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Abstract Seismic wave attenuation is one of the most important parameters that reflect

characteristics of the medium traversed by the seismic waves. This parameter is essential

for many studies such as determining earthquake source parameters, predicting earthquake

strong ground motion, monitoring nuclear explosions and estimating seismic hazard. Since

1995, several region-specific attenuation relations have been developed for the Indian

regions, but no such relation is available for the Bilaspur region of the Himachal Lesser

Himalaya for the want of data. A six-station local seismological network, deployed in the

environs of Koldam site, provided digital recordings of 41 local events occurred in the

region from May 2013 to March 2014. This data set has been used to develop the at-

tenuation relations for the region. Majority of the events occurred in the Himachal Lesser

Himalaya between the main boundary thrust and the main central thrust. All events have

epicentral distances\100 km and magnitudes between 0.5 and 2.9. Adopting the single

backscattering model of Aki and Chouet (J Geophys Res 80:3322–3342, 1975), coda-

Q (Qc) of the region has been estimated in lapse time windows of 20, 30 and 40 s,

respectively. For 30-s lapse time window, the attenuation follows the relation Qc

(f) = (70.3 ± 20.27) f (1.23±0.05) for the region. The observed Qc relation is compared with

similar relations for seismically active Indian regions and some of the globally available

relations. It is found that the average variation of Qc for the Bilaspur region is very close to

Amazon Craton (Brazil) due to similar lithologic setup. The variation of ‘Q0’ and ‘n’

values indicates that the region is highly heterogeneous and seismically active. The region

is more heterogeneous near the surface as compared to depth. The estimated Qc relations

can be utilized for computing source parameters of the local earthquakes and for seismic

hazard assessment for the Bilaspur region of Himachal Lesser Himalaya.
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1 Introduction

The observed earthquake ground motions, in terms of amplitudes and frequency content, at

recording sites, are influenced by the source, path and site characteristics. The effects of

travel path on earthquake ground motion depend on the attenuation characteristics of the

medium through which the seismic waves propagate; attenuation is an important parameter

that governs the amplitudes and frequency content observed on the seismograms. The

knowledge of the attenuation of seismic waves is essential for determining earthquake

source parameters, predicting the strong ground motions due to earthquakes and estimating

the seismic hazard of a region. This attenuation can be quantitatively defined by the inverse

of the dimensionless quantity known as quality factor Q, which is a ratio of stored energy

to dissipated energy during one cycle of the wave (e.g., Johnston and Toksöz 1981). The

seismic wave attenuation is attributed to three factors: (1) anelastic absorption that mainly

depends on temperature, fluid content and chemical compositions; (2) scattering of seismic

waves, which is ascribed to generated small-scale velocity fluctuations; and (3) focusing of

seismic waves due to propagation in 3-D structures. Because of these factors, amplitudes of

seismic waves decay faster than predicted by geometrical spreading of wave fronts (Pandit

et al. 2011). Therefore, attenuation provides important information about the structure of

the earth (Calvet et al. 2013). Mak et al. (2004) observed that for high Q values (Q[600)

the region is tectonically stable, while for low Q values (Q\200) the region is seismically

active, and for Q values between (200 and 600), the region possesses moderate tectonic

activity.

Due to the presence of various scale inhomogeneities in the earth, the observed ground

motions in the vicinity of earthquakes often decay slowly leaving a coda following the

direct, body and surface waves. These coda waves of local earthquakes were interpreted as

backscattering waves from numerous randomly distributed heterogeneities in the earth

crust (e.g., Aki 1969; Aki and Chouet 1975; Rautian 1976). The models were developed to

use coda waves for the estimation of attenuation relations. The single scattering model

considered the scattering as a weak process without loss of seismic energy by scattering,

whereas the multiple scattering model the seismic energy transfer considered as a diffused

process. Using coda waves, numerous studies have been conducted to determine the at-

tenuation relation for different regions of the world (Ambeh and Fairhead 1989; Catherine

1990; Atkinson and Meeru 1992; Mandal and Rastogi 1998; Gupta et al. 1998; Mandal

et al. 2001; Gupta and Kumar 2002; Paul et al. 2003; Kumar et al. 2005, 2007; Sharma

et al. 2008; Sahin 2008; Raghukanth and Semala 2009; Dobrynina 2011; Gupta et al. 2012

and Calvet et al. 2013). Mukhopadhyay et al. (2006) computed the intrinsic and scattering

attenuation characteristics using the coda waves of local earthquakes for the northwest

Himalayas. Sato and Fehler (1998) estimated that the heterogeneities in the lithosphere

were observed from coda-Q from local earthquakes on the scale of 0.1–10 km.

Himalaya, the highest mountain chain on the earth, is characterized by the concentration

of interplate seismicity and high rate of upliftment as well as convergence (Molnar and

Chen 1983; Nakata 1989; Demets et al. 1990). Himachal Lesser Himalaya, forming part of

the northwest Himalaya, is bound to the west by the Kashmir Himalaya and to the east by

the Garhwal Himalaya. Because of non-availability of digital data set, limited work has

been carried out to estimate attenuation properties of the medium. A six-station local

network of sensitive digital seismographs has been deployed in the Bilaspur region. The

digital recordings from this network have been used to estimate the quality factor of the

lithosphere of the Bilaspur region.
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1.1 Geology, tectonics and seismicity of the Himachal Lesser Himalaya

The formation of the Himalaya has been attributed to the continent–continent convergence

of the India and Eurasia lithospheric plates (e.g., Le Fort 1975; Seeber et al. 1981). From

geological considerations, the Himalaya has been segregated into six parts: (1) the first part

comprises basement rocks, (2) the second part represents inner crystalline nappe, (3) the

third part is composed of rock types belonging to Simlas and Jaunsars, (4) the rock

formations primarily belonging to Blainis, infra-Krols, Krols, Shalis and Tals constitute

fourth part, (5) the lower tertiary containing rock formations like Subathus, Dagshais and

Kasaulis comprises fifth part and (6) the sixth part represents sedimentary formations

belonging to Siwalik group (e.g., Saxena 1971). The Himalaya is divided into four tectonic

domains viz., the Sub-Himalaya (Siwalik), the Lesser Himalaya, the Great Himalaya and

the Tethys Himalaya or Tibet Himalaya. The Indus-Tsangpo suture zone (ITSZ) constitutes

the northern boundary of the India plate. Trans-Himadri fault defines the boundary between

the Tethys Himalaya and the Great Himalaya. This fault was earlier called the Malari

Thrust (Valdiya 1979; Valdiya et al. 1984) and later on renamed as Trans-Himadri fault

(Valdiya 1987, 1989). The main central thrust (MCT) defines the boundary of the Great

Himalaya and the Lesser Himalaya. The main boundary thrust (MBT) constitutes the

boundary between the Lesser Himalaya and the Sub-Himalaya. The Himalaya frontal

thrust (HFT) is located to the south of the Sub-Himalaya and separates it from the Indo-

Gangetic Plains. The region between the MBT and the HFT is traversed by several sub-

sidiary thrusts such as the Jawalamukhi Thrust (JT) and the Drang Thrust (DT). Within the

above tectonic background, the study area is located in the Himachal Lesser Himalaya that

forms the northwestern part of the Himalaya. Figure 1b depicts the segments of the MCT

and the MBT, along with several other local tectonic features mapped in the study area.

The tectonic features located in the close proximity of the Koldam site include the DT and

the MBT. Geological mapping has indicated that at several places the MBT and the JT

exhibited neotectonic activity (e.g., Srikanita and Bhargava 1998).

(a) (b)

Fig. 1 aMap of India showing the study region (rectangular box). bMap showing tectonic features around
Bilaspur region of the Himachal Lesser Himalaya (After GSI 2000). Tectonic features (lines) are shown and
include: MBT; MCT; DT; JT. Filled triangles depict the network stations
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The earthquake activity of the region is primarily ascribed to the convergence of the

Indian and Eurasian tectonic plates. The study region falls in seismic zone V as per the

seismic zoning map of India (IS: 1893-(Part l) 2002: General Provisions and Buildings).

The region has witnessed many moderate- to large-sized earthquakes in the last more than

100 years. Prominent earthquakes that occurred in the Himachal Lesser Himalaya en-

compassing the Bilaspur region are listed in Table 1.

2 Methodology

This methodology adopted to estimate the quality factor (Q) of the Bilaspur region is based

on well-known single backscattering model (Aki and Chouet 1975). This model is based on

the premise that coda waves are backscattered body waves generated by randomly dis-

tributed heterogeneities in the earth’s crust and upper mantle. The size of scatterers is

considered greater than the wavelength, and no velocity change or multiple scattering is

allowed in the medium. Kopnichev (1977) and Gao et al. (1983) demonstrated that the

coda waves observed at short lapse times (\100 s) are because of the single scattering,

whereas those at long lapse times ([100 s) are due to multiple scattering. Based on the

Table 1 Prominent earthquakes occurred in the Himachal Lesser Himalaya encompassing the Bilaspur
region

Date Place Locations References

Latitude
(�N)

Longitude
(�E)

Intensity Magnitude

April 4, 1905 Kangra, Himachal
Pradesh

32.3 76.2 10 Ms = 7.8 Ambraseys and
Bilham (2000)

February 28,
1906

Kullu, Himachal
Pradesh

32.0 77.0 na Mw = 6.4 Thakur et al. (2014)

May 11, 1930 East of Sultanpur,
Himachal
Pradesh

31.7 77.0 na TS = 6.0 Thakur et al. (2014)

June 22, 1945 Chamba,
Himachal
Pradesh

32.6 75.9 9 Ms = 7.5 Srivastava et al.
(1987)

September
12, 1951

Chamba–
Udhampur
Districts,
Himachal
Pradesh

33.3 76.5 na TS = 6.0 Thakur et al. (2014)

June 17, 1955 Lahaul–Spiti
Districts,
Himachal
Pradesh

32.5 78.6 na TS = 6.0 Thakur et al. (2014)

January 19,
1975

Kinnaur,
Himachal
Pradesh

32.3 78.5 9 Ms = 7.5 Singh et al. (1976)

April 26,
1986

Dharmashala,
Himachal
Pradesh

32.1 76.4 6 Ms = 5.0 Kumar and Mahajan
(1990)
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single backscattering model, the coda wave amplitude A(f, t) for a narrow bandwidth signal

centered at frequency f and at lapse time t is given as (Aki and Chouet 1975):

Aðf ; tÞ ¼ Sðf Þt�a exp
�pft
Qc

� �
ð1Þ

where S(f) represents the source function at frequency f, a is the geometrical spreading

parameter, which is taken as ‘0.5’ and ‘1’ for surface waves and body waves, respectively,

and Qc represents the quality factor of coda waves. Equation (1) can be written as:

ln ðAðf ; tÞ; tÞ ¼ lnðSðf ÞÞ � pft
Qc

� �
ð2Þ

Relation (2) allows estimation of the Qc from the slope of the straight line, fitted

between ln(A(f, t)) versus time t adopting least-squares method. According to Rautian and

Khalturin (1978), the above relations are valid for lapse times greater than twice the S-

wave travel time. The frequency-dependent relation of Qc is described by the power law:

Qc(f) = Q0 (f)n, where Q0 is the value of Qc at 1 Hz, and n represents the degree of

frequency dependence of Qc. The logarithm of this equation allows estimation of n and Q0

using a simple linear regression.

2.1 Data set

A six-station local seismological network has been deployed around the Koldam located in

the Himachal Lesser Himalaya (Fig. 1b. The local earthquake data collected through this

network are interpreted to study the local seismicity and to map seismotectonic sources

around the Koldam site. In this network, three short-period seismometers CMG-40TD1

(Guralp Systems Limited, UK) and two broadband seismometers CMG-3ESPC (Guralp

Systems Limited, UK) are used as sensors to sense the three components of ground motion.

The output from each sensor is coupled to a 24-bit portable data acquisition system (DL-

24), and a global positioning system (GPS) is used to synchronize data samples to UTC or

IST. The digital data are acquired at a rate of 100 samples per second (sps). In addition, one

station is operated in an analog mode with short-period vertical-component seismometer

L4C (Serceal, UK). Site characteristics and geographical coordinates of the recording

stations are listed in Table 2.

Table 2 Site characteristics and geographical coordinates of the recording stations

Sl.
no.

Name of
station

Station
code

Lat.
(�N)

Long.
(�E)

Elev.
(Mts.)

Type of soil/rock

1 Sikandra SKND 31.56� 76.81� 1589 Sandstone, shale and mudstone

2 Bandala BAND 31.32� 76.78� 1328 Sandstone, shale and mudstone

3 Neri NERI 31.22� 77� 1020 Slate, quartzite and carbonate rocks

4 Nihri NIHR 31.59� 77.05� 1228 Phyllites, schists, gneiss and granitic
rocks occur in near by areas

5 Kunho KUNH 31.34� 77.2� 1558 Slate and dolomite

6 Gohar GOHR 31.38� 77.03� 2082 Phyllites, schists, slate and quartzite
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2.2 Data analysis

The digital data collected from all the stations have been converted to Seisan format with

conversion programs available in SEISAN software (Havskov and Ottemoller 2003).

Hypocenter parameters of local events have been estimated adopting HYPOCENTER

program (Lienert et al. 1986; Lienert and Havskov 1995) and using the velocity model as

listed in Table 3. The standard errors in the estimates of epicenter (ERH), focal depth

(ERZ) and origin times (RMS residuals) are as follows: ERH B5.0 km; ERZ B5.0 km; and

RMS B0.5 s. From May 2013 to March 2014, digital recordings of 41 local events from

four stations (GOHR, KUNH, NERI and SKND) out of six stations are used in the study

(Fig. 2). The digital data from Band and Nihri stations could not be used in this study

because of low signal to noise ratio (SNR). All the local events occurred at epicentral

distances of\100 km, and their magnitudes are in the range between 0.5 and 2.9.

A MATLAB code has been developed based on the single backscattering model of Aki

and Chouet (1975) for the estimation of coda-Q. The guidelines of CODAQ subroutine of

SEISAN have been followed for the development of the code (Havskov and Ottemoller

2003). The waveforms with SNRs above 3 are selected for analysis. The correlation

coefficients are also used as a second selection criterion because Q values with small

correlation coefficients lead to a poorly constrained Q–f relation and consequently a less

reliable estimate of Q0 and n values. It is suggested that correlation coefficient should be

[0.7 to obtain the reliable values of Qc. Further, the vertical components of coda waves

have been used to estimate Qc because it has been shown that the coda analysis is inde-

pendent of the components of the ground motion analyzed (Hoshiba 1993).

Origin times and coda arrival times have been estimated from arrival times of P- and S-

waves. Adopting Butterworth filter, the seismograms have been band-pass filtered at seven

frequency bands, viz., 1–2, 2–4, 4–8, 6–12, 8–16, 12–24 and 16–32 Hz (Table 4). For each

band-pass filtered earthquake time histories, signal is selected from coda arrival to coda

duration considered for analysis. The elimination of contamination caused by direct S-

wave is essential for reliable Qc determination (Rautian and Khalturin 1978; Herraiz and

Espinosa 1987). Therefore, direct S-waves from filtered earthquake time history are

eliminated by taking the beginning of coda waves as twice the arrival time of S-wave from

the origin time (Rautian and Khalturin 1978). The length of coda window is also important

to get the stable solution. It is suggested that minimum window length should be 20 s

(Havskov and Ottemoller 2005), and there is no maximum upper limit. In order to get

stable and reliable solutions, three lapse time windows (20, 30 and 40 s) have been used.

Coda waves selected in a specified time window are corrected for geometrical spreading.

The corrected amplitudes are multiplied by ‘ta’ to account for geometrical spreading, and

for local earthquakes, the value of a = 1. The envelopes of the coda waves are estimated

from root mean square (RMS) coda amplitudes computed using a moving window of 2 s

with overlap of 1 s. The natural log of RMS amplitudes is plotted with t, and a linear

Table 3 Velocity model used in
the study

Velocity (km/s) Depth (km)

3.0 0.0

5.2 1.0

6.0 16.0

7.91 46.0
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equation is fitted to the data. The slope of the line provides coda-Q estimates at a particular

central frequency (fc) as depicted in Fig. 3.

3 Results and discussions

The frequency-dependent Qc relations for each recording site as well as average relations

for the Bilaspur region have been estimated. The spatial variation of estimated Qc is

studied, and its comparison with other seismically active regions of the India and world has

been made. The 41 local events are grouped in three types according to the epicentral

distance (R) range: near range (R\ 30 km); medium range (30 B R\ 60 km); and distant

range (R C 60 km) (Table 5a–c).

Fig. 2 Epicenters of events used in the study

Table 4 Various central fre-
quencies with low-cut and high-
cut frequency bands used for
filtering

Low cutoff (Hz) Central frequency (f) (Hz) High cutoff (Hz)

1.00 1.50 2.00

2.00 3.00 4.00

4.00 6.00 8.00

6.00 9.00 12.00

8.00 12.00 16.00

12.00 18.00 24.00

16.00 24.00 32.00
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(a)

(b)

(d) (e)

(c)

Fig. 3 Plot of event recorded at GOHR station on November 27, 2013. a Unfiltered data trace with coda
window, b–e band-pass filtered displacement amplitudes of coda window at 1–2, 4–8, 8–16 and 16–32 Hz,
respectively, and the RMS amplitude values multiplied with lapse time along with best square fits of selected
coda window at central frequencies of 1.5, 6, 12 and 24 Hz, respectively. The Qc is determined from the
slope of best square line. Abbreviations P, P-wave arrival time; S, S-wave arrival time
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3.1 Frequency and lapse time dependence of Qc

The coda-Q estimated at central frequencies 1.5, 3, 6, 9, 12, 18 and 24 adopting three

lapse time windows (LTWs) of 20-, 30- and 40-s durations is found to increase with

increasing frequency and lapse time. We estimated frequency-dependent Q(f) relations

for each of the three distance ranges as well as for the entire data set because such Qc

relations are known to provide average attenuation characteristics of the medium prop-

erties of the localized regions (e.g., Mukhopadhyay et al. 2006). The mean values of Qc

with standard errors for 20-, 30- and 40-s LTWs, and for different distance, ranges with

respect to each central frequency are listed in Table 5a–c. From Table 5a, it is evident

that Qc values are high at higher frequency ranges, which demonstrates the homogeneous

character of the medium at deeper level. Similar patterns are observed from the Qc values

listed in Table 5b, c. A power law Qc = Q0 fn, where Q0 is the value of Qc at 1 Hz and

Table 5 (a), (b), (c) shows the mean value with standard error at different frequencies and different lapse
times (20, 30 and 40 s) for all stations which are distributed epicentral distance wise having (near range
(R\ 30 km), medium range (30 B R\ 60 km) and distant range (R C 60 km)

Freq. (Hz) Epi dis. (R\ 30 km) Epi dis. (30 B R\ 60 km) Epi dis. (R C 60 km)

Mean ± Stderr N Mean ± Stderr N Mean ± Stderr N

(a) LTW 20 s

1.5 87 ± 4 18 89 ± 10 6 96 1

3 166 ± 10 14 189 ± 11 2

6 543 ± 52 9 754 ± 133 6 680 ± 78 4

9 929 ± 46 9 1038 ± 99 13 1015 ± 74 11

12 1354 ± 108 10 1406 ± 160 13 1360 ± 76 19

18 2378 ± 237 12 1960 ± 109 13 2229 ± 137 17

24 2716 ± 236 13 2706 ± 242 13 3274 ± 260 15

(b) LTW 30 s

1.5 98 ± 6 18 120 ± 10 8 130 ± 12 2

3 221 ± 12 18 440 1 292 ± 58 2

6 710 ± 45 15 769 ± 47 7 713 ± 102 5

9 1041 ± 38 18 1296 ± 78 17 1283 ± 75 17

12 1435 ± 53 23 1602 ± 93 18 1627 ± 68 20

18 2140 ± 71 21 2164 ± 86 16 2352 ± 93 19

24 2971 ± 123 17 2990 ± 216 14 3082 ± 165 14

(c) LTW 40 s

1.5 118 ± 9 13 116 ± 6 7 166 1

3 318 ± 35 8 356 ± 85 3 254 1

6 880 ± 100 12 925 ± 98 7 1073 ± 151 5

9 1235 ± 88 18 1532 ± 77 17 1548 ± 68 20

12 1583 ± 70 18 1712 ± 77 17 1865 ± 65 18

18 2256 ± 111 16 2416 ± 113 17 2739 ± 178 16

24 3013 ± 132 14 2978 ± 122 11 3356 ± 162 14

Where ±r represents the standard error and ‘N’ is the number of earthquake used
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n is frequency dependence coefficient (Aki 1980), is fitted to the data, for different

LTWs. For 20-s LTW, the power law provided the average values of Q0 = 47 ± 26 and

n = 1.32 ± 0.1 for (R\ 30 km); Q0 = 64 ± 16 and n = 1.21 ± 0.04 for

(30 B R\ 60 km); and Q0 = 55 ± 7.73 and n = 1.29 ± 0.03 for (R C 60 km), re-

spectively. Similarly, the values of Q0 and n have been estimated for 30- and 40-s LTWs

are tabulated in Table 6.

The average estimates of Qc obtained by taking the mean of Qc values at different

stations are listed in Table 7. Figure 4 depicts that at all the stations the variation of Qc

with frequency has a linear trend for 20-, 30- and 40-s LTWs. Furthermore, the Q0

values are found to increase with lapse time for all stations, and n values are found to

decrease with the LTW (Table 7). The increase in Qc and decrease in n seem to signify

the variation of attenuation character with depth as larger time window provides the

effect of deeper part of the earth. Hence, it can be interpreted that when Qc increases

and n decreases, then heterogeneity decreases with depth in the study area

(Mukhopadhyay and Tyagi 2007). According to the seismic zoning map of India, the

study region falls in seismic zone V which represents the high seismicity of the region,

and this is also reflected in the high estimated value of ‘n.’ For the study region, Qc

estimates follow the frequency-dependent relations: Qc = (70.3 ± 20.27) f(1.23±0.05) for

30-s LTW.

3.2 Spatial variation of Qc

A large number of studies have demonstrated the dependence of Qc with lapse time (e.g.,

Roecker et al. 1982; Kvamme and Havskov 1989; Ibanez et al. 1990; Woodgold 1994;

Akinci et al. 1994; Gupta et al. 1996; Mukhopadhyay and Tyagi 2007). Further, the lapse

time has been related to the area of sampling by coda waves. According to Pulli (1984),

for a single scattering model, the coda wave attenuation represents the average decay of

amplitudes of backscattered waves on the surface of ellipsoid with earthquake of source

and station as foci. The coda waves at a station consist of the combination of several

scattered phases, which do not represent a single ray. Hence, Qc represents the average

attenuation of the region comprises ellipsoidal volume with depth, h = hav ? D2, where

D2 =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D12 � D2

p
is the small minor axis of ellipsoid for epicentral distance D and the

average focal depth hav of the events. The large semi-axis D1 is the surface projection of

ellipsoid with hypocenter and station as foci and can be defined as vt/2. The average

lapse time is given by the relations: t ¼ tst þ W
2
, where tst is beginning of the lapse time

Table 6 Average value of quality factor Q0 and n at different lapse time with distribution of epicentral
distance

Lapse time (s) Epi dis. (R\ 30 km) Epi dis. (30 B R\ 60 km) Epi dis. (R C 60 km)

Q0 n Q0 n Q0 n

20 47 ± 26 1.32 ± 0.1 64 ± 16 1.21 ± 0.04 55 ± 7.73 1.29 ± 0.03

30 62 ± 9 1.24 ± 0.03 101 ± 20 1.09 ± 0.05 85 ± 18 1.16 ± 0.05

40 88 ± 17 1.15 ± 0.04 93 ± 40 1.16 ± 0.07 100 ± 40 1.16 ± 0.07
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and W is the window length. The depths calculated for the ellipsoidal volume at different

stations are given in Table 8. The increase in Qc with lapse time is attributed to factors

like considering nonzero source receiver distance, anisotropic scattering and assumption

of single scattering model instead of multiple scattering (Woodgold 1994). For the three

LTWs considered in this study, the starting time of coda wave is taken twice the S-wave

travel time, and only backscattered waves are recorded in this time window (Aki and

Chouet 1975). Further, for all the analyzed local events, the LTW length is\100 s, and

the multiple scattering effects are not important for local events for lapse time\100 s

(Gao et al. 1983). Hence, in the studied region, the variation of Qc with lapse time is

because of the variation of attenuation with depth and indicates that medium homo-

geneity increases with depth.

3.3 Comparison of Qc with other regions of the India and the world

The single scattering or multiple scattering models have been used to estimate Qc in

different regions of the world (e.g., Aki and Chouet 1975; Sato 1977; Roecker et al. 1982;

Pulli 1984; Wu 1985; Jin and Aki 1988; Havskov et al. 1989; Ibanez et al. 1990; Pujades

et al. 1991; Canas et al. 1991; Akinci et al. 1994; Latchman et al. 1996; Zelt et al. 1999). In

Fig. 5a, the Qc estimates for Bilaspur region of the Himachal Lesser Himalaya are
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compared with some of the regions of the world (Li et al. 2004; Havskov et al. 1989;

Hellweg et al. 1995; Rovelli 1982; Mak et al. 2004; Mahood and Hamzehloo 2009; Rahimi

and Hamzehloo 2008; Pujades et al. 1991; Barros et al. 2011). For comparison, frequency-

dependent relations Qc = (70.3 ± 20.27) f(1.23±0.05) at 30-s LTW are considered, and it is

found that average variation of Qc for Bilaspur region is very close to Amazon Craton

(Brazil). This may be due to the some kind of geological similarity between Bilaspur

region and Amazon Craton (Brazil). The rock types of the Himachal Lesser Himalaya

primarily comprise metasedimentary, sedimentary, igneous and metamorphic rocks,
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Fig. 5 a, b Comparison of Qc values for Bilaspur region of the Himachal Lesser Himalaya with the existing
Q studies worldwide and in India
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whereas the Amazon Craton of Brazil comprises of granitic rocks and Phanerozoic terrains

with sedimentary rocks of the Parecis basin.

The Himalaya is seismically and tectonically very active. Since 1995, several studies on

the estimation of seismic wave attenuation were undertaken (e.g., Gupta et al. 1995, 1998,

2012; Gupta and Kumar 2002; Paul et al. 2003; Kumar et al. 2005; Ramakrishna et al.

2007). Figure 5b shows the comparison of Qc estimates of the Bilaspur region with the Qc

estimates from various other Indian regions. The variation of Qc with frequency for the

Bilaspur region is almost similar to that of Kachchh region. Table 9 shows the comparison

of Qc at 1 Hz (Q0) for the Bilaspur region with the other Indian regions. It is found that

‘Q0’ has minimum value for the Bilaspur region. This means that the Bilaspur region is the

most attenuating among the regions compared. The ‘n’ value for the Bilaspur region is also

maximum than any other Indian region and some of the regions of the world (Table 9).

This indicates that the Bilaspur region is highly heterogeneous in character and that the

lowest ‘Q0’ is observed for this Indian region. This may be due to the presence of criss-

crossed fractures, intrusions and heterogeneities of varying scales attributed to the Hi-

malaya orogeny.
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4 Conclusion

The frequency-dependent coda-Q relations for the Bilaspur region of the Himachal Lesser

Himalaya have been estimated considering LTWs of 20-, 30- and 40-s durations. The Qc

estimates are computed in the frequency range from 1.5 to 24 Hz, using a data set of 41

local events. The variation of Qc with distance is investigated by dividing the data set into

near (R\ 30 km), medium (30 B R\ 60 km) and distant ranges (C60 km), respectively.

For 20-s LTW, the Qc estimates vary from 87 ± 4 (at 1.5 Hz) to 2716 ± 236 (at 24 Hz)

for R\ 30 km; 89 ± 10 (at 1.5 Hz) to 2706 ± 242 (at 24 Hz) for 30 B R\ 60 km; and

96 (at 1.5 Hz) to 3274 ± 260 (at 24 Hz) for R C 60 km. Similarly, for 30-s LTW, the Qc

estimates vary from 98 ± 6 (at 1.5 Hz) to 2971 ± 123 (at 24 Hz) for R\ 30 km;

120 ± 10 (at 1.5 Hz) to 2990 ± 216 (at 24 Hz) for 30 B R\ 60 km; and 130 ± 12 (at

1.5 Hz) to 3082 ± 165 for R C 60 km), while for 40-s LTW, Qc estimates vary from

118 ± 9 (at 1.5 Hz) to 3013 ± 132 (at 24 Hz) for R\ 30 km; 116 ± 6 (at 1.5 Hz) to

2978 ± 122 (at 24 Hz) for 30 B R\ 60 km; and 166 (at 1.5 Hz) to 3356 ± 162 (at

Table 9 Comparison of attenuation quality factor ‘Q0’ and ‘n’ with other regions of the world and India

Regions Qo n References

World

Friuli, Italy 80 1.1 Rovelli (1982)

NE, USA 900 0.35 Singh and Herrmann (1983)

Central USA 1000 0.2 Singh and Herrmann (1983)

New England 460 0.4 Pulli (1984)

Aleutian 200 1.05 Scherbaum and Kisslinger (1985)

Canadian Shield 900 0.35 Hasegawa (1985)

Washington State 63 0.97 Havskov et al. (1989)

S. Iberia 100 0.7 Pujades et al. (1991)

Parkfield 79 0.74 Hellweg et al. (1995)

Hong Kong 256 0.7 Mak et al. (2004)

Yunnan, China 49 0.95 Li et al. (2004)

Zagros Iran 99 0.84 Rahimi and Hamzehloo (2008)

Bam region, Iran 79 1.01 Mahood and Hamzehloo (2009)

Amazon Craton, Brazil 78 1.17 Barros et al. (2011)

Indian region

Garhwal Himalaya 126 0.95 Gupta et al. (1995)

Koyna region 96 1.09 Gupta et al. (1998)

Northeast region 86 1.01 Gupta and Kumar (2002)

Kumaun Himalaya 92 1.07 Paul et al. (2003)

NW Himalaya 158 1.05 Naresh Kumar et al. (2005)

Kachchh Basin 82 1.17 Gupta et al. (2006)

South India 460 0.83 Ramakrishna et al. (2007)

Mainland Gujarat 87 1.01 Gupta et al. (2012)

Bilaspur region of Himachal Lesser Himalaya 70 1.23 Present study
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24 Hz) for R C 60 km. It is found that Qc values are high at higher frequencies and show

the homogeneity at deeper zones.

For 30-s LTW, the frequency-dependent relations Qc = (70.3 ± 20.27) f(1.23±0.05) have

been obtained for the Bilaspur region considering entire data set. Comparison of Qc es-

timates for the Bilaspur region with some of the seismically active region of the world has

shown that the average variation of Qc for this region is very close to Amazon Craton

(Brazil) due to similar lithologic setup. From the comparison of ‘Q0’ and ‘n’ obtained for

the Bilaspur region with other Indian regions, it is found that the Bilaspur region is most

attenuating and highly heterogeneous in nature. Further, the variation of Qc with frequency

for the Bilaspur region is almost similar to that of Kachchh region. The various attenuation

relations developed for the Bilaspur region shall be useful for computing earthquake source

parameters, simulating earthquake strong ground motions and for seismic hazard assess-

ment of the region.
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