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Abstract Probabilistic seismic hazard analysis (PSHA) is a regularly applied practice

that precedes the construction of important engineering structures. The Cornell–McGuire

procedure is the most frequently applied method of PSHA. This paper examines the

fundamental assumption of the Cornell–McGuire procedure for PSHA, namely the log-

normal distribution of the residuals of the ground motion parameters. Although the as-

sumption of log-normality is standard, it has not been rigorously tested. Moreover, the

application of the unbounded log-normal distribution for the calculation of the hazard

curves results in nonzero probabilities of the exceedance of physically unrealistic ampli-

tudes of ground motion parameters. In this study, the distribution of the residuals of the

logarithm of peak ground acceleration is investigated, using the database of the strong-

motion seismograph networks of Japan and the ground motion prediction equation of Zhao

and co-authors. The distribution of residuals is modelled by a number of probability

distributions, and the one parametric law that approximates the distribution most precisely

is chosen by the statistical criteria. The results of the analysis show that the most accurate

approximation is achieved with the generalized extreme value distribution for a central part

of a distribution and the generalized Pareto distribution for its upper tail. The effect of

replacing a log-normal distribution in the main equation of the Cornell–McGuire method is

demonstrated by the calculation of hazard curves for a simple hypothetical example. These

hazard curves differ significantly from one another, especially at low annual exceedance

probabilities.
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1 Introduction

Probabilistic seismic hazard analysis (PSHA) is a complicated and crucial problem of

modern seismology as it is related to the effects of strong earthquakes and their conse-

quences for the inhabitants. PSHA is applied to estimate the possible amplitudes of de-

structive seismic ground motion and to provide the design loads for the construction of

critical structures such as dams and power plants. The main goal of such analysis is to

minimize the negative effect of future strong earthquakes. Although there are several

methods of PSHA (Cornell 1968; Shumilina et al. 2000; Kijko 2008), the most frequently

used method is the Cornell–McGuire procedure (Cornell 1968). The theoretical founda-

tions, formulated by Cornell and Esteva (McGuire 2008), were supplemented by the

computer programs developed by McGuire (1976; 1978), which led to a method of PSHA

known as the Cornell–McGuire procedure.

Ground motion variability is an important component of this method (Bender 1984;

Bommer and Abrahamson 2006). This component was introduced in the Cornell–McGuire

procedure to account for the effect of the scatter of the amplitude of seismic ground motion

at a site (Cornell 1971) and is included in the main equation of this procedure. The

common assumption is that the ground motion variability can be modelled by a random

variable with a log-normal distribution (Joyner and Boore 1981). This implies that the

residuals of ground motion parameters are log-normally distributed about the predicted

value or, equivalently, that the residuals of the logarithms of these parameters are normally

distributed. However, this hypothesis has not been reliably tested. Moreover, the as-

sumption of log-normally distributed residuals has become a standard and as a result

usually is not tested but is accepted as a given.

The evidence for a log-normal distribution was confirmed by the Kolmogorov–Smirnov

(KS) test at the 90 % confidence limit (Campbell 1981). Nevertheless, although the hy-

pothesis was not rejected by the KS test, it does not imply that the hypothesis is true. The

KS test does perform well in a central part of a distribution; however, it is widely known

that the test demonstrates poor sensitivity to deviations from the hypothesized distribution

that occur in the tails.

The log-normal assumption is criticized in Raschke (2013), where author notes that the

natural distribution for residuals of maxima, such as peak ground acceleration (PGA), is

the generalized extreme value. The theory of extreme values is widely applied in the

analysis of natural disasters in general and in the analysis of seismic hazard in particular.

Pisarenko and Rodkin (2010) provides the results of the application of the extreme value

theory for various aspects of the analysis of natural disasters.

In general, a PSHA is applied to estimate ground motions with an annual probability of

exceedance down to 10-4, a typical annual exceedance probability value designated for

nuclear power plant design. However, in a PSHA performed for the Yucca Mountain

nuclear waste repository, probabilistic hazard curves were extrapolated to an annual ex-

ceedance probability of 10-8. The peak characteristics of ground motion corresponding to

an annual exceedance probability of 10-7 were as high as 20 g for PGA and up to

1800 cm=s for peak ground velocity (Corradini 2003; Stamatakos 2004). This instance

revealed a controversy in a fundamental assumption of the modern Cornell–McGuire

method. As pointed out, for example, in Abrahamson (2000), at these low annual prob-

abilities, the hazard estimates are controlled by the tail of the distribution of the ground

motion residuals. Since log-normal distribution is unbounded, extrapolation of a hazard
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curve leads to the unlimited increase in the amplitudes of expected ground motions, with

the decrease in the annual probability of exceedance.

On the other hand, some recent studies of the results of the Global Seismic Hazard

Assessment Program (GSHAP) revealed discrepancies between the observed seismicity

and that predicted by the resulting maps of this program (e.g. Kossobokov and Nekrasova

2011, 2012; Wyss et al. 2012). The authors of these studies concluded that the common

methods of PSHA are inadequate and need to be revised and probably modified.

One probable source of the revealed inadequacy is the assumption of the log-normal

distribution of residuals of the ground motion parameter (e.g. PGA). An upper tail of the

distribution of the ground motion residuals controls the behaviour of hazard curves at long

return periods. Therefore, an accurate modelling of this distribution, especially at an upper

tail region, is a significant problem.

The current study is methodological in nature, and its main purpose is to introduce a

suitable method of studying the ground motion variability. In this study, an analysis of the

distribution of the residuals of the logarithm of PGA is performed in order to select a

parametric law that describes this distribution most accurately. Data obtained from the

Japanese strong-motion seismograph networks were used in the study. The Japanese

database was chosen mainly because of a dense net of strong-motion stations that allow

obtaining enough observations. A ground motion prediction equation (GMPE) of Zhao

et al. (2006) was used for the calculation of the forecast values of PGA. Statistical criteria

show that the best approximation for the distribution of residuals of the logarithm of PGA

is achieved with the generalized extreme value distribution (GEVD). The generalized

Pareto distribution (GPD) is used to capture the behaviour of an upper tail more accurately.

The remainder of the paper is organized as follows. In Sect. 2, the methods used for data

analysis are described. In Sect. 3, the main results of data analysis are presented and

discussed. An implication for PSHA is demonstrated in Sect. 4. Concluding remarks are

summarized in Sect. 5.

2 Methods

The method for studying the distribution of residuals is based on the sequential application

of the KS test and the Akaike information criterion (AIC), and a quantile–quantile plot.

The distribution of the residuals of the natural logarithm of PGA is modelled by a number

of parametric distributions. The residual is defined as

e ¼ lnðPGAobservedÞ � lnðPGApredictedÞ ð1Þ

where PGAobserved is the observed value and PGApredicted is the value calculated by using an

appropriate GMPE.

The typical GMPEs allow the calculation of median values of the ground motion

parameters by using their dependence on the magnitude, source-to-site distance, local soil

conditions at a site, source mechanism, and others. Such equations often have an empirical

nature and are developed based on vast databases of observed values of ground motion

parameters (Boore and Joyner 1982). The selection of the most appropriate GMPE is not a

trivial task, and some guidance and criteria for choosing the most appropriate GMPE for

the application in a PSHA for a particular site can be found in Scherbaum et al. (2009) and

Arroyo et al. (2014). A comprehensive list of GMPEs developed during the period

1964–2010 is presented in Douglas (2011).
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In this study, data recorded by the Japanese strong-motion seismograph networks were

used. The GMPE of Zhao et al. (2006) was used for the calculation of the forecast values

of PGA. This GMPE was developed for the calculation of the ground motion parameters of

subduction zone earthquakes, and it allows calculating a geometrical mean of the

horizontal components of PGA, or 5 % damped acceleration response spectrum.

In this study, the logistic distribution, the Student’s t-distribution, and the GEVD were

considered as alternatives to the normal distribution. Following a standard notation, where

l is a location parameter and r is a scale parameter, PDFs of these distributions can be

written as follows:

The PDF of Student’s t-distribution is defined as

fl;r;nðxÞ ¼
C
�
nþ1

2
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where C is an Euler’s gamma function and n is a number of degrees of freedom.
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where n is a shape parameter.

Statistical analysis was performed in the following order:

– Estimation of the distribution parameters by the maximum likelihood (ML) method.

– Testing the hypothesis that a sample belongs to the current distribution by the KS test at

0.05 significance level.

– Calculation of the AIC for hypotheses that were accepted by the KS test.

The application of the KS test (Massey 1951) for one sample allows rejecting the distri-

butions that do not fit the empirical data. The test statistic of this test with the Bol’shev’s

amendment (Bol’shev and Smirnov 1965) is calculated by using the formula

Sk ¼
6nDn þ 1

6
ffiffiffi
n

p ð2Þ

where Dn ¼ max ðDþ
n ;D

�
n Þ, Dþ

n ¼ max i
n
� Fðxi; hÞ

	 

, D�

n ¼ max Fðxi; hÞ � i�1
n

	 

; n is a

sample size, x1; . . .; xn are elements of a sample, sorted in ascending order, and Fðx; hÞ is a

cumulative distribution function (CDF) of a parametric model that undergoes the test.

An attractive feature of this test is that the distribution of its test statistic itself does not

depend on the underlying cumulative distribution function being tested. However, in

composite hypotheses testing, when the parameters of the probability distribution are

estimated on the analysed sample, the KS test loses this feature. In such instances, the

conditional distribution of a test statistic depends on a number of factors (such as form of

Fðx; hÞ, number of estimated parameters, and method of parameter estimation). Lemeshko
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and Lemeshko (2009) presents the updated results (tables of percentage points and models

of the distributions of statistics) for nonparametric goodness-of-fit tests in testing com-

posite hypotheses in case of using ML estimations.

The KS test rejects hypotheses for which the maximum deviation of the theoretical CDF

from the empirical CDF exceeds a critical value at a given significance level.

However, the KS test alone does not allow unambiguous conclusion about which

parametric model approximates the empirical distribution most accurately. Such a con-

clusion can be made based on the calculation of the AIC (Akaike 1974) for hypotheses that

were accepted by the KS test. The criterion is defined as

AIC ¼ �2 lnðLÞ þ 2k ð3Þ

where L is a maximized likelihood function and k is a number of parameters of the

probability distribution model.

The parametric distribution for which the value of criterion is minimal is considered the

best approximation among the considered alternatives for the empirical distribution.

The quantile–quantile plot allows comparing the quantiles of empirical and theoretical

distributions. The conception of such a plot has emerged from the observation that for

important classes of distributions, the quantiles are linearly related to the corresponding

quantiles of a standard example from this class (Beirlant et al. 2004). Linearity in a graph

can be easily checked by the eye and can further be quantified by means of a correlation

coefficient.

3 Results and discussion

The results of the statistical analysis show that the best approximation of the distribution of

residuals is achieved with the GEVD. It is important to note that a similar conclusion was

reached in Dupuis and Flemming (2006) from theoretical considerations. In Dupuis and

Flemming (2006), the regression analysis was performed using both the GEVD and the

normal distribution as a model for the distribution of residuals; it was demonstrated that a
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better fit to the data and in turn more accurate acceleration estimates are obtained with the

use of the GEVD. A similar conclusion in regard to the distribution of the ground motion

residuals was also reached in Raschke (2013).

Figure 1 demonstrates the histogram of residuals together with the fitted PDFs.

Corresponding values of the AIC are presented in Table 1.

The CDF of the GEVD is defined as

Hn;l;rðxÞ ¼
exp
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�
�

1 þ n
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exp
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r

�o
; n ¼ 0

8
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This is generalized form, also known as the Jenkinson-von Mises representation, which

combines three types of extreme value distributions. When n = 0, it is equivalent to the

Gumbel distribution (type I), when n[ 0, it is equivalent to the Fréchet distribution (type

II), and when n\ 0, it is equivalent to the Weibull distribution (type III) (Embrechts et al.

1997).

Figure 2 demonstrates the quantile–quantile plot for the quantiles of the GEVD. It can

be seen from the plot that an upper tail of the distribution of the residuals slightly deviates

from the GEVD. Accurate modelling of that tail is an important problem because it defines

the hazard curve at long return periods.

Therefore, the ‘‘peaks over threshold’’ method was applied to fit an upper tail of the

distribution of residuals more precisely. This method is based on fitting the GPD to values

that exceed a reasonably large threshold (Embrechts et al. 1997). The GPD arises as a

limiting distribution of the excesses for a sufficiently large threshold value and is often

used for modelling the tails of empirical distributions. The CDF of the GPD is defined by

the following function

Gn;m;bðxÞ ¼
1 �

�
1 þ n

ðx� mÞ
b

��1=n
; n 6¼ 0

1 � e�
x�m
b ; n ¼ 0

8
<

:

Similar to the GEVD, the GPD is also characterized by three parameters, namely location

m, scale b, and the shape parameter n. When the GPD is used as a model for a tail of some

other distribution, its parameter m defines the threshold from which a tail region of that

distribution begins. When n = 0, the GPD is equivalent to the exponential distribution,

when n[ 0, the GPD has a heavy tail, and when n\ 0, the GPD has a finite upper bound

defined as xF ¼ m� b
n. Three possible types of tail of the PDF of the GPD with different

values of the shape parameter are shown in Fig. 3.

There are several methods for the estimation of the shape parameter. Well-known

methods such as the Hill estimator (1975) and the Pickands estimator (1975) are both based

on the asymptotic properties and require a significant number of observations.

Table 1 Values of the AIC for
considered distributions

Model AIC

GEVD 531.098

Normal 532.056

Student’s t 534.054

Logistic 537.948
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Applicability of these methods to the real observations is doubtful (Pictet et al. 1998). In

this study, therefore, a shape parameter was estimated by using the ML method.

The robust estimation of the shape parameter n̂ requires an optimal choice of the

threshold value m̂. If too high a value of m̂ is chosen, too few exceedances and, conse-

quently, high variance estimators will be the result. When m̂ is too small, the estimators

become biased. The procedure for the optimal determination of the threshold value is

proposed in Embrechts et al. (1997). This procedure utilizes the linearity of the mean

excess function for the GPD, which is defined as

eðm̂Þ ¼ EðX � m̂jX[ m̂Þ ¼ b̂þ n̂m̂

1 � n̂
ð4Þ

This procedure suggests selecting the threshold value m̂ as a starting point of a linear

segment of the mean excess graph. Such a graph for sample data is presented in Fig. 4.
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By varying the threshold value and observing changes in the estimates of the rest of the

parameters of the GPD, the optimal threshold value can be determined. Evidence of such a

choice is the stabilization of the estimates of the scale and shape parameters. Once again, a

quantile–quantile plot is used as a tool for comparing the data and the model. An estimator

of the quantile of the GPD can be written as

x̂p ¼ m̂þ b̂

n̂

�� n

Nm̂
ð1 � pÞ

��n̂
� 1

�
ð5Þ

where n and Nm̂ are sample size and number of exceedances, respectively, and m̂, b̂ and n̂
are estimates of the GPD parameters.

Quantile–quantile plots of a tail of residual data versus quantiles of the GPD with the

values of the shape parameter estimated by the ML method for the GEVD and the GPD are

shown in Figs. 5 and 6. The estimates of a shape parameter differ for the instances where

the GEVD is used as a model for a full range of residuals and where the GPD is used

additionally to fit an upper tail more accurately. The estimates are n̂ ¼ �0:245 for the first

instance and n̂ ¼ �0:359 for the second.

Therefore, the distribution of residuals is represented by a hybrid distribution model that

consists of the GEVD in a central region and the GPD in a region of an upper tail.

A similar analysis was performed during this study by using the GMPEs of Atkinson

and Boore (2003) and Kanno et al. (2006) to check how generally applicable these results

are. The results obtained with these GMPEs are very close to those presented in this study.

4 Implication for probabilistic seismic hazard analysis

For a demonstration of the effect of replacing a normal distribution, hazard curves were

calculated in the following manner:

1. Using an unbounded normal distribution.

2. Using a normal distribution, truncated at a specified level of ground motion.
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3. Using the GEVD.

4. Using a hybrid distribution model that consists of the GEVD for a central region and

the GPD for an upper tail.

A brief review of the Cornell–McGuire probabilistic seismic hazard analysis procedure

could be helpful for understanding the following material.

To begin with, recap of a PDF of log-normal distribution could be useful. If the dis-

tribution of a random variable is log-normal, its PDF has the following form

fl;rðxÞ ¼
1

xr
ffiffiffiffiffiffi
2p

p e
�ðln x�lÞ2

2r2 ; x[ 0

The transformation Y ¼ lnX leads to a normally distributed random variable with a lo-

cation l and a scale r parameters. The values of these parameters are estimated by using an

appropriate GMPE. Given an earthquake with magnitude m, the probability can be cal-

culated that ground motion at distance r from the source will exceed a particular level a0 by

the following equation

Pðy� lnða0Þjm; rÞ ¼
1
ffiffiffiffiffiffi
2p

p
r

Z 1

a0

e�
ðy�lÞ2

2r2 dy ð6Þ

This equation can be conveniently expressed in terms of the standard normal distribution

Pðy� lnða0Þjm; rÞ ¼ 1 � UðzÞ ð7Þ

where z ¼ lnða0Þ�l
r is a standardized normal random variable and UðzÞ is the standard

normal CDF.

Next, consider a site surrounded by N seismic sources. Each seismic source is char-

acterized by magnitude Mi, distance to site Ri, and annual activity rate mi. The parameters

of future seismic events are yet unknown; therefore, Mi and Ri are random variables with

corresponding PDFs fMi
ðmÞ and fRi

ðrÞ. The total annual rate of exceedance of a particular

level of ground motion a0 can be calculated as follows
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kðy� lnða0ÞÞ ¼
XN

i¼1

mi

ZZ
Pðy� lnða0Þjm; rÞfMi

ðmÞfRi
ðrÞ drdm ð8Þ

From an assumption that the sequence of major seismic events can be modelled by the

Poisson distribution, it follows that the probability for a particular level of ground motion

a0 to be exceeded at least once during the time interval T can be calculated (Anderson and

Brune 1999) as follows

Pðy� lnða0Þ; TÞ ¼ 1 � expð�kðy� lnða0ÞÞ � TÞ ð9Þ

Equation 9 with T = 1 year defines the seismic hazard curve, the main result of the PSHA.

For small values of the annual rate of exceedance (kðy� lnða0ÞÞ � 1), Eq. 9 can be

approximated as

Pðy� lnða0Þ; T ¼ 1Þ ¼ 1 � expð�kðy� lnða0ÞÞÞ ffi kðy� lnða0ÞÞ ð10Þ

As emphasized in Wang (2011), T = 1 year is neglected on the right side of Eq. 10; thus,

both sides of this equation contain a dimensionless quantity, i.e. the annual probability of

exceedance.

As can be seen from Eq. 8, the ground motion variability is explicitly incorporated in

the calculation of the seismic hazard. It is, namely, used in a calculation of the conditional

exceedance probability of a ground motion of a particular level a0.

The normal distribution is unbounded; therefore, the further a hazard curve ex-

trapolated, the higher the level of ground motion is expected to be exceeded. The necessity

of an upper bound of the ground motion and the difficulties related to its determination are

summarized in Bommer et al. (2004). Strasser et al. (2004) proposed the truncation of the

distribution of residuals at a level of three standard deviations above the median as a

measure to prevent the effect of unbounded normal distribution.

Given a normal distribution, truncated at a value aT, the PDF has to be renormalized to

satisfy the fundamental properties of PDF. Then, the probability that an earthquake with

magnitude m will produce ground motion at distance r from the source that exceeds a

particular level a0 can be expressed as
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Pðy� lnða0Þjm; rÞ ¼
1 � UðzÞ

UðzTÞ
; y� aT

0; y[ aT

8
<

:
ð11Þ

where zT ¼ lnðaT Þ�l
r .

After the replacement of a normal distribution by the GEVD, the same probability can

be expressed as

Pðy� lnða0Þjm; rÞ ¼ 1 � HnðzÞ ð12Þ

where Hn is a standardized CDF of the GEVD.

And after the replacement of a normal distribution by a hybrid model, this probability

can be written as

Pðy� lnða0Þjm; rÞ ¼
1 � ð1 � pÞ HnðzÞ

HnðzmÞ
; y� lþ m

pð1 � GnðzÞÞ; y[ lþ m

8
<

:
ð13Þ

where zm ¼ lnðamÞ�l
r , am ¼ expðlþ mÞ, GnðzÞ is a standardized CDF of the GPD, p is a

fraction of the residual values that fall in a tail region.

For the purpose of demonstration, a simple hypothetical example was considered. This

example is similar to an example used in Baker (2008) and assumes there are two seismic

sources that may affect the site. Both sources are subduction slab sources. The first source

is capable of producing an earthquake of magnitude m1 ¼ 5:5 every 100 years (m1 ¼ 0:01)

and is located at a depth of d1 ¼ 30 km and a distance of r1 ¼ 140 km from the site. The

second source is capable of producing an earthquake of magnitude m2 ¼ 6:5 every

500 years (m2 ¼ 0:002) and is located at a depth of d2 ¼ 30 km and a distance of r2 ¼
200 km from the site. The soil conditions at a site are characterized as medium soil

(VS30 ¼ 250 m=s). For the given combinations of parameters, a GMPE of Zhao et al.

(2006) gives lnðPGAÞ values of l1 ¼ 1:8404 cm=s2, l2 ¼ 2:0233 cm=s2 and a standard

deviation r ¼ 0:6840, which is a constant in this GMPE for seismic events generated by

sources of identical type. With the defined earthquake scenarios, Eq. 8 simplifies to the

following

kðy� lnða0ÞÞ ¼ m1 � Pðy� lnða0Þjm1; r1Þ þ m2 � Pðy� lnða0Þjm2; r2Þ ð14Þ

By repeating these calculations for a range of values of PGA, a total hazard curve can be

constructed. Hazard curves calculated by using the above-mentioned distributions are

represented in Fig. 7.

As can be seen, the hazard curve calculated by using the GEVD displays the highest

ground motion estimates, almost down to an annual exceedance probability of 10-6 where

it crosses with the hazard curve calculated by using an unbounded normal distribution. The

hazard curve calculated by using a hybrid distribution model is very close to the curve

calculated by using a truncated normal distribution, down to an annual exceedance

probability of 10-5, after which it estimates higher ground motions and the difference

gradually increases.

As can be seen from Fig. 7, the hazard curves calculated by using the GEVD and a

hybrid distribution model depend strongly on the shape parameter n. Although the method

applied for statistical analysis in this study is satisfactory, the estimations of the shape

parameter can only be called preliminary. These estimations were obtained based on the
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strong ground motion records from a particular region and, therefore, are valid only for this

particular region, which in this instance is Japan. Such analysis should be performed for a

multiple number of datasets of the recordings of seismic ground motions that were induced

by earthquakes of various types and magnitudes and were recorded worldwide, for a

possible generalization of these results.

5 Conclusion

In this study, the distribution of the residuals of lnðPGAÞ was modelled by a number of

probability distribution laws, using the database of the strong-motion seismograph net-

works of Japan and a GMPE of Zhao et al. (2006). The results of the analysis indicate that

the best approximation for the distribution of residuals was obtained with the GEVD. This

result is consistent with the conclusions of Dupuis and Flemming (2006) and Raschke

(2013). The ‘‘peaks over threshold’’ method was applied in an attempt to model an upper

tail of the distribution of residuals more precisely. Thus, the resulting distribution of

residuals is a hybrid model that consists of the GEVD in a central region and the GPD in a

region of an upper tail. Similar analysis was performed during this study by using GMPEs

of Atkinson and Boore (2003) and Kanno et al. (2006), which demonstrated analogous

regularities.

The estimations of the shape parameter of the GEVD and the GPD resulted in negative

values, indicating that the distribution of residuals has a finite upper bound. Consequently,

a maximum value of PGA can be associated with an earthquake scenario involved in the

PSHA. This approach is preferred to the truncation procedures proposed in Strasser et al.

(2004), because a maximum value of PGA, unlike the truncation of a distribution, has a

clear physical meaning.

Hazard curves were calculated for a simple hypothetical example to demonstrate the

effect of the replacement of the normal distribution. Hazard curves were calculated by

using the GEVD and a hybrid distribution model, which differ from each other and from
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the curves calculated by using the normal distribution. This difference is particularly

evident at low annual exceedance probabilities.
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