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Abstract This study presents a framework for mapping rainfall-induced landslide sus-

ceptibility in the Wencheng area of Zhejiang Province, China, using support vector

machine (SVM). Seven conditioning factors of elevation, slope, aspect, distance to roads,

lithology, land use, and normalized difference vegetation index selected by correlation

analyses, and two triggering factors of daily and cumulative rainfall data were employed as

input data in the SVM modeling. The training dataset was constructed using 354 landslide

inventories identified from field surveys between 1981 and 2010, and 354 points not prone

to slides selected as positive and negative samples, respectively, based on a statistical

method of factors. A fivefold cross-validation and receiver operation characteristic were

applied to evaluate the performances of the SVM model. The summarized area under the

curve result was 0.96, indicating that SVM demonstrated good and stable performance in

mapping landslide susceptibility. Two practical cases were investigated: the Trami typhoon

of August 22, 2013, and the Kong-Re typhoon of August 26, 2013, which brought heavy

rainfall of 300 and 111 mm, respectively, to the Wencheng area. The resulting maps

showed that SVM could provide a map with high probability values over small areas,

demonstrating good properties of generalization. In addition, mapping of landslide sus-

ceptibility could be converted easily into landslide warning by replacing the triggering

factor with weather forecasting data. Landslide susceptibility maps based on the results of
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this study could be used to assist governments and planners, and help reduce the economic

and social costs of rainfall-induced landslides.

Keywords Landslide susceptibility � Rainfall � Support vector machine � Receiver

operation characteristic � GIS � China

1 Introduction

Landslides are major geological hazards that occur throughout the world, causing thou-

sands of fatalities and damage to property worth billions of US dollars each year. Fur-

thermore, the rate of occurrence of landslides and the scale of associated fatalities and

socioeconomic losses have increased over recent years. Therefore, a map of landslide

susceptibility is crucial for helping planners both select favorable locations for develop-

ment schemes and take suitable mitigating action before landslides devastate a region.

Many researchers have developed techniques for constructing maps of landslide sus-

ceptibility (Aleotti and Chowdhury 1999; Brenning 2005; Carrara et al. 1991, 1995;

Chacón et al. 2006; Corominas and Moya 2008; Guzzetti et al. 1999; Hong et al. 2007; Oh

et al. 2009; van Westen et al. 2006, 2008; Varnes 1984; Ward 1945). There have been

hundreds of studies on landslide susceptibility mapping, and most have advocated para-

metric statistical techniques such as bivariate or multivariate statistical analyses (Althu-

waynee et al. 2012; Baeza and Corominas 2001; Carrara et al. 2003; Devkota et al. 2013;

Nandi and Shakoor 2010; Schicker and Moon 2012; van Westen et al. 1997; Yilmaz et al.

2012), logistic regression (Ayalew and Yamagishi 2005; Bai et al. 2010; Chau et al. 2004;

Dai and Lee 2002; Das et al. 2010; Lee 2005; Lee and Min 2001; Ohlmacher and Davis

2003; Pourghasemi et al. 2013; van den Eeckhaut et al. 2006), frequency ratio (Akgun et al.

2008; Lee and Pradhan 2006; Pradhan et al. 2011; Vijith and Madhu 2007), weights of

evidence (Dahal et al. 2008; Kayastha et al. 2012; Neuhäuser and Terhorst 2007), or

various combinations of the above (Althuwaynee et al. 2014b; Umar et al. 2014). These

models have limitations such as strict data distributions, independence of predictors, and

nonlinearity, which frequently are not met in practice (Ballabio and Sterlacchini 2012).

Therefore, other new methods have been applied for landslide susceptibility mapping using

data mining and machine learning approaches, such as fuzzy logic (Akgun et al. 2012;

Ercanoglu and Gokceoglu 2002; Kanungo et al. 2006; Pourghasemi et al. 2012; Pradhan

2011; Tangestani 2009), neuro-fuzzy (Pradhan 2013; Pradhan and Lee 2010a; Pradhan

et al. 2010a), decision tree methods (Nefeslioglu et al. 2010; Saito et al. 2009; Tien Bui

et al. 2012a; Yeon et al. 2010), evidential belief function model (Althuwaynee et al. 2012,

2014a; Tien Bui et al. 2012b), artificial neural network models (Choi et al. 2012; Ermini

et al. 2005; Gómez and Kavzoglu 2005; Lee et al. 2006; Nourani et al. 2013; Pourghasemi

et al. 2012; Pradhan and Lee 2010a, b; Pradhan et al. 2010b), and support vector machine

(SVM) (Ballabio and Sterlacchini 2012; Guo et al. 2005; Marjanović et al. 2011; Tehrany

et al. 2014; Tien Bui et al. 2012a; Yao et al. 2008; Yuan et al. 2006). Comparative studies

(Falaschi et al. 2009; Lee and Pradhan 2007; Mohammady et al. 2012; Ozdemir and

Altural 2013; Pradhan 2013; Pradhan and Lee 2010a, b; Tangestani 2009; Tien Bui et al.

2012a, b; Yesilnacar and Topal 2005; Yilmaz 2009) have shown that these approaches

could give rise to qualitative and quantitative improvement in landslide susceptibility

mapping relative to traditional statistical techniques. By considering the features of SVM
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such as the structure risk minimizing principle, guaranteeing that the best classification

hyperplane can be found in mathematical theory, the application of the kernel trick means

that SVM can deal with the nonlinearity problem when applied to small samples. There-

fore, SVM is a better option for producing objective and stable landslide susceptibility

maps, when addressing the high-dimensional nonlinearity problem associated with few

training samples.

One of the basic assumptions of the techniques for landslide susceptibility mapping

described above is the identification of areas prone to a particular combination of physical

properties that could lead to similar events in the future. These physical properties can be

divided into two categories: conditioning factors such as slope, lithology, and land use;

triggering factors such as rainfall, rapid snowmelt, volcanic eruptions, earthquakes, and

anthropogenic activity (Zêzere et al. 1999). Because most landslides are triggered by

rainfall, it is necessary to improve the prediction of rainfall-induced landslides (Chang

et al. 2008).

Chang and Chiang (2009) provided an informative review and categorized the tech-

niques for rainfall-induced landslides prediction into three classes: (1) correlation analyses,

(2) critical rainfall models, and (3) statistical techniques. The first two use historical data or

steady-state hydrological concepts and infinite slope stability models to attempt to establish

rainfall thresholds likely to trigger landslides. However, they fail frequently because of the

lack of data for nonlandslide areas or other important parameters. Statistical techniques

could assess landslide susceptibility using many conditioning factors that could be

acquired, but few include rainfall as an explanatory variable because of the lack of reliable

and accurate rainfall fields.

In this work, a study on the application of the SVM method to the mapping of landslide

susceptibility is performed. Rainfall is considered as an explanatory variable in the form of

precipitation on the day and for the 4 days prior to the event. Wencheng in southeastern

China was selected as the study area because landslides here are typically rainfall induced.

To assess the performance of the method, a fivefold cross-validation and receiver operation

characteristic (ROC) were applied to two practical cases: the Trami typhoon of August 22,

2013, and the Kong-Re typhoon of August 26, 2013, which brought daily precipitation of

Fig. 1 Study area
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300 and 111 mm, and cumulative precipitation of 332 and 150 mm, respectively, to

Wencheng.

2 Study area

The Wencheng County study area is located in the southern part of Zhejiang Province in

China. It covers approximately 1,296 km2, lies between 27�340–27�590N and 119�460–
120�150E (Fig. 1), and ranges in altitude from 10 to 1,350 m. The principal terrain of hills

and mountains, of which 178 are over 1,000 m high, occupies about 95.4 % of the entire

area, which can be divided into northern and southern parts by the Feiyun Drainage. The

northern part belongs to the Luoshan Mountains, and the southern part is a branch of the

southern Yandang Mountains. Only about 4.5 % of the study area has flat terrain, which

lies along the Feiyun drainage networks (Zhu 1996). NW and NE faults and intrusions are

well developed, and Mesozoic volcanic rocks of the Jurassic and Cretaceous periods are

distributed widely within the study area. Exposed strata are mainly Quaternary, lower

Cretaceous, and upper Jurassic. In the mountain areas, the stratum is mainly volcaniclastic

rock, which is easily weathered to become the source of landslides. In the flat areas, the

stratum, comprising mainly silty fine sand and clayey soil, has relatively good geological

engineering condition (Geological Exploration bureau of Zhejiang Province 1989).

Wencheng features a subtropical monsoon climate, and the weather is relatively moderate

with an annual average temperature of 28–35 �C. Most of Wencheng’s rain is brought by

the monsoon, falling in just a few weeks between April and September (Zhu 1999). The

topography and climate make rainfall-induced landslides a common occurrence, which is

why Wencheng was selected as a representative study area.

Fig. 2 Field photographs illustrating the characteristics and types of landslides in various parts of the study
area
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3 Data

3.1 Landslide inventory

A landslide inventory map displays the location, time, characteristics, and other detailed

information regarding the occurrence of a landslide, which is the most essential infor-

mation for landslide susceptibility mapping, because any method requires such basic a

priori knowledge. A survey by the Zhejiang Land Resources Bureau of China found 354

distinct landslide events had occurred within the study area from 1981 to 2010 (red dots in

Fig. 1). According to landslide inventory records, all of these landslides were triggered by

rainfall and their depths were shallow, which are the characteristics of interest in this study,

as shown in Fig. 2. The training and test datasets were constructed by overlaying these 354

Fig. 3 Conditioning factors: a elevation, b slope, c aspect, d lithology, e NDVI, f land use, g distance to
roads, and h distribution of meteorological stations
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landslides with the selected conditioning and triggering factors, detailed in Sects. 3.2 and

3.3.

3.2 Landslide conditioning factors

Previous studies have examined the correlations between landslide occurrence and envi-

ronmental parameters, such as slope, aspect, lithology, land use, vegetation, and ground-

water (e.g., Dai and Lee 2002; Gómez and Kavzoglu 2005; Jebur et al. 2014). A landslide

is caused by many factors and their extremely complex combination, but to some extent,

the correlation coefficient could guide the selection of the most important factors. Based on

the availability of data and the results of the correlation analyses between the data and

landslide inventories using Eq. 1, as shown in Table 1, seven of the ten conditioning

factors (lithology, elevation, distance to roads, normalized difference vegetation index

(NDVI), land use, slope, and aspect) used in this study with relatively high correlation

Fig. 3 continued
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coefficients, fall into four categories (topographic, lithology, vegetation, and anthropo-

genic), as shown in Fig. 3.

gFL ¼
covðF;LÞ

rFrL

ð1Þ

where gFL is the correlation coefficient of factor F and landslides L, cov(F, L) is the

covariance of F and L, and rF and rL are the standard deviations of F and L, respectively.

3.2.1 Topographic factors including elevation, slope, and aspect

All topographic factors were derived from the 1:10,000 contour map produced by the

National Administration of Surveying, Mapping, and Geoinformation, China. Elevation

not only influences a large number of biophysical parameters and anthropogenic activities,

but it also has a significant effect on soil characteristics (e.g., texture and depth). Elevations

within the study area range from 10 to 1,350 m, and 81 % of landslides occurred between

elevations of 100 and 700 m, as shown in Fig. 3a.

Slope affects the velocity of both surface and subsurface flows, and consequently, it

has influence on soil water content, soil formation, erosion potential, and a large number

of important geomorphic processes. It has been noted that locations at which the slope is

nearer to 0� are considered safer in terms of landslide initiation (Lee and Min 2001;

Yilmaz 2009). The occurrence of landslides tends to increase with an increase of slope,

but when the slope becomes near vertical, landslides are rare or absent because of the

lack of soil development and deposit accumulation. In this study, nearly 86 % of the

study area has slopes ranging from 6� to 46�. The mean slope is 27� and the maximum is

89�. About 79 % of the landslides occurred on slopes ranging from 10� to 35�, as shown

in Fig. 3b.

Aspect encompasses the structural and basic organic conditions of a slope including

fault planes and climatic factors (Dimri et al. 2007; Yalcin 2008). Larger numbers of

landslides occur on wetter slopes with south-facing aspects than on drier slopes with north-

facing aspects. An aspect value of -1� is frequently assigned to flat areas such as lakes and

river. About 54 % of the landslides within the study area occurred on slopes with SE–SW

aspects, as shown in Fig. 3c.

3.2.2 Lithology

Lithology is one of the most important factors in landslides. Different lithologies have

different physical and chemical properties, which result in differing strengths and per-

meabilities of the underlying rocks. Lithological data were compiled from a 1:10,000

geological map produced by Ministry of Land and Resources of China. These were

aggregated into ten categories, as shown in Fig. 3d: acidic rhyolite (Rr), fine-grained

clastic rocks dominated by siltstone and mudstone (Sf), vitric and crystal tuff (Ht),

ignimbrite (Hi), acidic granite (Qg), tuffaceous clasolite (Hs), coarse clastic rocks

dominated by sandstone and conglomerate (Sc), gravel soil (Lt), mafic basalt (Rb), and

neutral diorite (Qd). In the study, landslides occurred principally in Sc (25 %), Rb

(23 %), and Ht (17 %) lithologies (Geological Exploration Bureau of Zhejiang Province

1989).
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3.2.3 Vegetation

Vegetation cover plays an important role in the occurrence of landslides through the

influence of root cohesion and moisture retention (Lee and Min 2001; Pourghasemi et al.

2014). The NDVI, derived from a TM remote sensing image using Eq. 2, was selected to

represent the vegetation in this study, as shown in Fig. 3e. Landslides in the study area

often occurred in summer during days with heavy rainfall; therefore, a TM image from

June 15, 2009 was selected. In addition, because changes of vegetation are not obvious

within the mass, vegetation is considered a type of constant variable. Only one TM remote

sensing image was used to produce the NDVI, which ranged from -0.4 to 0.7; about 84 %

of landslides occurred in areas with values of NDVI from 0.3 to 0.6.

NDVI ¼ IR� Rð Þ
ðIRþ RÞ ð2Þ

where IR represents band 4 and R represents band 3 of the TM images.

3.2.4 Anthropogenic factors including land use and distance to roads

It is known that land use is one of the parameters most sensitive to environmental change,

especially artificial effects such as road cuts and construction activities (Dahal 2014;

Yalcin 2008), because landslides often occurred besides houses and roads in the study area.

Based on a 1:10,000 land use map produced by the Ministry of Land and Resources of

China, the various land uses were grouped into seven principal classes, as shown in Fig. 3f:

forest, grassland, agriculture on river terraces, agriculture on hill slopes, built-up areas,

bare land, and riverbeds. In the study, landslides occurred principally in areas of forest

(45 %), agriculture on river terraces (19 %), agriculture on hill slopes (17 %), and built-up

areas (17 %).

Road construction in hilly areas can alter slope stability considerably, making them

vulnerable to slope instability and landslides. Therefore, in this study, main roads with

widths greater than 15 m were interpreted from 1-m-resolution aerial photographs pro-

duced by the National Administration of Surveying, Mapping, and Geoinformation, China,

in 2003. The distance to the roads of each pixel with spatial resolution of 30 m was

calculated, which indicated that 87 % of landslides occurred within 100 m of a road, as

shown in Fig. 3f.

3.3 Landslide triggering factors

Rainfall is the most common triggering factor for landslides. In this study, the two

parameters of daily and cumulative precipitation are considered in describing the rainfall

event. To obtain precise rainfall data, daily precipitation data were collected for the

30-year period from January 1, 1981, to December 31, 2010. These data were obtained

from 47 meteorological stations, operated by the Meteorological Bureau of Zhejiang,

China, and distributed around the study area, as shown in Fig. 3h.

To compile the rainfall data as triggering factors for the mapping of landslide sus-

ceptibility, 10,957 [365 (days) multiplied by 30 (years) plus 7 (additional days because of

leap years between 1981 and 2010)] maps of daily precipitation of the study area with

30-m spatial resolution were produced by Kriging interpolation.

Nat Hazards (2015) 76:1759–1779 1767

123



T
a

b
le

2
C

o
rr

el
at

io
n

s
b

et
w

ee
n

cu
m

u
la

ti
v
e

p
re

ci
p

it
at

io
n

an
d

la
n

d
sl

id
e

in
v

en
to

ri
es

w
it

h
d

if
fe

re
n

t
v

al
u

es
o

f
k

an
d

n
in

E
q

.
3

k
n 2

3
4

5
6

7
8

9
1

0
1

1
1

2
1

3
1

4
1

5

0
.1

0
.6

7
4

4
0

.6
7
4

4
0

.6
7
4

4
0

.6
7
4

4
0

.6
7

4
4

0
.6

7
4

4
0

.6
7
4

4
0

.6
7

4
4

0
.6

7
4

4
0

.6
7
4

4
0

.6
7

4
4

0
.6

7
4

4
0

.6
7
4

4
0

.6
7

4
4

0
.2

0
.6

7
8

8
0

.6
7
8

8
0

.6
7
8

9
0

.6
7
8

9
0

.6
7

8
9

0
.6

7
8

9
0

.6
7
8

9
0

.6
7

8
9

0
.6

7
8

9
0

.6
7
8

9
0

.6
7

8
9

0
.6

7
8

9
0

.6
7
8

9
0

.6
7

8
9

0
.3

0
.6

8
2

3
0

.6
8
2

4
0

.6
8
2

5
0

.6
8
2

5
0

.6
8

2
5

0
.6

8
2

5
0

.6
8
2

5
0

.6
8

2
5

0
.6

8
2

5
0

.6
8
2

5
0

.6
8

2
5

0
.6

8
2

5
0

.6
8
2

5
0

.6
8

2
5

0
.4

0
.6

8
4

8
0

.6
8
5

1
0

.6
8
5

4
0

.6
8
5

3
0

.6
8

5
3

0
.6

8
5

3
0

.6
8
5

3
0

.6
8

5
3

0
.6

8
5

3
0

.6
8
5

3
0

.6
8

5
3

0
.6

8
5

3
0

.6
8
5

3
0

.6
8

5
3

0
.5

0
.6

8
6

3
0

.6
8
6

7
0

.6
8
7

4
0

.6
8
7

2
0

.6
8

7
1

0
.6

8
7

1
0

.6
8
7

0
0

.6
8

7
0

0
.6

8
7

0
0

.6
8
7

0
0

.6
8

7
0

0
.6

8
7

0
0

.6
8
7

0
0

.6
8

7
0

0
.6

0
.6

8
6

9
0

.6
8
7

2
0

.6
8
8

4
0

.6
8
7

9
0

.6
8

7
6

0
.6

8
7

4
0

.6
8
7

1
0

.6
8

6
9

0
.6

8
6

9
0

.6
8
6

9
0

.6
8

6
9

0
.6

8
6

9
0

.6
8
7

0
0

.6
8

7
0

0
.7

0
.6

8
6

5
0

.6
8
6

4
0

.6
8
8

1
0

.6
8
6

8
0

.6
8

5
7

0
.6

8
5

2
0

.6
8
4

0
0

.6
8

3
4

0
.6

8
3

5
0

.6
8
3

4
0

.6
8

3
4

0
.6

8
3

6
0

.6
8
3

8
0

.6
8

3
9

0
.8

0
.6

8
5

1
0

.6
8
4

1
0

.6
8
5

7
0

.6
8
2

6
0

.6
7

9
9

0
.6

7
8

2
0

.6
7
4

3
0

.6
7

2
0

0
.6

7
2

1
0

.6
7
1

9
0

.6
7

2
0

0
.6

7
2

8
0

.6
7
4

3
0

.6
7

4
7

0
.9

0
.6

8
2

7
0

.6
7
9

9
0

.6
7
9

9
0

.6
7
3

3
0

.6
6

6
6

0
.6

6
1

8
0

.6
5
0

3
0

.6
4

2
0

0
.6

4
1

0
0

.6
3
9

4
0

.6
3

9
7

0
.6

4
3

4
0

.6
5
0

7
0

.6
3

2
9

1
.0

0
.6

7
9

3
0

.6
7
3

5
0

.6
6
9

1
0

.6
5
5

9
0

.6
4

0
9

0
.6

2
7

8
0

.5
9
5

6
0

.5
6

8
8

0
.5

5
8

8
0

.5
5
0

4
0

.5
4

9
3

0
.5

6
3

1
0

.5
8
7

5
0

.5
9

7
1

1768 Nat Hazards (2015) 76:1759–1779

123



Based on these daily precipitation maps, the cumulative precipitation maps were

derived using Eq. 3 (Glade et al. 2000).

Pa ¼ r0 þ kr1 þ k2r2 þ � � � þ knrn ð3Þ

where Pa is cumulative precipitation, ri is daily precipitation on the i-th day preceding the

landslide event (1 B i B n), and k is a decay coefficient related to evaporation.

To determine parameters k and n in Eq. 3, the cumulative precipitation was calculated

for a day between 1981 and 2010 on which a landslide occurred, selected randomly, and

the different values of k and n established to analyze the correlations of the landslide

inventories. This process was repeated ten times to provide the average correlations pre-

sented in Table 2. Based on the results, the values of k and n in Eq. 3 were identified as 0.6

and 4, because they provide the maximum correlation of landslides in this study.

3.4 Negative samples (areas not prone to slides)

The mapping of landslide susceptibility aims to identify those areas prone to slide and

those areas not, which can be considered as a classification issue requiring a priori

knowledge of positive samples (landslide inventories defined as class 1) and negative

samples (areas not prone to slide defined as class -1). It is obvious that class imbalance

and sampling bias will significantly influence the results of the classification. Therefore,

the number of negative samples has to be similar to the number and distribution of positive

samples. To select appropriate negative samples, the seven factors (conditioning factors

related to landslide inventories) were overlaid and the study area divided into 11,332,286

units with 1,048,576 factor combination patterns. Those units with combination patterns of

Fig. 4 Distribution of negative samples (areas not prone to slide)
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landslide inventories were removed first to avoid conflict in the selection of the negative

samples. Then, the remaining units were sorted according to area and small units; about

25 % of the areas were removed from smallest to largest because they were considered

small probability events. After removing the small units, 354 negative samples, which were

considered as representative areas not prone to slide, were selected randomly, i.e., the same

number as the landslide inventories, as shown in Fig. 4.

4 Methodology

4.1 Support vector machine (SVM)

SVM is a machine learning technique for two class (?1 and -1; areas prone to slides and

areas not prone to slides in this study) classification based on the concept of an optimal

separating hyperplane developed by Cortes and Vapnik (1995). The basic theory behind

SVM is to seek the maximum margin of separation between the two classes in the original

n-dimensional space and to find the separating hyperplane in the middle of the maximum

margin, which minimizes the structural risk, from the training dataset including both

positive and negative sample points. Each point x in the n-dimensional space is classified

as ?1 where it lies above the hyperplane; otherwise, it is classified as -1. The specific

classification function is given by Eq. 4, where y is the class label, sgn is a sign function,

and W and b are the parameters of the hyperplane. To resolve the hyperplane, the issue of

seeking the maximum margin can be described by Eq. 5. However, in practice, no

hyperplane could guarantee that all the sample points in the training dataset could be

separated correctly. Therefore, a slack variable fi� 0 is invoked in Eq. 5 to satisfy the

condition (see Eq. 6), where C is a penalty coefficient that is bigger for those sample points

incorrectly separated.

To resolve landslide susceptibility mapping, which is a nonlinear issue, the kernel trick

(Scholkopf 2001) is applied in SVM, which is that the dot product ; xð Þ � ; yð Þ can represent

the kernel function K(x, y) when the projection ;: X ? H from the original space X to a

space H. Therefore, Eq. 4 can be written as Eq. 7. In this study, the radial basis function

Gaussian kernel function, suggested by Hsu et al. (2003), is used, because it has good

generalizing properties (see Eq. 8).

y ¼ sgnðW � xþ bÞ: ð4Þ

min
1

2
wk k2;

s:t:yi w � xið Þ þ b½ � � 1:

)
ð5Þ

min
1

2
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XN

i¼1
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K x; yð Þ ¼ exp �c x� yk k2
� �

� ð8Þ

4.2 Implementation of SVM models

In this study, LIBSVM 3.18 (Chang and Lin 2011) was employed for the SVM analyses.

The conditioning and triggering factors were derived as regular grid raster data with spatial

resolution of 30 m using GIS. As shown in Table 3, the categorical variables including

aspect, land use, and lithology were enumerated, and the continuous variables of elevation,

slope, NDVI, distance to roads, direct daily precipitation, and cumulative precipitation

were graded according to certain intervals. To eliminate the influence of the different class

number of the factors, each factor was normalized to [0, 1].

To find the optimal parameter, an iterative grid search is applied in which the evaluation

is provided by a fivefold cross-validation, detailed in Sect. 4.3. The range of c and C in

Eqs. 8 and 7 was set to [-1,024, 1,024], and the step was 0.01. Based on the search, the

values of the parameters were determined as c = 1.23 and C = 1.27, as shown in Fig. 5.

Because SVM is a classifier for two classes, its result usually is an integer label such as

?1 or -1 (i.e., in this study, prone to slide or not prone to slide). To acquire smooth

floating values of landslide susceptibilities, the sigmoid transformation using Eq. 9 (Platt

1999) is applied to transform the distance to the hyperplane in the SVM model into the

landslide susceptibility for each pixel in this study area. According to the transformation

result and based on our experience of the landslide inventories, the landslide susceptibility

in Wencheng can be divided into four levels: no susceptibility (\0.5), low susceptibility

(0.5–0.75), moderate susceptibility (0.75–0.9), and high susceptibility ([0.9).

Table 3 Datasets and their classes for this study

Dataset Classes

Elevation (m) (1) \90; (2) 90–180; (3) 180–270; (4) 270–360; (5) 360–450; (6) 450–540; (7)
540–630; (8) 630–720; (9) 720–810; (10) 810–900; (11) 900–990; (12)
990–1,080; (13) 1,080–1,170; (14) 1,170–1,260; (15) [1,260

Slope (�) (1) \5; (2) 5–10; (3) 10–15; (4) 15–20; (5) 20–25; (6) 25–30; (7) 30–35; (8)
35–40; (9) 40–45; (10) 45–50; (11) 50–55; (12) 55–60; (13) 60–65; (14) 65–70;
(15) 70–75; (16)75–80; (17) 80–85; (18) 85–90

Aspect (1) Flat; (2) N; (3) NE; (4) E; (5) SE; (6) S; (7) SW; (8) W; (9) NW

NDVI (1)\-0.3; (2) -0.3 to -0.2; (3) -0.2 to -0.1; (4) -0.1 to -0.0; (5) 0.0 to 0.1;
(6) 0.1 to 0.2; (7) 0.2 to 0.3; (8) 0.3 to 0.4; (9) 0.4 to 0.5; (10) 0.5 to 0.6; (11) 0.6
to 0.7; (12) [0.7

Lithology (1) Rr; (2) Sf; (3) Ht; (4) Hi; (5) Qg; (6) Hs; (7) Sc; (8) Lt; (9) Rb; (10) Qd

Land use (1) Riverbed; (2) agriculture on river terraces; (3) built-up areas; (4) agriculture
on hill slopes; (5) grassland; (6) forest; (7) bare land

Daily precipitation
(mm)

(1)\20; (2) 20–40; (3) 40–60; (4) 60–80; (5) 80–100; (6) 100–120; (7) 120–140;
(8) 140–160; (9) 160–180; (10) 180–200; (11) 200–220; (12) 220–240; (13)
240–260; (14) 260–280; (15) 280–300; (16) 300–320; (17) [320

Cumulative
precipitation (mm)

(1) \30; (2) 30–60; (3) 60–90; (4) 90–120; (5) 120–150; (6) 150–180; (7)
180–210; (8) 210–240; (9) 240–270; (10) 270–300; (11) 300–330; (12)
330–360; (13) 360–390; (14) 390–420; (15) [420

Nat Hazards (2015) 76:1759–1779 1771

123



p y ¼ 1jxð Þ ¼ 1

1þ exp a � f xð Þ þ bð Þð Þ ð9Þ

where a and b are constants, whose values of -0.8308 and 0.3279, respectively, were

chosen to maximize the negative log-likelihood.

4.3 Model performance evaluation

In landslide susceptibility mapping work, landslide inventories as a priori knowledge are

usually rare because landslides are unusual events in daily life. To eliminate the impact of

the construction of the training dataset, in this paper, the original dataset (708 points

comprising 354 positive and 354 negative sample points) was not divided into a training

dataset and a validation dataset, but instead, a fivefold cross-validation was applied

(Kohavi 1995). In the fivefold cross-validation, the original dataset was divided into five

random subdatasets of equal size. One of the subdatasets was retained as the validation

dataset, and the remaining four used as the training dataset. Then, the cross-validation

process was repeated five times with each subdataset used once as the validation dataset

and the five validation results averaged to produce the final result.

To evaluate the performance of the SVM model in this study, the ROC (Fielding and

Bell 1997) graph and prediction rate curve were applied, which provide useful information

on the binary classifier system because its discrimination threshold is varied. The ROC

graph is built by plotting the ratio between the true and false positives, resulting in a set of

ROC curves. The performance is summarized by the area under the curve (AUC) (Fawcett

2006) related to the plot area, which indicates a complete success in the classification for

the AUC with a value of 1, and a random classification with a value of 0.5.

Fig. 5 Grid search for parameters c and C
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Fig. 6 Success rate curves for the susceptibility maps produced by SVM using fivefold cross-validation

Fig. 7 Landslide susceptibility map on August 22, 2013
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5 Results

To test the reliability of the SVM model, fivefold cross-validation and ROC analyses were

used. First, 708 samples including 354 positive samples and 354 negative were divided

randomly into five groups. Four groups of samples were used for training, and the

remaining group used for validation. This procedure was repeated five times to obtain five

results that were averaged to produce the final result. As illustrated by the ROC curve

shown in Fig. 6, the SVM model has good performance for landslide susceptibility

mapping, because the AUC is 0.96.

Two practical cases were investigated to evaluate the efficacy of the landslide sus-

ceptibility mapping, as shown in Fig. 7 for Trami typhoon on August 22, 2013, and in

Fig. 8 for the Kong-Re typhoon of August 26, 2013. The landslide susceptibility for each

point in this study area is calculated by the distance to the classification hyperplane in

the SVM model (Platt 1999) and divided into four grades using an identical standard

according to empirical analyses. Specifically, when the landslide susceptibility is less

than 0.5, the point is defined as having no susceptibility; values of 0.5–0.75 represent

low susceptibility, 0.75–0.9 indicate moderate susceptibility, and values over 0.9 rep-

resent high susceptibility. The results demonstrate that the SVM model produces high

probability values over a small area. For example, on August 22, the landslide suscep-

tibility map confines the fourth grade (area prone to slides with highest probability) to

within 20 % of the study area, and on August 26, the map confines the fourth grade to

within 15 %. In addition, note that all landslides occurred in those areas labeled as fourth

or third grade in the result map.

Fig. 8 Landslide susceptibility map on August 26, 2013
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Furthermore, if the triggering factor (i.e., rainfall data) was replaced by weather

forecast data, the landslide susceptibility mapping could be converted into landslide

warning.

6 Conclusions

A landslide susceptibility map is one of the most important pieces of information for

planning agencies when a planning policy is to be implemented and for governments

intending to reduce the socioeconomic costs of such hazards. In this study, the SVM model

has been applied successfully for the mapping of rainfall-induced landslide susceptibility

in the Wencheng area of Zhejiang Province in China. The model used seven conditioning

factors comprising elevation, slope, aspect, distance to roads, lithology, land use, and

NDVI, and two triggering factors: daily and cumulative rainfall data. The training dataset

for the SVM was constructed from 354 landslide inventories defined by field survey, and

354 points defining areas not prone to slides, selected based on the statistics of overlaid

factors. An iterative grid search was applied to find the optimal parameters for the model.

For result verification, a fivefold cross-validation and ROC analysis were used. The val-

idation results showed that the SVM model could provide good and stable outcomes for

which the AUC was 0.96. In addition, two practical cases focusing on typhoons Trami and

Kong-Re were investigated. This revealed that SVM exhibited properties of stability and

generalization and could provide a map in which high probability values were confined to a

small area. Furthermore, landslide susceptibility mapping could be converted easily into

landslide warning using weather forecasting data to replace the triggering factor; hence,

policy makers, planners could make and publish the landslide warning and emergency plan

to reduce losses of disasters. And engineers, geologists could give their professional advice

for construction works and disaster management using the model based on the rainfall

history. Therefore, SVM is proven a useful tool for landslide susceptibility mapping, and

the results obtained from this study could be of benefit to policy planning in this area,

reducing the damage caused by landslides.
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