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Abstract Research examining natural disaster costs on social and economic systems is

substantial. However, there are few empirical studies that seek to quantify the uncertainty

and establish confidence intervals surrounding natural disaster cost estimates (ex post). To

better frame the data limitations associated with natural disaster loss estimates, a range of

losses can be evaluated by conducting multiple analyses and varying certain input pa-

rameters to which the losses are most sensitive. This paper contributes to the literature by

examining new approaches for better understanding the uncertainty surrounding three US

natural disaster cost estimate case studies, via Monte Carlo simulations to quantify the 95,

90 and 75 % confidence intervals. This research also performs a sensitivity analysis for one

of the case studies examining which input data variables and assumptions are the most

sensitive and contribute most to the overall uncertainty of the estimate. The Monte Carlo

simulations for all three of the natural disaster events examined provide additional con-

fidence in the US billion-dollar weather and climate disaster loss estimate report (NCDC

2014), since these estimates are within the confidence limits and near the mean and median

of the example simulations. The normalized sensitivity analysis of Hurricane Ike damage

costs determined that commercial losses in Texas are the most sensitive to assumption

variability. Therefore, improvements in quantifying the commercial insurance participation

rate for Texas will result in the largest reduction of uncertainty in the total loss estimate for

Hurricane Ike. Further minimization of uncertainty would continue with improved mea-

surement of subsequent cost parameters in order of descending sensitivity.
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1 Introduction

The USA and its economy are challenged by weather- and climate-related disasters that

impart large social and economic costs (Gall et al. 2011; Field et al. 2012; NCA 2014).

Consequently, natural disaster cost estimates are referenced by a wide variety of users for

varying purposes. However, there are notable differences in the uncertainty surrounding

different natural disaster types reflecting the quality of the data available, methodology and

assumptions (Kron et al. 2012). For example, in the USA, drought and flooding events have

higher potential uncertainty values around their loss estimates due to less coverage of

insured assets (Smith and Katz 2013). Conversely, severe local storm events have lower

potential uncertainty around their loss estimates due to more complete insurance coverage

of wind and hail damage.

Research examining natural disaster costs on social and economic systems is substan-

tial. Example studies include: normalizing disaster loss trends over space and time using

population and wealth variables (Downton and Pielke 2005; Pielke et al. 2008; Barthel and

Neumayer 2012; Simmons et al. 2013), examining how developing countries and smaller

economies often suffer more greatly due to natural disaster impacts (World Bank 2005;

Hallegatte and Dumas 2009; IPCC 2014), and exploring how developed countries have

more capacity to rebound from natural disasters impacts due to their wealth and financial

systems (Rasmussen 2004; Toya and Skidmore 2007; Cavallo and Noy 2009). Other

research seeks to quantify total, direct losses (i.e., both insured and uninsured) resulting

from specific natural hazard events using independent estimation methodologies (ECLAC

2003; Munich Re 2014; Swiss Re 2014). However, there are few empirical studies that

seek to quantify the uncertainty and confidence intervals surrounding natural disaster cost

estimates (ex post). To better frame the data limitations associated with natural disaster

loss estimates, a range of losses can be evaluated by conducting multiple analyses and

varying certain input parameters to which the losses are most sensitive (FEMA 2015). This

paper contributes to the literature by examining new approaches for better understanding

the uncertainty surrounding three US natural disaster cost estimate case studies, by running

Monte Carlo simulations to quantify the 95, 90 and 75 % confidence intervals. This re-

search also performs a sensitivity analysis for one of the case studies examining which

input data variables and assumptions are the most sensitive and contribute most to the

overall cost uncertainty of the estimate.

The foundation for this research is the US billion-dollar weather and climate disaster

report developed by the National Oceanic and Atmospheric Administration’s National

Climatic Data Center. This analysis quantifies the loss from numerous weather and climate

disasters including tropical cyclones, floods, drought and heat waves, severe local storms

(i.e., tornado, hail, straight-line wind damage), wildfires, crop freeze events and winter

storms (NCDC 2014). These loss estimates reflect direct effects of weather and climate

events (i.e., not including indirect effects) and constitute total losses (i.e., both insured and

uninsured). The insured and uninsured direct loss components include physical damage to

residential, commercial and government/municipal buildings, material assets within a

building, time element losses (i.e., businesses interruption), vehicles, boats, offshore en-

ergy platforms, public infrastructure (i.e., roads, bridges, buildings) and agricultural assets

(i.e., crops, livestock, timber). These loss assessments do not take into account losses to

natural capital/assets, healthcare-related losses, or values associated with loss of life. Only

weather and climate disasters which cause losses of C1 billion dollars in calculated

damage including Consumer Price Index (CPI) inflation adjustment are included in this
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dataset (Table 1). While this threshold is arbitrary, these billion-dollar events account for

roughly 80 % of the total US losses for all combined severe weather and climate events

(Munich Re 2012; NCDC 2014).

These natural disaster cost assessments require input from a variety of public and

private data sources including the Insurance Services Office (ISO) Property Claim Services

(PCS), Federal Emergency Management Agency (FEMA), National Flood Insurance

Program (NFIP) and Presidential Disaster Declaration (PDD) assistance, and the United

States Department of Agriculture (USDA), National Agricultural Statistics Service (NASS)

and Risk Management Agency (RMA), among others. Each of these data sources provides

unique information as part of the overall disaster loss assessment. Previous research

analyzed the suitability of these data sources including trends, data accuracy and potential

biases (Smith and Katz 2013) and found the US billion-dollar disaster estimates had a

consistent underestimation bias of roughly 10–15 %. This bias was corrected during a

reanalysis of the disaster event loss data to reflect new loss totals (NCDC 2014). However,

there are still uncertainty envelopes encompassing these reanalyzed disaster loss estimates,

which this research will offer new approaches for quantifying.

An outline of the paper is as follows. Primary insurance loss data and assumptions of

natural disaster loss estimates are described in Sect. 2. Next, a Monte Carlo simulation

method for estimating uncertainty surrounding disaster loss estimates, focusing on specific

disaster examples, is presented in Sect. 3. A sensitivity analysis examining which data and

assumptions are most important within one of the three disaster case studies is examined in

Sect. 4. Finally, Sect. 5 contains a discussion and conclusions on the uncertainty and

sensitivity analysis results, to improve the US billion-dollar disaster cost analysis.

2 Primary insurance loss data and assumptions

A number of US insurance participation surveys have been performed over the last several

decades for residential, automotive and commercial lines of insurance. The following para-

graphs discuss the data from these surveys and how it informs ourmethodology to estimate the

total, direct loss for a natural disaster event. One central adjustment is that insured loss payment

data ($) are inflated by a factor representing the reciprocal of the insurancemarket participation

rate for a specific type of insurance for each impacted state. Also, we test our disaster cost

methodology calculations using aMonte Carlo analysis, which perturbs each data input value,

to estimate 95, 90 and 75 % confidence intervals surrounding the overall loss estimate.

Table 1 Damage cost statistics from US billion-dollar disaster events (1980–2013) reflecting number of
events, event frequency, CPI-adjusted loss (present year), percent of total losses and average event cost

Disaster type Number
of events

Percent
frequency

CPI-adjusted
losses ($ billions)

Percent
of total loss

Average event
cost ($ billions)

Drought 21 12.4 199 19.1 9.5

Flooding 19 11.2 86 8.3 4.5

Freeze 7 4.1 25 2.4 3.6

Severe storm 65 38.2 143 13.7 2.2

Tropical cyclone 34 20.0 530 50.9 15.6

Wildfire 12 7.1 26 2.5 2.2

Winter storm 12 7.1 35 3.4 2.9
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2.1 Residential insurance

Annual surveys on residential property insurance participation such as the Census

American Housing Survey (1980–present), the Insurance Information Institute survey

(2011–present) and All-Industry Research Advisory Council (1981) have indicated on

average that [90 % of US homeowners have multi-peril property insurance for their

residence and contents (Table 2). This coverage includes cost reimbursement from damage

due to wind, hail, lightning, snow and ice, among others, but does not include coverage for

inland or coastal flood damage (discussed in Sect. 2.4).

Research also shows that residences are often underinsured. In 2013, 60 % of homes

were underinsured by an average of 17 %; in 2012, 61 % of homes were underinsured by

an average of 18 % (Marshall & Swift/Boeckh 2013). Scaling these statistics to represent

the full housing stock implies that homeowners are underinsured by an average of*10 %.

Therefore, in addition to the 10 % who are also uninsured, we assume that 80–90 % of

home losses are covered by insurance policies. The remaining 10–20 % represent unin-

sured and underinsured property assets.

It is also important to note that wind and water insurance deductibles average about

10 % of all paid insurance claims (ISO Property Claims Service 2014; NFIP 2014) while

insurance fraud payments represent about 10 % of total property insurance payments

(National Insurance Crime Bureau 2014; Insurance Information Institute 2014). Therefore,

we assume that these two effects are offsetting (i.e., ?10 % for deductibles, -10 % for

fraud, with respect to total insurance payments) and viewed as tangential to our core

analysis since fraud and deductible loss data are not consistently available.

2.2 Automotive insurance

Annual US uninsured motorist surveys (1989–2012) by the Insurance Research Council

(IRC 2014) have also found a relatively stable percentage ranging from 80 to 90 % of

automobiles insured (Table 3). Across the USA, the estimated percentage of insured

motorists has increased in recent years (IRC 2014). In 2001, the average of insured

Table 2 American Housing
Survey percentage of US house-
holds carrying residential prop-
erty insurance

Year National insured
housing stock (%)

1985 93.9

1987 93.8

1989 94.3

1991 93.8

1993 94.2

1995 94.0

1997 93.0

1999 93.6

2001 93.9

2003 93.2

2005 93.7

2007 94.4

2009 94.6

2011 94.1
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motorists across all states was 85.8 %, which increased to 87.8 % in 2011 (IRC 2014).

Given the variability of automobile insurance over time and space, we assume that

80–90 % of automobiles are insured. The remaining 10–20 % represent uninsured and

underinsured property assets.

2.3 Commercial insurance

Understanding damage to US businesses is more complex. For example, a survey by the

National Association of Insurance Commissioners (NAIC 2007) found that over 90 % of

the small businesses surveyed have property insurance. The percentage of companies with

property insurance increases with the size of a company, which may reflect better risk

management. However, many businesses lack business interruption insurance which is a

large cost driver in the weeks and months following natural disaster events. For example,

32 % of firms with annual revenue\$1 million had such coverage versus 48 % of higher-

revenue firms (Table 4). This is further validated by reports, indicating that 20–40 % of

small businesses that close after a major natural disaster never reopen their business (IBHS

2007; Travelers 2014; III 2014). This can be due to a variety of reasons such as interruption

of critical supplies and product distribution, power outages or other utility failures, loss of

customer base and critical data, restricted or blocked access, and employees unable to

report to work. Also, like homeowners, it was found that 75 % of commercial buildings

(i.e., physical property) are underinsured by an average of 40 % (Marshall & Swift/Boeckh

2011; Travelers 2014). Marshall & Swift/Boeckh (MSB) has data for 2600 locations across

the country and compares the information it has collected with actual reconstruction costs

derived from its insurer clients’ claims experience and adjusts as appropriate. Accounting

for this variability and uncertainty surrounding different forms of commercial insurance,

we estimate that 40–60 % of natural disaster-induced business losses are covered by

insurance.

In summary, we apply the 80–90 % range to both residential and automotive PCS loss

data and a 40–60 % to commercial losses. We now take this research a step further to

investigate the range of possible error by using a Monte Carlo analysis perturbing each of

the data input values by±3 and ±5 % (i.e., reflecting the insurance survey data uncertainty

on which assumptions are based). These values were chosen based on regulatory audits that

Table 3 Percent of uninsured
motorists by year averaged across
the USA

Year National insured motorists (%)

1989 83.7

1991 84.9

1993 84.0

1995 85.8

1997 86.8

1999 87.2

2001 85.8

2003 85.1

2005 85.4

2007 86.2

2009 86.2

2011 87.8
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routinely confirm the reliability and accuracy of ISO/PCS estimates, finding that final

adjusted PCS estimates are within 5 % accuracy (Kerney, 2010). Exploring different error

levels allows us to better understand how the assumed insurance coverages affect the 95,

90 and 75 % confidence intervals surrounding our total loss estimate.

2.4 NFIP flood insurance

We also have data on flood insurance participation, which factors into our disaster loss

analysis. Residential and commercial flood insurance is most widely provided by FEMA’s

National Flood Insurance Program. Mortgage lenders require any residence within

FEMA’s Special Flood Hazard Areas (SFHAs) to purchase flood insurance. The SFHAs

are commonly referenced as those within the 100-year flood plain boundaries. However,

the enforcement and participation are not uniform, and many at-risk properties do not have

proper insurance coverage for flood or storm surge-related damage (Table 5). Annual polls

on NFIP participation percentage by region show some consistency on a large scale across

the Northeast, Midwest and Western regions. Other studies have found the NFIP policy

participation across the USA is higher (26 %) for eligible parcels (PricewaterhouseCoopers

1999). However, these are still inadequately low participation rates, leading to higher flood

cost uncertainty.

There is also a spatial bias in flood insurance policy coverage as NFIP participation is

16 % in communities with 500 or fewer homes in the SFHA, 56 % in communities with

501 to 5000 homes in the SFHA, and 66 % in communities with[5000 homes in the

SFHA zone (Dixon et al. 2006). Also, the same research found that the chances of pur-

chasing flood insurance are higher for SFHA communities subject to coastal flooding/storm

surge (63 %) compared to communities more at risk to riverine flooding (35 %). One

additional factor is that flood insurance coverage outside the high-risk flood areas (SFHAs)

is very low (\10 %). Yet, NFIP data show that 25 % of all flood insurance claims come

from the low-to-moderate-risk areas beyond the 100-year floodplain, which are largely

uninsured losses (FEMA 2014). There are also NFIP coverage limits for residential ($250k

structure, $100k contents) and commercial ($500k structure, $500k contents) properties

(FEMA 2014). For these varied reasons, we have defined NFIP policy participation for the

Monte Carlo uncertainty analysis as 10–25 % for inland states and 25–50 % for coastal

states.

Table 4 Study by NAIC (2007) found that commercial property, auto and business interruption insurance
coverage varies by business size

Commercial insurance type Total (%) of companies interviewed # of
employees

Annual revenue

1–19 20–99 \$1M $1M or more

Propertya/liability 91 90 97 91 96

Commercial auto 48 47 73 44 67

Business interruption 35 33 58 32 48

a Research by Marshall and Swift/Boeckh (2011) found 75 % of commercial buildings (i.e., build-
ing/contents) are underinsured by an average of 40 % after examining data on businesses across 2600 US
locations
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2.5 USDA crop insurance

The USDA and associated private crop insurance programs represent over 2 million crop insur-

ance policies across all states (USDA 2014). USDA data show that on average across all states,

70 % of eligible acres are insured and most producers select 70 % of crop yield to be covered

(USDA 2012). Therefore, we approximate the total crop loss by applying a factor to the crop

insurance claims data, that is, 100 % all possible crops/[(x % insured) 9 (50–75 % yield cov-

erage)] = multiplier value(s) for estimating total crop damage costs. The yield coverage is im-

portant as crop insurance is paid only after the crop loss has surpassed the selected yield coverage.

For example, if a producer selected 70 % coverage, the crop producer must first cover the first

30 % of crop loss. This is effectively like a deductible, but paid to no one—just an absorbed cost.

In addition to crop losses, we also incorporate the total livestock feeding cost (i.e., corn

and hay for cattle) when it exceeds the 5-year national average for feedstock (i.e., dollars/

per ton). Drought can limit the availability of corn and hay feed stocks, which increases the

cost, forcing ranchers to sell off more cattle than they would during a non-drought year

(e.g., increasing long-term meat production costs). Comparing the 5-year national versus

state feedstock costs against those during a severe drought year offers a useful comparison.

2.6 Framing uncertainty

In summary, we have set up our disaster cost uncertainty analysis using the following insurance

participation ranges for the each line of insurance (Table 6). The next section discusses the

output from Monte Carlo simulations to determine the 95, 90 and 75 % confidence intervals

surrounding our total loss estimate for the following selected US disaster events:

• the historic US drought (2012),

• the southeast tornado super-outbreak (late April 2011)

• and Hurricane Ike (2008).

3 Method for estimating uncertainty surrounding natural disaster loss
estimates

A Monte Carlo approach is employed to assess the uncertainty of disaster loss estimates.

For each of the three events detailed below, the parameters of the equations as outlined in

Smith and Katz (2013) were perturbed to produce a distribution of loss estimates. There are

Table 5 Insurance Information Institute annual survey on NFIP flood insurance participation percentage by
region for all households

All USA Northeast Midwest South West

2008 17 20 17 17 15

2009 13 9 14 19 6

2010 10 9 6 14 9

2011 14 5 13 19 12

2012 13 14 6 21 6

2013 13 10 12 15 11

2014 13 11 7 20 8

2008–2014 average 13 11 11 18 10
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two general categories of input parameters: (1) insurance participation rates and (2) loss

values. The defined possible ranges for insurance participation rates were justified in

Sect. 2. We assumed either a ±3 or 5 % error for the loss values. For final ISO/PCS

insurance loss results, a 3 % bound of uncertainty should be adequate. Regulatory audits

routinely confirm the reliability and accuracy of PCS estimates. Historically, after such

regulatory data audits, the final adjusted estimate has differed by at most 5 % (Booz Allen

Hamilton personal communication 2013). We also assumed that the parameters were either

uniformly or normally distributed within the ranges. Therefore, there are four cases ex-

amined for each of the following events:

±3 % error on loss values with uniformly distributed parameters,

±5 % error on loss values with uniformly distributed parameters,

±3 % error on loss value with normally distributed parameters and

±5 % error on loss value with normally distributed parameters.

For each case, 10,000 simulations were run by random draws within the defined ranges

with the defined distributions. Confidence intervals were calculated by sorting the 10,000

loss estimates in ascending order and then using a percentile method to define the confi-

dence region. For example, to construct the 95 % confidence region, the 250th and 9750th

predictions were selected as the lower and upper bounds, respectively.

3.1 US drought

Our first example is the 2012 drought, which resulted in the most extensive drought

impacts to affect the USA in decades (NCDC 2014). Moderate-to-extreme drought con-

ditions affected more than half the country for the majority of 2012. The most costly

drought impacts occurred across the central agriculture states, resulting in widespread

harvest failure for corn, sorghum and soybean crops, among others. Using the USDA crop

insurance and feed cost data with the disaster cost methodology described in (Smith and

Katz 2013), the 2012 US drought cost to agriculture was estimated to be $30.0 billion

(NCDC 2014).

To verify the uncertainty surrounding this estimate, this research examines four dif-

ferent cases of Monte Carlo simulation for this event. This was performed using a USDA

‘percent of eligible acres insured,’ as a separate crop value metric from the USDA

Table 6 Insurance participation
rate ranges used in the Monte
Carlo simulation

Minimum (%) Maximum (%)

Wind insurance
(PCS—residential)

80 90

Wind insurance
(PCS—automotive)

80 90

Wind insurance
(PCS—commercial)

40 60

Flood insurance (FEMA)
For coastal states

25 50

Flood insurance (FEMA)
For inland states

10 25

Crop insurance (USDA)
Multi-peril (drought, flood, etc.)

50 75
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‘percentage of insurable crop value’ used to calculate the cost of the 2012 US drought, as

described in Sect. 2. In all cases, the following loss values used are summarized in Table 7

and the range of crop insurance participation rates (pcrop_yield_cov) are referenced in

Table 6.

The final loss estimate was calculated by:

Total ¼
X

i¼all states

mivi½ � þ vincFeedCost

where

mi ¼
100

pacres insured � pcropyieldcov

The results of the Monte Carlo analysis are provided (Table 8). We see that the esti-

mated $30 billion total, direct cost of the 2012 US drought (NCDC 2014) is reasonably

close to the mean and median of the Monte Carlo simulation. Figures 1a, b and 2a, b

present the histograms of the 10,000 estimates for each case, along with confidence interval

bounds.

A histogram of multiplier (mi) values from a selection of states (i.e., Illinois, New York

and North Dakota) affected by the 2012 US drought is shown in Fig. 3. Here we see the

range of possible multiplier values applied to the state insurance payout amount. Given the

inverse relationship of the multiplier to the percent of acres insured, we see that states with

smaller percentages of acres insured (i.e., New York) will have larger associated multiplier

values.

3.2 April 25–28, 2011, tornado outbreak

Our second example examines a historic tornado outbreak across numerous central and

southern states in late April 2011. Several major metropolitan areas were directly impacted

by strong tornadoes including Tuscaloosa, Birmingham and Huntsville in Alabama and

Chattanooga, Tennessee, causing the estimated damage costs to soar. The total, direct cost

for this event was estimated to be approximately $9.8 billion (NCDC 2014). To verify the

uncertainty surrounding this estimate, this research examines four different cases of Monte

Carlo simulation for this event. In all cases, the following loss values used are summarized

in Table 9, indicating the data values for each state and insurance claim type used in the

total, direct loss calculation.

The final loss estimate was calculated by:

Total loss ¼
X

i¼all states

mi;PCScomm
vj;PCScomm

þ mi;PCSresvj;PCSres þ mi;PCSautovj;PCSauto
�

þ vi;FEMAPDD
� vi;FEMAPDD

[mi;PCS totalvi;PCStotal
� ��

where mi;PCScomm
is the multiplier for commercial PCS, mi;PCSres is the multiplier for

residential PCS, mi;PCSauto is the multiplier for automotive PCS, and these multipliers are

defined as:

Multiplier ¼ 100

Insurance participation rate

For the comparison part of the equation, we define:
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vi;PCS total ¼ vi;PCS comm þ vi;PCS res þ vi;PCS auto ðNOTE : no multipliers involvedÞ

mi;PCStotal ¼
mi;PCScomm

vj;PCScomm
þ mi;PCSresvj;PCSres þ mi;PCSautovj;PCSauto

vi;PCS total

� 1

The results of the Monte Carlo analysis are provided (Table 10). Table 6 contains the

insurance participation rates. We see that the estimated $9.8 billion total, direct cost of the

April 25–28 tornado outbreak (NCDC 2014) is reasonably close to the mean and median of

Table 7 USDA crop indemnity (loss) payout information for each state due to the combined effects of
drought and heat in 2012

State Insurance payout ($ million) Percent eligible acres insured

Alabama 19.272608 61

Arkansas 17.157674 67

California 11.133870 34

Colorado 121.977411 70

Delaware 12.641902 81

Iowa 1856.441799 91

Idaho 4.180436 53

Illinois 2861.989110 79

Indiana 1027.963734 72

Kansas 1011.764735 89

Kentucky 359.356293 59

Maryland 121.572572 72

Michigan 131.354503 61

Minnesota 163.322190 90

Missouri 1024.195287 65

Mississippi 17.484280 83

Montana 51.007988 80

North Dakota 111.085759 96

Nebraska 1204.855900 85

New Mexico 23.019718 53

New York 9.711831 27

Ohio 315.336961 68

Oklahoma 94.791212 70

Pennsylvania 11.653171 30

South Dakota 963.773831 94

Tennessee 105.039149 58

Texas 780.123224 76

Virginia 31.021328 48

Wisconsin 363.021359 57

Wyoming 6.106170 29

Other

Increased feed cost 3614.419032

The percent of acres in each state that has USDA crop insurance are also provided. For the Monte Carlo
simulation, values in the above table were considered to be within the associated ranges of ±3 or ±5 %.
State of particular interest has been highlighted in boldface: Illinois (largest state payout), North Dakota
(highest percent of eligible acres insured) and New York (lowest percent of eligible acres insured)
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the Monte Carlo simulation. Figures 4a, b and 5a, b present the histograms of the 10,000

estimates for each case, along with confidence interval bounds.

3.3 September 2008: Hurricane Ike

In September 2008, Hurricane Ike caused extensive storm surge and wind damage in Texas.

There was also caused considerable wind and flood damage across many other coastal and

inland states (i.e., Louisiana, Arkansas, Tennessee, Illinois, Indiana, Kentucky, Missouri, Ohio

and Pennsylvania). Severe gasoline shortages occurred in the southeast USAdue to damaged oil

platforms, storage tanks, pipelines and off-line refineries. After examining the loss data sources

using our tropical cyclone cost methodology, it was determined that the total, direct cost of Ike

was approximately $30.0 billion (NCDC 2014). To verify the uncertainty surrounding this

estimate, this research examines four different cases ofMonteCarlo simulation for this event. In

all cases, the following loss values used are summarized in Table 11. Table 6 contains the

insurance participation rates. Note that we consider coastal and inland states separately when

including a multiplier to the FEMA NFIP loss values. Coastal states for this example are

Alabama, Louisiana and Texas. The inland states are Illinois, Indiana and Missouri.

The final loss estimate was calculated by:

Total loss ¼
X

i¼all states

mi;PCScomm
vj;PCScomm

þ mi;PCSresvj;PCSres þ mi;PCSautovj;PCSauto
�

þmi;FEMANFIP
vi;FEMANFIP

þ vi;FEMAPDD
� vi;FEMAPDD

[ vi;PCStotal
� ��

þvstate þ vUSDA

where vi;PCS total ¼ vi;PCS comm þ vi;PCS res þ vi;PCS auto (NOTE: no multipliers involved),

mi;PCScomm
is the multiplier for commercial PCS, mi;PCSres is the multiplier for residential

PCS, mi;PCSauto is the multiplier for automotive PCS, mi;FEMANFIP
is the multiplier for FEMA

NFIP and

Multiplier ¼ 100

Insurance participation rate

The results of the Monte Carlo analysis are provided (Table 12). We see that the

estimated $30 billion total, direct cost of Hurricane Ike is remarkably close to the mean and

median of the Monte Carlo simulation. Figures 6a, b and 7a, b present the histograms of

the 10,000 estimates for each case, along with confidence interval bounds.

Table 8 Results (in $ million) of the four cases analyzing the total cost of the 2012 US drought on crops
and livestock (in original year dollars)

3 %
Normal

3 %
Uniform

5 %
Normal

5 %
Uniform

Minimum 27,326 27,114 27,623 27,216

Maximum 34,661 34,230 35,402 34,903

Mean 30,416 30,378 30,507 30,620

Median 30,384 30,349 30,466 30,577

75 % CI 29,398, 31,467 29,174, 31,611 29,455, 31,591 29,383, 31,883

90 % CI 28,986, 31,968 28,712, 32,130 29,028, 32,102 28,922, 32,464

95 % CI 28,728, 32,303 28,461, 32,467 28,760, 32,459 28,648, 32,799
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Fig. 1 a Case 1 results: 3 % perturbation on values, parameters normally distributed. b Case 2 results: 3 %
perturbation on values, parameters uniformly distributed
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Fig. 2 a Case 3 results: 5 % perturbation on values, parameters normally distributed. b Case 4 results: 5 %
perturbation on values, parameters uniformly distributed
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4 Effects of sensitivity analysis on overall cost estimate

For each of the total, direct loss estimates for natural disaster events, there are a number of

input parameters, each with an associated degree of uncertainty. We wanted to explore how

the estimates respond to perturbations in the input parameters, so we performed a sensi-

tivity analysis for a single case study. The following analysis is one-dimensional, that is,

perturbing only one parameter at a time. We began with a base set of parameters h, taken to
be the mean of the ranges defined in the examples of Sect. 3. The associated loss estimate

f(h) was calculated based on this set of parameters. Then, we applied a 1 % perturbation to

each parameter forming a new set of parameters hi, for i = 1, … n, where n is the number

of input parameters. Then, the associated loss estimates f(hi) were calculated. Finally, in

order to compare sensitivities fairly, they were normalized by the magnitude of the values.

The normalized sensitivity of f to the ith parameter, si, can be written

si ¼
df ðhÞ
dh

¼ f hið Þ � f ðhÞ
hi � h

� �
� h

f ðhÞ

� �

Fig. 3 Histograms of multiplier values (mi) for several states affected by the 2012 US drought disaster. All
of these are from Case 3 (±5 % error, normally distributed parameters). Illinois had the largest insurance
payout (top left). New York had the smallest percent of eligible acres insured (top right). North Dakota had
the largest percent of eligible acres insured (bottom)
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Taking the Hurricane Ike disaster as an example, we explored the sensitivity of the total

loss estimate to each of the input parameters. In all, there are 76 inputs for this calculation.

The results are presented in Fig. 8. We see that the most sensitive parameters for the

Hurricane Ike estimate are the PCS commercial insured loss value and associated multi-

plier for Texas. We may interpret this to mean that a change in the PCS commercial value

or multiplier for Texas would impact the total loss estimate of Hurricane Ike more than

changing any other parameter. Therefore, if the goal is to reduce the uncertainty of the total

loss estimate for this Hurricane Ike example, the best way forward is to reduce the

uncertainty in the PCS commercial value and the PCS commercial insurance participation

rate for Texas, and then continue with subsequent parameters in order of descending

sensitivity.

Table 9 Loss values from the April 25–28, 2011, Tornado Outbreak

State PCS
Commercial
($ million)

PCS
Residential ($ million)

PCS
Automotive ($ million)

FEMA
PDD ($ million)

Alabama 1000.0 1500.0 150.0 396.6

Arkansas 45.0 175.0 53.0 –

Georgia 135.0 240.0 20.0 34.9

Illinois 7.0 45.0 12.0 –

Kentucky 31.0 73.5 7.5 48.9

Louisiana 16.0 43.0 11.0 –

Missouri 125.0 125.0 30.0 –

Mississippi 73.0 85.0 11.0 44.5

Ohio 30.0 66.0 2.0 –

Oklahoma 10.0 39.0 16.0 –

Tennessee 410.0 980.0 395.0 76.8

Texas 135.0 320.0 110.0 –

Virginia 19.0 38.0 17.0 –

For the Monte Carlo simulation, values in the above table were considered to be within the associated ranges
of ±3 or ±5 %

Table 10 Results (in $ million) of the four cases analyzing the April 2011 tornado outbreak total cost

3 %
Normal

3 %
Uniform

5 %
Normal

5 %
Uniform

Minimum 8756.4 8759.0 8742.5 8713.5

Maximum 10,833 10,429 10,685 10,426

Mean 9519.2 9532.1 9523.7 9529.6

Median 9502.4 9513.2 9505.1 9511.9

75 % CI 9246.1, 9801.1 9200.3, 9884.7 9245.1, 9817.8 9192.1, 9891.6

90 % CI 9148.9, 9945.3 9097.7, 10,016 9130.3, 9964.6 9079.4, 10,026

95 % CI 9090.5, 10,043 9039.5, 10,085 9066.5, 10,071 9023.2, 10,107
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Fig. 4 a Case 1 results: 3 % perturbation on values, parameters normally distributed. b Case 2 results: 3 %
perturbation on values, parameters uniformly distributed
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Fig. 5 a Case 3 results: 5 % perturbation on values, parameters normally distributed. b Case 4 results: 5 %
perturbation on values, parameters uniformly distributed
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5 Discussion and conclusion

The Monte Carlo simulations for all three of the natural disaster case studies provide

additional confidence in our total, direct loss estimates (NCDC 2014) for these events since

the estimates are within the confidence limits and close to the mean and median of the

Monte Carlo simulations for each disaster example. The reason that some differences are

present is because the total, direct loss estimates for each event, as reported in NCDC

(2014), use a slightly different approach to loss calculation. Whereas in NCDC (2014) the

PCS loss component values are grouped together, in this analysis, we treat the residential,

commercial and automotive category losses separately. Here we are leveraging the in-

formation gathered through the survey review, as described in Sect. 2, to incorporate more

Table 11 Loss values from the Hurricane Ike disaster

PCS
Comm.
($ million)

PCS
Residential
($ million)

PCS
Auto.
($ million)

FEMA
PDD
($ million)

FEMA
NFIP
($ million)

Alabama – – – 13.1 1.7

Arkansas 12.5 35.0 8.5 2.5 –

Illinois 50.0 150.0 40.0 108.0 54.3

Indiana 80.0 230.0 20.0 93.0 32.3

Kentucky 110.0 405.0 18.0 18.9 –

Louisiana 50.0 50.0 35.0 263.0 321.0

Missouri 16.0 50.0 10.0 – 42.5

Ohio 255.0 960.0 40.0 39.6 –

Penn. 8.0 63.0 4.0 – –

Texas 4000.0 5500.0 300.0 2464.0 2185.9

Other

Oil platform damage 3000.0

Agriculture and forestry 825.0

For the Monte Carlo simulation, values in the above table were considered to be within the associated ranges
of ±3 or ±5 %

Table 12 Results (in $ million) of the four cases analyzing the total cost of Hurricane Ike

3 %
Normal

3 %
Uniform

5 %
Normal

5 %
Uniform

Minimum 26,539 26,669 26,308 26,518

Maximum 40,922 35,468 39,065 35,571

Mean 30,356 30,451 30,334 30,445

Median 30,233 30,382 30,191 30,355

75 % CI 28,808, 31,974 28,592, 32,368 28,772, 31,995 28,518, 32,435

90 % CI 28,311, 32,903 28,003, 33,205 28,232, 32,883 27,963, 33,327

95 % CI 27,998, 33,661 27,720, 33,668 27,886, 33,508 27,634, 33,802
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granular insurance multiplier values than those used previously as well. In this analysis, we

defined ranges for insurance participation and subsequently used these to calculate the

associated multipliers.

Fig. 6 a Case 1 results: 3 % perturbation on values, parameters normally distributed. b Case 2 results: 3 %
perturbation on values, parameters uniformly distributed
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The confidence intervals are of value because they provide greater clarity to the quality

of the assessment. For each of the three case studies, we examined the impact of two main

assumptions, the error present in the loss values and the distribution of the possible values.

For the April 25–28, 2011, tornado outbreak and Hurricane Ike, the impact of assuming 3

Fig. 7 a Case 3 results: 5 % perturbation on values, parameters normally distributed. b Case 4 results: 5 %
perturbation on values, parameters uniformly distributed
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or 5 % error on loss values was negligible according to hypothesis testing to determine

whether the samples were from the same distribution (using Kolmogorov–Smirnov, Wil-

coxon rank-sum and Wilcoxon signed-rank tests). However, these same hypothesis tests

indicate that the choice of a normal or a uniform distribution of loss values was more

important. This is especially noticeable when comparing histograms, where the simulations

with the normal assumption tend to have longer upper tails than the simulations with the

uniform assumption. Therefore, in the interest of being more conservative in the choice of

confidence bounds, we recommend the confidence intervals as derived from assuming 5 %

error on uniformly distributed loss values.

The 2012 US drought example had different results from the hypothesis testing. Here,

the impact of both assumptions was important. The cases assuming uniformly distributed

values resulted in wider and hence more conservative, confidence regions. Increasing the

assumed error on loss values from 3 to 5 % also caused the confidence regions to enlarge

and additionally caused a positive shift. Although the confidence regions from the four

cases are not perfectly nested, all things considered assuming 5 % error on uniformly

distributed loss values provides the most conservative confidence region estimate.

We also performed a sensitivity analysis examining how the separate loss variables

contribute to the overall loss total for a specific case study. It is not surprising that when

examining the Hurricane Ike disaster we found that the Texas insurance cost variables had

the most sensitivity, as Texas experienced the largest loss values for all data categories:

residential, automotive, commercial and NFIP flood-related losses. The offshore energy

losses were also quite sensitive to the overall cost estimate. The total loss estimate for

Hurricane Ike used 76 input parameters, each of which has some uncertainty which con-

tributes to the uncertainty in the total loss estimate. The intent of the sensitivity analysis

described in Sect. 4 was to isolate the most important parameters to focus on reducing the

uncertainty, which will in turn have the greatest impact in reducing the uncertainty in the

total loss estimate.

Fig. 8 Normalized sensitivity analysis of damage totals caused by Hurricane Ike by state and loss data
category
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Although we explore Monte Carlo simulations for just several disaster examples, we

seek to apply this methodology to all of the US billion-dollar weather and climate event

loss estimates (NCDC 2014) to provide better context regarding disaster cost uncertainty.

This research is a next step to enhance the value and usability of estimated disaster costs

given data limitations and inherent complexities.
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