of landslides from remote sensing images and other

sources;

2. Randomly select a subset of all the landslides sites as the input data to the model, and

use the remaining subset as testing data for later model validation;

3. Calculate the information value for each individual triggering factor, and generate the

combined information value map by overlaying the individual information values;

4. Reclassify the combined information value to get the final landslide risk distribution

map;

5. Test and validate the information model;

Every computed information value from above-mentioned triggering factors was ras-

terized. The final assessment map was generated by overlaying these rasterized triggering

factors and reclassifying the overlayed result.

Fig. 9 Seismic intensity
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4 Results and discussion

By the end of 2013, there were 284 landslide sites in the study area, including nine unstable

rocks, 49 deformation bodies, 33 reservoir bank collapses, 189 landslides, and four slope

hazards. Seventy percent (198) of these hazard sites were randomly selected as the input to

Reclassifica�on

Informa�on value

calcula�on

Risk assessment 

validate

Land use/land cover

NDVI

slope

aspect

catchment area

Precipita�on

Forma�on 

Seismic intensity

Input to the model

Tes�ng data

Buffers of Surface 

streams and 

Data 

collec�on

Landslide sites

Topographic map

Precipita�on

Seismic intensity

zoning map

Geological map

Contour map

Remote sensing 

image

Fig. 10 Methodology flow chart

Table 1 Example information values for individual triggering factors

Triggering
factors

Category Number of
landslide
sites

Information
value

Rank of
information
values

Slope (degree) 0–5 18 -1.529255 39

5–10 33 -0.277137 31

10–15 87 0.516223 9

15–20 56 0.652874 8

20–25 4 -1.259605 38

Land use/Land cover Other 11 4.095245 1

Water 13 0.809629 5

Construction 36 2.015316 2

Vegetation 2 -4.643001 43

Barren land 136 0.053346 16
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the information model, and the rest 30 % (86) hazard sites were used to test the results and

validate the model.

The calculated information values of some triggering factors are listed in Table 1. The

combined information values were reclassified into five categories based on the natural

breaks method: low-risk zone, medium- to low-risk zone, medium-risk zone, medium- to

high-risk zone, and high-risk zone. The landslide risk distribution map was generated from

these categories (Fig. 11). Table 1 and Fig. 11 showed that the medium- to high- and high-

risk zones had the following characteristics:

(a) Landslides mainly occur in the areas with slopes between 5 and 20 degree, aspects

of northeast and northwest, and stratum of Jurassic system on Shaximiao or Jurassic

artesian well under the EC group;

(b) Most landslides occur within 150 m of surface rivers/streams, the closer the surface

rivers/streams, the more likely do the landslides occur. Generally, landslides occur

on both banks of the reservoir as the variation and intensity in water level of the

reservoir affect the development of landslides. The rise and fall of the water in the

reservoir influence the moisture content of the soils, thereby changing the shear

strength and causing landslides.

(c) Construction area and other land use/land cover are prone to landslides. These land

use/land cover types are also areas with an NDVI ranging from 0 to 0.04, which

indicates human activities have relatively high impacts on landslides occurrence.

The unreasonable and excessive exploitation and production destruct the ecological

and geological environment, leading to the occurrence of landslides.

From Table 2, we can see that the area of high-risk and medium- to high-risk zones is

929.45 km2,accounting for 31.72 % of the total area in the study area. The number of

landslide sites in high-risk and medium- to high-risk zones is 134 and 40, respectively,

accounting for 87.9 % of the total number of landslide sites in the study area. The hazard

Fig. 11 Landslide risk distribution map
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sites are rarely located in the medium-risk, medium- to low-risk, and low-risk zones. In

general, the distribution of landslide sites is well associated with the classified risk zones,

with more hazard sites in high- and medium- to high-risk zones and less hazard sites in

low- and medium- to low-risk zones.

The receiver operating characteristic (ROC) curve is widely adopted to test the accuracy

of geological hazard risk assessment as it is not only simple and straightforward, but also

can reflect the relationship between sensitivity and specificity, with y-axis indicating

sensitivity and x-axis denoting 1-specificity (Hamid et al. 2012; Omar et al. 2012; Liang

et al. 2013; Pontius and Kangpin 2014). The value range of the area under curve (AUC) is

0–1. The bigger the AUC, the higher accuracy is the model. When the AUC is 0.5, the

model is regarded as being random. Only when it is bigger than 0.7, the model is con-

sidered credible.

The success-rate method and prediction-rate method were used to create the ROC curve

for the validation (Chung and Fabbri 2003). In the success-rate method, the predicted

landslide distribution map was compared with the input data used in the modeling (the 198

landslide sites) to test the results. It represented the correspondence between the modeling

results and the input data. Figure 12a showed the ROC curve based on success-rate

method. The AUC was 0.839, meaning a good fit and a relatively high accuracy of the

Table 2 Comparison of risk zones and landslide sites

Classified
risk zones

Area
(km2)

Percentage of the
total area (a, %)

Number of
landslide sites

Percentage of the total number
of landslide sites (b, %)

Low 572.686 19.55 1 0.5

Medium low 695.799 23.75 7 3.5

Medium 732.046 24.98 16 8.1

Medium high 526.282 17.96 40 20.2

High 403.167 13.76 134 67.7

Fig. 12 a Success-rate ROC curve; b Prediction-rate ROC curve
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information model using the input data. The prediction-rate method compared the pre-

dicted landslide risk distribution map and the testing data (86 landslide sites) to evaluate

the reliability of the information model. The ROC curve based on prediction-rate model

(Fig. 12b), with the AUC of 0.807, implied that the proposed information model was

reliable and was able to be used to predict future landslide occurrences in the study area.

5 Conclusion

In this paper, based on the geomorphological and geological characteristics in Fuling

District, Chongqing City, nine triggering factors were selected and derived from remote

sensing images and other sources to build the geospatial information quantity model for the

assessment and prediction of landslide risk in the study area. The ROC curve was

employed to validate the information model. The success-rate ROC curve indicated a good

fit between the modeling results and the input data, and the prediction-rate ROC curve

showed that the model was reliable to predict the future landslide occurrences in the study

area. The results in the study also indicate the high possibility of applying the proposed

method to the entire Three Gorges Dam Reservoir region in the future to better assist the

efficient and effective management of landslide hazards in the area.
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