
ORI GIN AL PA PER

The apparent paradox of exponentially distributed
inter-earthquake intervals

F. A. Nava • C. Lomnitz

Received: 13 June 2014 / Accepted: 1 December 2014 / Published online: 10 December 2014
� Springer Science+Business Media Dordrecht 2014

Abstract On a global scale, large earthquakes are Poisson-distributed in time which

implies that the inter-earthquake intervals are exponentially distributed. Thus, a simple-

minded estimation of the most probable interval could conclude that the most probable

occurrence time for a large earthquake would be now! This thesis is unsupported by

observations. The apparent paradox is explained when characteristics of the interval

cumulative distributions are explored for different seismicity rates.
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1 Introduction

The time series of earthquakes in a catalog is often treated as a Poisson process. The more

such a time series is thinned by eliminating the smaller shocks, the closer it resembles a

Poisson process. The reason is that any stationary process can be made to tend to a Poisson

process by applying an entropy-increasing operation such as superposition, thinning, or

random translation (Daley and Vere-Jones 2002; Lomnitz 1994). Actually, the earthquake

process may not obey the conditions of independence, stationarity, and orderliness which

define the Poisson process. Nevertheless, the Poisson assumption can be useful as a model

when one is dealing with large, rare events.

Consider a sequence of earthquakes modeled after a Poisson process and let the rate of

occurrence be k events per unit time. The probability that an interval of time of length h
contain n events is
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P n; hð Þ ¼ khð Þn

n!
e�kh; n ¼ 0; 1; 2; . . .: ð1Þ

Many seismic risk estimates are based on the assumption of Poisson-distributed seismicity,

meaning that the intervals s between events are distributed exponentially (cf. Parzen 1960):

f ðsÞ ¼ ke�ks; s� 0; ð2Þ

where f(s) is the probability density function (pdf) of s. As Eq. (2) shows, f(s) attains its

maximum equal to k at s = 0. Figure 1 illustrates the exponential probability density

function (pdf) and its cumulative for two very different values of k; k = 0.14 year-1

corresponds to the global rate of M C 8.5 significant earthquakes reported by NOAA over

the last 130 years (NOAA 2013), and k = 3.25 year-1 represents the rate of M C 7.5

earthquakes.

Distribution (2) is monotonically decreasing, so that f(sa) \ f(sb) for all sa [ sb. For

any arbitrary value of k, f(s = 0) = ef(s = 1/k). This might be interpreted as saying that

even if the mean return period of a megaquake is a thousand years, it is e = 2.718…
times more likely to occur in a small interval around today than around the average

recurrence time!
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Fig. 1 Top Exponential probability density distributions of interseismic intervals for two different
occurrence rates. Bottom The corresponding cumulatives with vertical dash-dotted lines indicating the
intervals for which the cumulative probability equals 0.5
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2 The roles of the cumulative distribution and the seismicity rate

Let us proceed with our argument. It is well known that the probability of any specific

interval s is f(s)ds which is infinitesimal. Finite probabilities are obtained for finite interval

ranges, so that

Zs0

0

f sð Þds [
Z2s0

s0

f sð Þds [
Z3s0

2s0

f sð Þds [;

and so on. Thus, the most probable interval range is the one that includes s = 0, a rather

alarming result. What does this say in terms of disaster prevention?

The probability of small intervals should be considered in terms of the cumulative

probability distribution

F sð Þ ¼
Zs

0

f uð Þdu ¼ 1� e�ks; s� 0; ð3Þ

so that the probability of an interval having a duration between s1 and s2 is given by

P s1; s2ð Þ ¼ F s2ð Þ � F s1ð Þ; s2� s1� 0: ð4Þ

From our earlier argument, the probability of occurrence of an interval s in the range

[s1,s1 ? Ds) is indeed maximal for s1 = 0 and decreases with increasing s1. This decre-

ment is faster for larger values of k. For instance, when k = 0.14 year-1 the probability of

an interval between 0 and 1 day is P(0,1/365) = 0.00122, larger than the probability of an

interval between 1 and 2 days P(1/365,2/365) = 0.001216, and so on.

However, the probability of an interval being longer than 1 day is 0.99878. Thus, an

interval in the range of [0,1 day) is indeed the most probable one-day interval, but its

Fig. 2 Exponential probability density distributions of interseismic intervals for two different occurrence
rates and the corresponding theoretical histograms for class widths that resulted in the best fits
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actual probability is very small compared with that of its complement. In fact, for this

value of k, the range of smaller intervals has to become as large as [0,5.006 year) to reach a

probability of 0.5. In conclusion, even though smaller intervals are more probable, an even

chance of success requires having an interval in the range between 0 and 5 years.

As illustrated in Fig. 1 (bottom), the uncertainty is less extreme for larger occurrence

rates. Thus, for k = 3.25 year-1, an even chance of success is attained for the range of

0–0.21 years. And if the rate of occurrence of smaller earthquakes is on the order of

hundreds or thousands per year, the most likely interval does tend to zero.

The uncertainty is reflected in the histograms. If the class intervals are too small or too

large, the exponential fit becomes worse. There is an optimal class width which may be

selected by comparing the (theoretical) number of elements in any given class with the

value of the distribution for the middle of that class. Figure 2 shows, for our two examples,

the theoretical histograms and distributions for the class widths that yielded the best fit. For

k = 0.14 year-1, the most probable histogram interval is from 0 to 6.13 years with

0.57209 probability; for k = 3.25 year-1, the most probable histogram interval is from 0 to

0.10 years with 0.27775 probability.

The optimal class width checks with a well-known statistical rule of thumb, namely the

number of classes over the range of observations should approximately equal the square

root of the number of observations. Using Monte Carlo simulation with 10,000 realizations

for each value of k, the distribution of interval maxima is shown in Fig. 3, where circles

represent the mean value and bars indicate ± 1 standard deviation.

For T = 130 year, k = 0.14 year-1, N = 18, and smaxh i ¼ 23:53 year result in four

classes 5.88 years wide; and k = 3.25 year-1, N = 423, and smaxh i ¼ 2:04 year result in

21 classes 0.097 years wide. These class widths agree with those determined theoretically.

They check well with variations in the expected observation ranges well below one

standard deviation.

Finally, consider the problem of forecasting occurrence times, when the intervals are

distributed according to (2), for some time t beyond the last earthquake, occurred at time t0.

Forecasting at t0 for any possible t results in the well-known waiting time paradox (c.f.

Feller 1971; Daley and Vere-Jones 2002). However, forecasting for a given t1, given that

the expected event has not occurred yet, presents no problem. For a given time t1, the
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Fig. 3 Monte Carlo simulation results for the range of maximum intervals smax as a function of k; the
circles represent the mean value of the maximum intervals, and the bars indicate ±1 standard deviation
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interval distribution is given by (2) normalized by the fact that intervals smaller than

s1 = t1 - t0 did not occur. This is the well-known hazard function:

f sjs� s1ð Þ ¼ ke�ks

1�
R s1

0
ke�ksds

¼ ke�kðs�s1Þ; ð5Þ

which is equivalent to (2) for intervals s0 ¼ s� s1; s0 � 0.

This is a well-known property of the exponential distribution, due to the lack of memory

for the Poisson distribution. Hence, our original discussion about the interval to the next

earthquake applies at any given time.

3 Conclusions

Although the exponential distribution of inter-earthquake intervals may suggest that shorter

interval ranges are more probable than longer ones, the actual probability of a small range

may be dwarfed by the probability of the interval falling outside the range. This effect is

particularly pronounced at low event occurrence rates, as observed in very large earth-

quakes and megaquakes. This is the case of interest in practice. For shorter intervals to be

most probable, the interval range would have to be long enough to exceed a probability of

0.5, which means that the actual value of the interval is uncertain. It could take any value in

the range, and the next earthquake could occur at any time in the range.
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