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Ismaël Riedel • Philippe Guéguen • Mauro Dalla Mura •

Erwan Pathier • Thomas Leduc • Jocelyn Chanussot

Received: 2 June 2014 / Accepted: 20 November 2014 / Published online: 30 November 2014
� Springer Science+Business Media Dordrecht 2014

Abstract The estimation of the seismic vulnerability of buildings at an urban scale, a

crucial element in any risk assessment, is an expensive, time-consuming, and complicated

task, especially in moderate-to-low seismic hazard regions, where the mobilization of

resources for the seismic evaluation is reduced, even if the hazard is not negligible. In this

paper, we propose a way to perform a quick estimation using convenient, reliable building

data that are readily available regionally instead of the information usually required by

traditional methods. Using a dataset of existing buildings in Grenoble (France) with an

EMS98 vulnerability classification and by means of two different data mining tech-

niques—association rule learning and support vector machine—we developed seismic

vulnerability proxies. These were applied to the whole France using basic information from

national databases (census information) and data derived from the processing of satellite

images and aerial photographs to produce a nationwide vulnerability map. This macroscale

method to assess vulnerability is easily applicable in case of a paucity of information

regarding the structural characteristics and constructional details of the building stock. The

approach was validated with data acquired for the city of Nice, by comparison with the

RiskUE method. Finally, damage estimations were compared with historic earthquakes that

caused moderate-to-strong damage in France. We show that due to the evolution of vul-

nerability in cities, the number of seriously damaged buildings can be expected to double

or triple if these historic earthquakes were to occur today.
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CERMA/CNRS, Université Nantes Angers Le Mans, Nantes, France

123

Nat Hazards (2015) 76:1111–1141
DOI 10.1007/s11069-014-1538-0



Keywords Seismic vulnerability � Moderate hazard � Existing building � Data mining �
Support vector machine � Europe

1 Introduction

The extensive damage observed after the latest moderate-to-strong earthquakes together

with population growth and the urbanization of megacities has considerably increased

awareness regarding natural disasters over recent decades (Jackson 2006). There is also an

increasing demand for detailed seismic risk analysis, to furnish adequate information for

the insurance and reinsurance companies (Spence et al. 2008). A complete seismic risk

assessment requires not only the estimation of the seismic hazard, but also the represen-

tation of the quality of existent buildings and their expected response based on the defi-

nition of their vulnerability. Even though some regions are considered to be of moderate

hazard, they are not free of seismic risk, and particularly not if the vulnerability of their

cities is high (Dunand and Gueguen 2012). Major earthquakes on the scale of France, for

example, have caused genuine catastrophes during the last centuries. Reducing this risk has

become a priority for local authorities in order to ensure the well-being and safety of local

populations as well as for economic and social security. One of the areas contributing to

the reduction in earthquake fatalities and losses, besides the improvement of technical

norms and the reinforcement of existing buildings, is the anticipation and simulation of

earthquake effects for crisis management. This simulation requires a representation of the

structures’ capacity to withstand the seismic ground motion: this is the objective of seismic

vulnerability assessments. Coupled with real-time seismic ground motion estimates (e.g.,

Wald et al. 1999; Worden et al. 2010), macroscale vulnerability data are crucial for the

early assessment of damage.

Even though earthquake codes can always be improved, the low rate of renovation of

building stocks in cities makes existing buildings (mostly designed before the application

of earthquake design rules) the center of physical vulnerability. Over the last two decades,

many empirical methods have been published to assess the seismic vulnerability of

buildings at a large scale, most of them calibrated using post-event damage information

(e.g., GNDT 1993; Hazus 1997; Spence and Lebrun 2006) or directly derived from a

macroseismic intensity scale (Lagomarsino and Giovinazzi 2006). Hybrid methods (e.g.,

Kappos et al. 2006) or experimental methods (Michel et al. 2012) have also been proposed

as a complement of empirical methods. They estimate the probability of reaching a certain

level of damage for a given class of buildings and a given seismic demand. An extensive

description of these methods can be found in Gueguen (2013). Some challenges and

difficulties these methods have to face are (1) the variability of the response of existing

buildings to seismic loads, (2) misunderstanding of the seismic behavior of old buildings as

well as inadequate information concerning the quality of construction materials, and (3) the

lack of observation data to adjust empirical methods to the highest damage grade. These

issues introduce significant epistemic uncertainty into seismic vulnerability assessment

(Spence et al. 2008) and therefore into seismic risk analysis. These difficulties are even

more critical in moderate-to-low seismic hazard regions, where the mobilization of

resources for seismic evaluation is rather limited.

For example, France is considered as a moderate seismic hazard country. However, a

major historic earthquake hit France in the twentieth century with an estimated magnitude
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of more than 6 and major effects in the (at that time rural) region of Aix-en-Provence

(southeastern France), causing 42 fatalities, many more injuries, and severe economic

losses. Other important events make up the seismic history of metropolitan France (Bâle

earthquake 1356, Chandeleur earthquake 1428, Ligure earthquake 1887). More recently,

Ossau-Arudy 1980 (ML = 5.1) and Annecy 1996 (ML = 4.8) earthquakes caused esti-

mated losses of 4 million Euro (Environment ministry—MEDD 1982) and 50 million

Euro, respectively (AFPS, French Paraseismic Association 1996), even at these low

magnitudes, with the same order of damage/magnitude ratio as in other moderate seismic

regions (e.g., Pierre and Montagne 2004).

In this context, vulnerability assessment studies have been conducted in France, focused

on large exposed cities and applying traditional empirical methods. However, the appli-

cation of these methods requires so much information that the evaluation struggles to find

sufficient political motivation and financial resources to complete the seismic inventory of

buildings. For example, the RiskUE project (Spence and Lebrun 2006) aimed to propose a

seismic vulnerability assessment method for Europe, but due to its complexity, no city in

France has ever been studied using this method (except for the city of Nice, which was a

test site for the RiskUE project). Consequently, the structural characteristics required for

the seismic vulnerability assessment of existing buildings are not available for all exposed

urban areas of the country. On the other hand, seismic exposure is higher than in the past,

and a repetition of historic earthquakes may result in more casualties and economic losses

(Jackson 2006).

To overcome the lack of building information at the macroscale, we propose in this

paper to assess vulnerability not considering the information required for a conventional

analysis, but the sole information already available in a region or country (Fig. 1). Two

different data mining methods, association rule learning (ARL) (Agrawal et al. 1993) and

support vector machine (SVM) (Boser et al. 1992; Cortes and Vapnik 1995), are applied to

define vulnerability proxies between the elementary characteristics of buildings and the

vulnerability classes of the European Macroseismic Scale EMS98 (Grunthal and Levret

2001). This is a two-step procedure: the first step (the learning phase) consists in defining

the proxy using a sample of buildings for which elementary structural characteristics (or

attributes) and vulnerability classes are available. The second step (the application phase)

is to apply the proxy to a target region for which vulnerability classes are not available, but

elementary attributes are.

In the first part of this paper, the dataset used in the first step is presented: the test bed of

the city of Grenoble, one of the most exposed cities in France, for which an extensive

vulnerability analysis has been performed (Gueguen et al. 2007). The SVM and ARL

methods are then briefly presented and applied to the Grenoble target site, deriving two

vulnerability proxies for a Grenoble city-like environment. In the third part of this study,

the derived vulnerability proxies are applied to the entire country and validated by com-

parison with the RiskUE method applied in Nice, a test site for the RiskUE project. Finally,

the probable damage produced by historic earthquakes was computed, considering

(equivalent) earthquake-era and present-day urbanization to simulate the evolution of

vulnerability over time.

2 Grenoble test-bed area

As described in Riedel et al. (2014), a simplified empirical method based on the Italian

GNDT was proposed and tested in Grenoble as part of the VULNERALP project (Gueguen
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et al. 2007). Basic information was collected to assign elementary structural characteristics

to existing buildings. The main pieces of information were date of construction ranked by

period, number of floors ranked by category, roof shape (flat or slope), construction

material, some qualitative description of plan and elevation irregularities, and building

position in the block (corner, in-between, stand-alone, etc.). In addition to basic infor-

mation, experts associated a type of building according to the EMS98 typology with the

most likely vulnerability class (Grunthal and Levret 2001). The EMS98 scale was origi-

nally defined for macroseismic intensity assessment after an earthquake, but since build-

ings vulnerability is taken into account for defining intensity, vulnerability classification

can be used to represent the seismic damage in a target region for a given intensity.

Building vulnerability is established as belonging to a category of buildings (EMS98

typology) with six classes from A (most vulnerable) to F (least vulnerable). At the end of

the process, the expert survey compiled the Grenoble building vulnerability database, in

which 3,860 buildings were characterized according to their EMS98 vulnerability class and

some essential attributes. These attributes are elementary since they are considered as

reliable (no uncertainty in their definition) and can be obtained relatively easily on a large

scale. For example, the information about the number of storeys and period of construction

is available in the INSEE database (French national statistical institute, www.insee.fr),

grouped by geo-localized cells called IRIS2000. Since their inception, the IRIS cells

represent the national standard for geographical data distribution and must therefore meet

geographic and demographic criteria. They also have contours that are stable over time and

Fig. 1 Two-step process. During the learning phase, a vulnerability proxy is deduced from a test area for
which a full seismic vulnerability evaluation is available. In the second step, this proxy is applied to a large
region where only some attributes are available in order to estimate vulnerabilities. A final step combines the
estimated vulnerability with hazard information to deduce probable damage
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easily identifiable. France has 50,100 IRIS units plus 700 in the overseas regions. Figure 2a

shows the division of Grenoble and neighboring towns into IRIS units. Only residential

dwellings are included in the INSEE database. Buildings per IRIS are described by

attributes and grouped into categories.

Furthermore, during the NERA project (Network of European Research Infrastructures

for Earthquake Risk Assessment and Mitigation—www.nera-eu.org), a building-by-

building field survey was carried out in a small area of Grenoble (about 950 9 700 m)

including all buildings within the surveyed area (Fig. 2b) (Spence et al. 2012). 560 resi-

dential buildings were characterized and classified according to EMS98. This subarea test

was chosen because it shows a mix of building typologies representative of the Grenoble

metropolitan area. Finally, remote sensing data are available in Grenoble, including a very

high-resolution (VHR) orthorectified panchromatic image (airborne data, 25 cm resolu-

tion), a digital elevation model (DEM) (airborne acquisition, 1 m resolution in three

dimensions), and building footprints from cadastral data. With this information, the Urb-

asis project (ANR-09-RISK-009) characterized the urban area based on building footprints

and the surrounding open spaces within the NERA zone. Fifteen morphological indicators

were computed according to Hamaina et al. (2012) for the characterization of urban fabric:

length, width (W), elevation (H), area and volume of the building units, circularity

according to Miller (ratio of footprint area to the area of circle having the same perimeter

as the footprint), open space morphometry (proportion of the area occupied by open

spaces), shared wall ratio (ratio between the length of perimeter walls shared with other

buildings and the whole perimeter), average distance to nearest buildings (average distance

between building footprints of neighboring cells), generalized ratio W/H, mean ratio of

isovist area (area of space visible from a given point in space) divided by area of the

enclosing circle, ground space index (ratio of a building’s footprint area to the piece of land

upon which it is built), floor space index (ratio between the building’s volume and the area

upon which it is built), among others. However, only a few were used for the vulnerability

classification, as described in Sect. 3.1.
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Fig. 2 a IRIS units in Grenoble. From INSEE database. b NERA study area in Grenoble, France. Building
footprint layer superimposed on a VHR orthoimage. 560 buildings are characterized and classified according
to EMS98 vulnerability classes
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In this regard, remote sensing data and methods are increasingly used to assess seismic

risk and particularly for the assessment of vulnerability (Geiss and Taubenböck 2012).

Borsi et al. (2010) also illustrated how suitable processing of satellite images can con-

tribute to the vulnerability evaluation of industrial areas, especially when no other sources

of information are available.

3 Data mining methods

Data mining, a process at the intersection of computer science and statistics, attempts to

identify patterns and establish relationships in large datasets. These techniques are used in

many areas of research, including mathematics, cybernetics, genetics, and marketing.

There are a number of different types of learning algorithms that can be used for the

(exploratory) data analysis: decision trees, decision rules, association rules, neural net-

works, SVMs, Bayesian classifiers among others (Teukolsky et al. 2007).

3.1 Support vector machine (SVM)

The SVM is a state-of-the-art classification method (Boser et al. 1992; Cortes and Vapnik

1995). It is a supervised learning model with associated learning algorithms that analyze

data and recognize patterns; it is used for classification and regression analysis (Teukolsky

et al. 2007). A supervised classification task usually involves dividing data into training

and testing sets. Each instance in the training set has one ‘‘target value’’ (i.e., the class

label) and several ‘‘attributes’’ (i.e., the features or observed variables). The goal of SVM

was to produce a model (based on the training data) that predicts target values for the test

data (a set of patterns with a known label not considered in the training but used to evaluate

the accuracy of the classification). A SVM model represents the samples as points in the

space of the features. In an ideal case, after mapping, the separate categories are divided by

a hyperplane. Unlabelled samples are then mapped into that same space and expected to

belong to a category based on the side of the hyperplane into which they fall. SVMs are

primarily designed for 2-class classification problems; therefore, in its most basic form, it

is a binary and linear classifier, i.e., resulting in classification using a linear hyperplane

function (see ‘‘Appendix’’). It often happens that the sets to be classified cannot be sep-

arated linearly in that space. In such cases, the original finite-dimensional space can be

mapped into a higher-dimensional space using the kernel trick, which is likely to make

separation easier in that space (Cortes and Vapnik 1995). The multiclass problem (i.e.,

more than two classes) is often resolved by dividing the problem into smaller, simpler

binary cases. The formal definition of the method and its principal aspects are presented in

‘‘Appendix.’’

The effectiveness of SVM depends on the selection of the parameters controlling

classification, i.e., the hyperplane parameters, the degree of misclassification, as well as the

kernel parameters (see ‘‘Appendix’’). The best parameter combination is selected by a grid

search (Cortes and Vapnik 1995). The entire dataset is divided into smaller sets (n-folds).

For each subset, one training set and one testing set are created, and the input variables are

correlated in a grid search. The parameters with the best cross-validation accuracy in each

n-fold are picked, and usually an average is then used for the classification. This work uses

the PRTools toolbox for MATLAB (Duin et al. 2007).

Within a supervised classification framework, a SVM statistical learning algorithm is

used on the Grenoble dataset to label the buildings according to the desired EMS98

1116 Nat Hazards (2015) 76:1111–1141

123



standard for seismic vulnerability classes. Solving the optimization problem (‘‘Appendix’’)

gives the parameters of the maximum-margin hyperplane needed for the classification.

Having found the best hyperplane (using only the training set), accuracy is estimated

automatically using the remaining data (the test set), i.e., by comparing the new estimated

vulnerability class with the ‘‘real’’ one. Accuracy is thus measured by creating a confusion

matrix and calculating the ratio between the sum of the diagonal values (correct classifi-

cation) over the sum of all the elements in the matrix.

3.1.1 First phase: learning

In the first phase, the entire dataset is divided into two. The elements that form the training

set are selected randomly each time the classifier is run, but respecting the distribution of

classes. This introduces variability that has a slight effect on accuracy. To take this var-

iability into account, 2,000 calculations were run (2,000 random training and testing

divisions) and an accuracy histogram was created. The histogram shows a Gaussian-like

distribution (Fig. 3). The median and the 16 and 84 percentiles can be estimated as a

measurement of deviation. Figure 3a shows the histogram of accuracy for a training set of

30 % of Grenoble dataset and considering three attributes (i.e., construction period,

number of floors, and shape of the roof).

Furthermore, accuracy will depend on the size of the training set (as a percentage of the

total set). Figure 3b shows the evolution of median accuracy for growing sizes of training

sets including dispersion (16 and 84 percentiles). The evolution shown in Fig. 3b is

independent of the attributes included in the classification, and the same trend—regarding

training set size—is found regardless of the dataset studied. Above 20 and 30 % of training

set size, maximum attainable accuracy is reached, and the influence of increasing size is

lessened. A training size of 30 % is therefore used for the calculations hereafter.

Finally, mean accuracy will depend on the building information (attributes) incorpo-

rated to train the machine. Keeping this idea in mind, the method was run on the Grenoble

NERA subset, for which several building features are available including those obtained by
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Fig. 3 a Histogram of accuracy for 30 % training set and 2,000 runs. b Evolution of accuracy and
dispersion for different training set sizes. Accuracy increases and dispersion decreases as training size
increases up to approximately 25 %; then, it stabilizes at the final value. The lower-limit is the accuracy
obtained if all classes are simply assigned to the most probable class (bottom green line). The maximum
possible accuracy is obtained using 100 % of data for training and testing on the same set (upper-limit red
line)
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processing remote sensing data. Each test involved different attributes, different numbers

of attributes, and their combinations. In order to capture only the individual influence of

these attributes on the accuracy of the estimation, exactly the same NERA building dataset

and training set size (30 %) were used throughout.

The characteristics obtained by the NERA survey (i.e., construction period and number

of floors) proved to be the basis of a relatively good classification and should always be

included to achieve acceptable accuracy of 62.4 % in the estimation of EMS98 vulnera-

bility class (buildings correctly classified) (Fig. 4a). By adding roof shape, a parameter

obtained by processing aerial images, accuracy is improved slightly to 63.5 %. The shape

of the roof is indirectly related to construction material. Accuracy is not enhanced dras-

tically, since indirect construction material information might be also included in the other

two attributes. In other words, the added information is not completely independent

(Fig. 4b). Note that many features can be extracted from remotely sensed data, but not all

are independent and therefore add no new information for the classifier to work with. Out
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in x-axis range in Fig. 4d)

1118 Nat Hazards (2015) 76:1111–1141

123



of the fifteen image-processing attributes available in NERA subset, only three produced a

significant improvement of accuracy: width of the mean area-enclosing rectangle of the

building footprint, shared wall ratio, and finally, average distance to nearest buildings.

These three features represent the shape of urbanization. For example, average distance to

nearest building is as sort of measurement of building density, a low-average distance

indicates a cluster of buildings close to each other. By adding these pieces of information

to the process, mean accuracy reaches 71.2 % of correctly classified buildings (Fig. 4c).

Figure 4 shows a general trend: the addition of more (independent) information on

buildings improves the accuracy of the method. In all cases, the dispersion regarding the

random selection of the training set elements is slight. Furthermore, 80 % of the mis-

classified buildings are labelled with a vulnerability class neighboring the correct one. The

confusion matrix shows most values immediately bordering the diagonal and zero else-

where (Table 1). Since the classifier struggles to ‘‘differentiate’’ nearby classes clearly, the

effect of merging them was studied by reducing the multiclass problem from six to only

three classes. Classes A and B were joined to make class 1, C and D form class 2, and E

and F class 3. Classifier accuracy increased drastically, reaching 94 % of correctly

assigned buildings (Fig. 4d). For this last example, it is worth noticing that even if

accuracy in classification increases drastically, this does not mean that accuracy in vul-

nerability evaluation increases too, since we have a rougher vulnerability classification. For

the rest of this study, a six-class classification is used.

3.1.2 Second phase: application to the Grenoble dataset

The second phase is then implemented to obtain the geo-localized distribution of vul-

nerability classes in each IRIS, knowing some attributes for the whole French territory.

Since INSEE data only give information on two building features (per IRIS unit), the SVM

was trained only with the ‘‘number of storeys’’ and ‘‘construction period’’ attributes for the

Grenoble dataset, and then used at the scale of an IRIS unit.

As seen previously, the SVM assigns a class according to the side of the classification

function (hyperplane) on which the point falls. However, classification is not always clear,

even after the hyperplane has been defined in the first phase. For example, if a point falls

Table 1 Example of confusion matrix obtained by SVM on the NERA subset, considering a 30 % training
set corresponding to the median case

A B C D E F

A 52 24 2 0 0 0

B 45 142 7 0 0 0

C 0 3 45 22 0 0

D 0 0 6 10 2 0

E 0 0 0 0 28 0

F 0 0 0 0 0 0

97 169 60 32 30 0 388

Accuracy 0.71

Six classes (A–E) and six attributes (construction period, number of floors, roof shape, width, shared wall
ratio, and average distance to nearest building). Columns correspond to the ‘‘real’’ vulnerability class and
rows to the estimated vulnerability class (e.g., from the 169 class ‘‘B’’ buildings, 24 were assigned as ‘‘A,’’
142 as ‘‘B,’’ and 3 as ‘‘C’’). The values on the diagonal (in bold) are the correctly assigned building classes
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into a clearly divided region of the space, confidence in the classification will be near to

one (or 100 %). But in some cases, confidence is lower for points falling near the

hyperplane. In any case, SVM assigns the value with the highest confidence percentage.

The method allows viewing of the ‘‘confidence’’ at each decision it makes.

Once the machine has been trained and to take this confidence into account, twelve

points representing all the possible combinations of the two attributes (i.e., four categories

of construction period and three ranges of number of floors) were added to the classifi-

cation. A Grenoble Vulnerability Matrix (GVM) was created with the confidence distri-

bution provided by the SVM considering each combination (Table 2). Considering the

values of Table 2 as conditional probabilities to be in an EMS98 class knowing the

building attributes, we calculate

NjðXÞ ¼
X12

1

NjiP XjYið Þ ð1Þ

where Nj(X) is the number of buildings of vulnerability class Xi = {A, B, C, D, E} in each

j IRIS cell, Nji the number of buildings with attributes Yi in j, and P(X|Yi) the value of the

probability given by the GVM proxy for the X ? Yi association (Table 2).

Since IRIS cells are geo-localized throughout France, a vulnerability map of the whole

country can be produced, based on the GVM proxy. Figure 5 shows the vulnerability

classes in Grenoble computed using the GVM proxy, considering (number of floors) and

(construction period). The same main trends as those reported by Gueguen et al. (2007) and

Michel et al. (2012) are also observed in Fig. 5: highest vulnerability in the historic

downtown area, lowest vulnerability around the periphery and heterogeneous intermediate

districts covering all periods of urbanization and mixing masonry and reinforced concrete

buildings. Application of the proxy to the entire country assumes a Grenoble-like urban-

ization nationwide, and this assumption will be tested in Sects. 4 and 5.

3.2 Association rule learning (ARL)

Association rule learning is a popular and well-documented method for discovering rela-

tionships between variables in large databases. Agrawal et al. (1993) introduced

Table 2 GVM proxy

‘‘Confidence’’ values for the
classification of each
combination of attributes in
EMS98 vulnerability classes.
Obtained by SVM applied to the
VULNERALP database with a
30 % training set

fl. floors

INSEE attributes (A) (B) (C) (D) (E)

\1945 and B3 fl. 0.221 0.636 0.103 0.031 0.009

(1945–1970) and B3 fl. 0.074 0.672 0.184 0.054 0.016

(1970–2000) and B3 fl. 0.019 0.205 0.043 0.041 0.691

[2000 and B3 fl. 0.013 0.207 0.021 0.014 0.746

\1945 and (4–5) fl. 0.119 0.660 0.175 0.037 0.009

(1945–1970) and (4–5) fl. 0.011 0.022 0.779 0.163 0.025

(1970–2000) and (4–5) fl. 0.010 0.055 0.069 0.075 0.793

[2000 and (4–5) fl. 0.009 0.065 0.026 0.030 0.871

\1945 and C6 fl. 0.043 0.058 0.802 0.084 0.013

(1945–1970) and C6 fl. 0.013 0.020 0.245 0.685 0.038

(1970–2000) and C6 fl. 0.010 0.026 0.096 0.606 0.261

[2000 and C6 fl. 0.025 0.068 0.101 0.281 0.526
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association rules as if/then statements to help reveal relationships between seemingly

unrelated data in a relational database or other information repository. Riedel et al. (2014)

presented the method and its application to France using a reduced Grenoble dataset. In

this work, we develop a vulnerability proxy, using the simplified ARL method on this

database of buildings in Grenoble. Structural information (attributes Y) and EMS98 vul-

nerability class (item Xi) allow definition of a conditional matrix between them (the

learning phase). The conditional probability of having class Xi = {A, B, C, D, E} knowing

that an event Y has a nonzero probability (i.e., the probability of Xi, given Y) is the number

denoted by P(X|Y) and defined by

P XjYð Þ ¼ PðX \ YÞ
PðYÞ ð2Þ

Since the attributes available in INSEE are ‘‘number of floors’’ and ‘‘period of con-

struction,’’ our study focuses on these two pieces of information, with the objective of

extending the association to the whole French territory. Using Eq. (2), the vulnerability

class Xi according to EMS98 is then associated with attributes and used as a vulnerability

proxy. Table 3 summarizes the GVM for each conditional probability of being in EMS98

class X, knowing information related to Y. After the learning phase giving the GVM proxy,

the second phase is implemented to obtain a geo-localized distribution of classes Xi in each

IRIS, knowing Y for the whole French territory and using the formula:

Fig. 5 Distribution of the EMS98 vulnerability class in Grenoble computed using the GVM proxy (SVM)
considering INSEE attributes, i.e., construction period and number of floors
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PjðXÞ ¼
P12

1 NjiP XjYið Þ
N

ð3Þ

where Pj(X) is the probability of having vulnerability class Xi = (A, B, C, D, E) in each

j IRIS cell, Nji the number of buildings with attribute Yi in j, N the total number of buildings

in IRIS j, and P(X|Yi) the value of the probability given by the GVM proxy for the X ? Yi

association (Table 3). Figure 6 shows the computed vulnerability classes in Grenoble

together with a comparison of the results of computed vulnerability using ARL and SVM.

Similar results are found, and the general trends of urbanization can also be observed. For

each IRIS unit in Grenoble, the ratio between the number of buildings in each vulnerability

class obtained using the ARL proxy and the number obtained used the SVM proxy is also

shown in Fig. 6. The average ratio for the city, while close to unity, is higher than 1 for the

most vulnerable classes and lower for the least vulnerable classes. This suggests that,

compared with SVM, ARL predicts more buildings of the more vulnerable classes and

fewer of the less vulnerable classes. For a particular earthquake scenario, and on the

broader scale, greater estimated damage would be expected if vulnerability was estimated

using ARL rather than SVM, as will be shown in Sect. 5.

4 Validation in the city of Nice

The city of Nice, one of France’s cities most exposed to seismic risk, has undergone

numerous vulnerability evaluations (e.g., Bard et al. 2005; Spence and Lebrun 2006). In

order to validate the GVM proxies, seismic damage in Nice was predicted using both GVM

proxies applied to INSEE data (obtained by SVM and ARL) and with the vulnerability

indexes obtained by the RiskUE method. Validation was achieved by comparing the

damage rate computed at the macroscale for different seismic scenarios. For the RiskUE

analysis, vulnerability is measured in terms of a vulnerability index (Iv), which is defined

taking into account the structural characteristics of buildings and adjusted according to

damage observed during earthquakes in Italy. The hazard is described in terms of ma-

croseismic intensity, according to the European Macroseismic Scale EMS98. The

Table 3 Conditional probabili-
ties for each EMS98 vulnerability
class according to building
attributes

Obtained by the learning phase
applied to the VULNERALP
database (GVM proxy)

fl. floors

INSEE attributes P(A) P(B) P(C) P(D) P(E)

\1945 and B3 fl. 0.390 0.483 0.086 0.039 0.002

(1945–1970) and B3 fl. 0.008 0.818 0.131 0.036 0.008

(1970–2000) and B3 fl. 0.000 0.345 0.005 0.010 0.641

[2000 and B3 fl. 0.000 0.200 0.000 0.000 0.800

\1945 and (4–5) fl. 0.113 0.556 0.289 0.042 0.000

(1945–1970) and (4–5) fl. 0.000 0.008 0.803 0.174 0.015

(1970–2000) and (4–5) fl. 0.000 0.000 0.016 0.000 0.984

[2000 and (4–5) fl. 0.000 0.000 0.000 0.000 1.000

\1945 and C6 fl. 0.000 0.029 0.912 0.059 0.000

(1945–1970) and C6 fl. 0.000 0.000 0.396 0.604 0.000

(1970–2000) and C6 fl. 0.000 0.000 0.017 0.521 0.462

[2000 and C6 fl. 0.000 0.000 0.100 0.250 0.650
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correlation between seismic input and expected damage, as a function of the assessed

vulnerability, is described by the analytical function

lD ¼ 2:5 1þ tanh
IEMS98 þ 6:25Iv � 13:1

2:3

� �
ð4Þ

where lD is the average observed damage in buildings of the given vulnerability index Iv

and subjected to a given macroseismic intensity. EMS98 characterizes damage according

to six levels (Dk with k = 0, 1, 2, 3, 4, 5), ranging from D0 (no damage) to D5 (complete

destruction). To take into account the variability of the damage level k in a set of buildings,

Lagomarsino and Giovinazzi (2006) assume a binomial distribution.

Therefore, the probability P(Dk) of observing each damage level Dk (k = 0–5) for a

given mean damage lD is evaluated according to the probability function of the binomial

distribution, namely

PðDkÞ ¼
5!

k! 5� kð Þ!
lD

5

� �k

1� lD

5

� �5�k

ð5Þ

In Nice, the RiskUE project identified 27 zones considered homogeneous for vulnera-

bility assessment (Fig. 7, top left). A random sample of buildings was selected to assess the

vulnerability of each zone, with Iv between 0.365 and 0.849. Each zone was then geo-

localized and characterized by an average vulnerability Iv and a probable range Iv
max -

Iv
min. The spatial distribution of the EMS98 vulnerability classes deduced from the GVM

proxy (SVM) is given in Fig. 7. Vulnerability is heterogeneous between IRIS cells, but the
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Fig. 6 Distribution of the EMS98 vulnerability class in Grenoble computed using the GVM proxy (ARL)
considering INSEE attributes, i.e., construction period and number of floors. Comparison between estimated
vulnerability classes using ARL and SVM proxies. For each IRIS unit and for each vulnerability class, the
ratio between the number of buildings estimated by ARL and the number estimated by SVM is shown (gray
dots). The average ratio for the city is shown in blue dots
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traditional trends observed in European urban centers are also observed in Nice, i.e., a

more vulnerable, historic downtown area, and more modern, less vulnerable suburban

areas. The methods used by INSEE and RiskUE to divide the city into zones are not the

same; therefore, comparison is made at the scale of the city.

For the EMS98 scale, the frequency of expected damage is defined by linguistic terms

(‘‘few,’’ ‘‘many,’’ ‘‘most’’ buildings). The definitions provided by EMS98 can be regarded

as damage matrices (Table 4, top). Lagomarsino and Giovinazzi (2006) proposed a

numerical translation for these qualitative terms such as: ‘‘some’’ (5 %), ‘‘many’’ (35 %),

and ‘‘most’’ (80 %). On this basis, damage matrices are established giving the occurrence

probability distribution P(D = Dk) for each intensity as a function of building vulnerability

(Table 4, bottom). Damage to buildings occurs from intensity V, with D1 damage grade

affecting some buildings of classes A and B (Grunthal and Levret 2001). These matrices

have to be completed for the damage range for which there is no definition, since the sum

of the different damage grades must be equal to one for each intensity. According to

EMS98, we assume (1) a monotonically decreasing function at a high damage level Dk; (2)

a normal distribution of probabilities around the mean damage grade for an intermediate

level of damage; and (3) a monotonically increasing function at a low damage level Dk. For

example, for buildings in class A and intensity VII, EMS98 says that ‘‘many (35 %)

buildings in vulnerability class A suffer grade 3 damage and a few (5 %) suffer grade 4

damage.’’ The remaining 60 % are distributed over the lower levels of damage to propose a

continuous, smoothed probability function of damage (Riedel et al. 2014).

The probability of occurrence of damage Dk for intensities V–XII, computed using

RiskUE and the GVM proxies (i.e., ARL and SVM), averaged at the scale of the city, is

shown in Fig. 8. The median Iv is used for RiskUE while the probabilities estimated using

the range Iv
max and Iv

min are shown as dotted black lines (uncertainty range). For GVM

methods, the proxy giving the median accuracy is used, while the estimations using the

Fig. 7 Application of the GVM proxy to the city of Nice. Distribution of the seismic vulnerability index
computed by the RiskUE method (top left). Distribution of the EMS98 vulnerability classes in Nice
computed by the GVM SVM proxy
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proxy giving 16 and 84 percentile accuracy are plotted as dotted lines. Note that the values

change so little that the curves overlap. Overall, slight differences are observed between

the methods. Nevertheless, at the macroscale and for the intensities causing damage, the

orders of magnitude of damage occurrence probability are quite similar. Although the

GVM proxy was defined for a Grenoble-like environment, the damage prediction provides

reliable information at the first order. Moreover, the simplified approach of computing the

distribution of vulnerability class per IRIS based on just two very simple attributes allows

generalization to the whole of the French territory, ultimately producing a geo-localized

assessment of vulnerability.

5 Historic earthquake simulations

Once the seismic vulnerability of a region is estimated, probable damage to buildings can

be assessed for any given seismic demand input. In this section, damage is modelled for a

few historic earthquakes in France to enable (1) the estimation of damage if the same (or

similar) earthquake were to strike today, using actual vulnerability; (2) validation of the

model on the basis of damage estimations, using vulnerability at the time of the

earthquake.

France is characterized by moderate seismicity, and destructive earthquakes are rare.

Comparing modelled and real damage is not easy since the information concerning damage

Table 4 EMS98 macroseismic scale. Implicit damage probability matrix for vulnerability class A (top).
Damage occurrence probability from EMS98 for vulnerability class A and macroseismic intensity from IV
to XII (bottom)

I D1 D2 D3 D4 D5

IV – – – – –

V Few – – – –

VI Many Few – – –

VII – – Many Few –

VIII – – – Many Few

IX – – – – Many

X – – – – Most

XI – – – – –

XII – – – – –

I D0 D1 D2 D3 D4 D5

IV 1.00 0.00 0.00 0.00 0.00 0.00

V 0.95 0.05 0.00 0.00 0.00 0.00

VI 0.60 0.35 0.05 0.00 0.00 0.00

VII 0.05 0.20 0.35 0.35 0.05 0.00

VIII 0.00 0.05 0.20 0.35 0.35 0.05

IX 0.00 0.00 0.05 0.25 0.35 0.35

X 0.00 0.00 0.00 0.00 0.20 0.80

XI 0.00 0.00 0.00 0.00 0.00 1.00

XII 0.00 0.00 0.00 0.00 0.00 1.00
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observation is old, sparse, and often imprecise. Nonetheless, for some historic earthquakes,

quantitative information on observed damage can be retrieved (SisFrance, http://www.

sisfrance.fr; Scotti et al. 2004), although the type of damage is not well detailed. Two of

the best-documented historic French earthquakes are modelled in this section, using the

macroseismic intensities observed as the seismic demand. For this evaluation, it is assumed

that MSK reported intensities coincide with EMS98 scale intensities. This analysis, carried

out as an example focused on the seismic vulnerability, eliminates the difficulties of

simulating ground motion using prediction equations. Evaluation of the effects of a historic

event occurring at the present time allows representation of the evolution of vulnerability

over time.

5.1 Lambesc earthquake (1909)

The historic Lambesc earthquake, which hit southeastern France in June 1909, is probably

the strongest earthquake in the recent history of France. This earthquake produced ma-

croseismic intensities MSK between VIII and IX in the epicentral area (Fig. 9), 30 km

from Marseille. Its magnitude was recently re-appraised and estimated at around 6.0

(Baroux et al. 2003). It was a shallow depth earthquake (less than 10 km), and it was felt

Fig. 8 Prediction of damage in Nice using RiskUE (black continuous line) with its uncertainty range (black
hidden line) and using GVM proxy methods, i.e., ARL (red continuous line) and SVM (blue continuous
line) for intensity scenarios ranging from V to XII
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more than 300 km from the epicenter. 46 casualties and about 250 injured were reported

after the event and referenced in the SisFrance database (Scotti et al. 2004). In terms of

losses, Lambert (1997) reported serious damage to buildings in different cities within the

region affected. This earthquake is all the more important since it served as a scenario in

1982 to forecast seismic losses and casualties, taking into account urbanization evolutions

between 1909 and 1982. The results provided information that increased the awareness of

the authorities, an element (among others) that led to the establishment of the modern

national earthquake rules for construction design, published about 15 years later.

In our analysis, we consider an area including all sectors with a macroseismic intensity

above IV. In total, the studied area represents 4,162 IRIS cells, covering a large part of

southeastern France. Using the GVM proxies calculated using the two data mining

methods, ARL and SVM, the vulnerability class distribution was computed from INSEE

data. Since the INSEE database gives the distribution of buildings present in 2008

according to the period of construction, and no information on the inventory of past—and

now nonexistent—buildings, we assume that the number of buildings per IRIS corresponds

to the buildings that were present in each period. We thus accept a slow rate of replacement

and are able to provide an approximate simulation of the damage produced by the 1909

Lambesc earthquake, assuming that the buildings present in 1915 and still existing in 2008

were those present in 1909. We did not take into account the possible retrofitting or

modifications of existing structures, as well as some special structural characteristics (e.g.,

short column, soft story, and irregularities). These characteristics certainly affect the

seismic vulnerability of buildings, but for a macroscale evaluation, they are not available in

national census and they cannot be obtained through the processing of aerial/satellite

images.

The temporal evolution of seismic vulnerability can be assessed for different periods

of construction in order to visualize the effects of the rate of urbanization on seismic

Fig. 9 Isoseists contour lines and intensity domains (on MSK scale) for the historic 1909 Lambesc
earthquake (SisFrance catalogue, BRGM, EDF, IRSN)
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vulnerability. In general, probabilities for high vulnerability classes are reduced with

time, and probabilities for the less vulnerable classes increase, reflecting the construction

of new buildings that are less vulnerable. However, in terms of numbers, vulnerable

buildings (classes A and B) still represent a large portion of the total buildings. Fur-

thermore, the evolution of the number of buildings for the considered IRIS cells is

significant, with more than 160,000 new constructions between 1945 and 2008, which is

also coherent with the urbanization rate observed in Grenoble and reflecting the post-

World War II needs for housing. New buildings are, in general, less vulnerable, thanks to

the use of reinforced concrete rather than masonry and the application of new building

codes, introduced after the 1970s. The number of buildings for each EMS98 damage

grade D0–D5 (or damage probability) is computed by crossing the GVM proxy applied to

the INSEE attributes and using the 1909 macroseismic intensity curves as seismic

demand, as follows:

NDk

j;IEMS98
¼
Xi¼F

i¼A

NjiP Dkji; IEMS98ð Þ ð6Þ

where NDk

j;IEMS98
is the number of buildings with damage grade Dk (k = 0–5) for each j IRIS

cell and intensity IEMS98. Nji is the number of buildings of vulnerability class i (i = A–F)

for IRIS j, and PðDkji; IEMS98Þ, the probability of damage grade Dk of a vulnerability class

i building for a given macroseismic intensity EMS98 (e.g., values of Table 4, bottom for

class A). IRIS units not entirely within an iso-value (i.e., intersected by an isoseist line) are

divided according to the surface ratio and thus have two intensity values. The number of

buildings is distributed in proportion to the area of each subunit and respecting the vul-

nerability class distribution inside the original IRIS.

The number of buildings in each damage grade according to the ARL proxy is displayed

on Fig. 10 and according to the SVM proxy on Fig. 11. They are grouped into three classes

according to the EMS98 scale: slight damage (D1), moderate damage (D2 ? D3), and

serious damage (D4 ? D5). Figures 10a and 11a represent the number of buildings in each

class of damage for the 1909 earthquake affecting dwellings built before 1915. The highest

damage computed is localized close to the epicenter, which is where the highest intensities

are found. Between 170 and 240 buildings suffer heavy damage, while between 2,600 and

2,700 are estimated as suffering moderate damage, the rest being distributed over the

studied area. The historic information from 1909 concerning cities close to the epicenter

enables a reliable estimate of the damage consequences, considering either the whole area

or just the cities for which specific historic descriptions are available (Table 5). In this

regard, our method allows the estimation of probable damage for each IRIS unit, therefore

for each city or town.

Table 5 compares the number of buildings damaged according to historic information

(from SisFrance archives) and the number simulated using GVM proxies from ARL and

SVM methods using the 1915 catalogue of buildings. Slight differences exist, which may

reflect the iso-intensity curves considered as seismic ground motion and especially the

differences between the 2008 inventory of buildings built before 1915 and the actual state

of urbanization in 1909. Nevertheless, we can assume that the damage obtained is

appropriate in terms of damage estimation on the macroscale. The lack of more accurate

descriptions of historic damage and information on urbanization at the time prevents better

comparison. Estimations using the GVM proxy obtained with SVM seem to be closer to

the damage observed, while estimations with the ARL proxy are more conservative, giving

a larger number of damaged buildings.
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Finally, the simulation can be continued by forecasting the impact of a future earth-

quake with the same characteristics as the 1909 Lambesc earthquake (i.e., same location

and same macroseismic intensity) on the state of urbanization in 2008 (Figs. 10b, 11b). In

2008, the region suffering macroseismic intensity V or higher during the 1909 earthquake

had more than 1.10 million buildings and a population of more than five million. 60 % of

buildings were vulnerability class B or C, and classes D and E represent more than 31 %. If

the 1909 earthquake re-occurred in 2008, about 50,000 buildings would be affected with

different levels of severity, i.e., approximately 5 % of the total number of buildings. The

small epicentral area (intensities VII and VIII) includes more than 14,000 damaged

buildings, representing 44 % of the buildings present in this area. All the buildings suf-

fering heavy damage and 81 % of those suffering moderate damage are within this area.

Overall, if the same earthquake occurred again, it would cause more damage in terms of

number of buildings for any damage type, closely linked to the urbanization growth

Fig. 10 Evaluation of the level of damage for the Lambesc earthquake scenario considering a 1909
urbanization (left column) and b 2008 urbanization (right column), using the GVM proxy obtained from
ARL. Damage is grouped by slight D1 (top row), moderate D2 ? D3 (middle row), and severe D4 ? D5

(bottom row) according to the EMS98 damage scale
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Fig. 11 Evaluation of the level of damage for the Lambesc earthquake scenario considering a 1909
urbanization (left column) and b 2008 urbanization (right column), using the GVM proxy obtained from
SVM. Damage is grouped by slight D1 (top row), moderate D2 ? D3 (middle row), and severe D4 ? D5

(bottom row) according to the EMS98 damage scale

Table 5 Comparison between damage observed during the 1909 Lambesc earthquake (historic records
SisFrance) and simulated damaged using the GVM proxy obtained by ARL and SVM methods

City or town Observed Simulated (ARL) Simulated (SVM)

Lambesc (Repic = 5 km) 600 damaged 361 D1?2?3 376 D1?2?3

50 destroyed 77 D4?5 58 D4?5

Rognes (Repic = 3 km) 250 damaged 172 D1?2?3

18 D4?5

173D1?2?3

14 D4?5

Saint-Canat (Repic = 4 km) 310 damaged 148 D1?2?3 152 D1?2?3

50 heavy damaged 28 D4?5 21 D4?5

La R. d’Anthéon (Repic = 7 km) 110 heavy damaged 127 D1?2?3

3 D4?5

124 D1?2?3

2 D4?5

Aix-en-Provence (Repic = 20 km) 1,500 damaged 1,409 D1?2?3

25 D4?5

1,433 D1?2?3

18 D4?5

D1?2?3 total number of buildings with damage grade D1, D2 or D3
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between 1909 and 2008 (increased number of buildings with a high percentage of vul-

nerable classes before 1970). As shown in Figs. 10b and 11b, the probable number of

heavily damaged buildings doubles, reaching around 430 constructions [only a few

buildings are completely destroyed (D5)], and the number suffering moderate damage

triples, with 9,400 buildings affected for the entire region. 40,000 buildings are expected to

suffer slight damage, characterized by hairline cracks in very few walls, falling chimneys

or small pieces of plaster, according to the EMS98 damage description.

A comparison between ARL and SVM damage estimations for the Lambesc earthquake

scenario in 2008 is shown in Fig. 12. The difference between the percentage of buildings

damaged in each IRIS unit estimated using ARL and the percentage estimated using SVM

is represented in a histogram for each damage level. The ARL method gives slightly higher

percentages (or number of damaged buildings) especially for the lower damages grades.

5.2 Arette earthquake (1967)

Another of most violent events experienced in France during the twentieth century occurred

in August 1967 in Arette, in the western Pyrenees near the French–Spanish border. With a

magnitude estimated at 5.8 ML (Rothé and Vitart 1969), this earthquake produced a ma-

croseismic intensity MSK of VIII in the epicentral area (Fig. 13). It was felt in an area with a

radius of 220 km from the epicenter and caused 1 death, 15 injured, and major damage to

buildings. This analysis considers the area including all sectors with a macroseismic intensity

of more than IV on the French side of the border with Spain (1,092 IRIS units).

Vulnerability class distribution is computed following the same procedure as before

(Eq. 6) and using the 1967 macroseismic intensity curves as seismic demand. We provide

an approximate simulation of the damage caused by the Arette earthquake in 1967, con-

sidering buildings built before 1970 and existing in 2008 as those present in 1967. The

number of buildings in each damage grade according to the ARL proxy is displayed on

Fig. 14 and according to the SVM proxy on Fig. 15. Figures 14a and 15a show the number

of buildings in each class of damage for the 1967 earthquake affecting dwellings built

before 1970. As for the previously modelled earthquake, the information from 1967

concerning cities close to the epicenter enables a reliable estimate of the damage. Table 6

compares the number of buildings damaged according to historic observations (Rothé and

Vitart 1969—SisFrance) and the number estimated by GVM proxy simulation. In spite of

the differences, the damage caused is also comparable in this case in terms of damage
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Fig. 12 Comparison between ARL and SVM estimated damage for Lambesc earthquake scenario in 2008
and for different damage levels (histogram). Difference between the percentage of buildings damaged at
each IRIS unit estimated using ARL and the percentage estimated using SVM methods. Slight damage D1

(left), moderate damage (middle), strong damage (right). Note change in axis ranges between figures
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estimated on the macroscale. Figures 14b and 15b predict the impact of an earthquake with

the same characteristics as the 1967 Arette earthquake on the state of urbanization in 2008.

The region that experienced macroseismic intensity V or higher during the earthquake

(damage to constructions expected) had about 91,000 buildings and a population of more

than 376,000 in 2008. If the 1967 earthquake had re-occurred in 2008, nearly 6,800

buildings would probably have been affected with different levels of severity, i.e.,

approximately 7 % of the total number of buildings. The epicentral area (intensities VII

and VIII) includes more than 1,080 damaged buildings, representing 60 % of the buildings

in the area. Every building with heavy damage and 58 % of those suffering moderate

damage are inside this area. Even if, as for the previous earthquake, the same earthquake

re-occurring in present times would cause more damage (in terms of number of buildings

for any damage type), the increase in the number of buildings affected is smaller. As shown

in Figs. 14b and 15b, the probable number of heavily damaged buildings remains almost

the same, the number of buildings suffering moderate and slight damage increases by 10

and 15 %, respectively. Compared with the Lambesc simulation, the evolution of urban-

ization over this period of 41 years (1967–2008) is obviously less radical than over almost

a century (1909–2008).

Figure 16 shows the comparison between ARL and SVM estimated damage for the

Arette earthquake scenario in 2008. As in the previous case, the ARL method gives a

slightly higher number of damaged buildings for any damage grade, with a median dif-

ference around 0.0035 %.

6 Conclusions

The aim of this paper was to validate a macroscale methodology for seismic vulnerability

assessment, in a situation where only a poor description of construction characteristics

Fig. 13 Isoseists contour lines and intensity domains (on MSK scale) for the historic 1967 Arette
earthquake (SisFrance catalogue, BRGM, EDF, IRSN)
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(with respect to those necessary for an ad hoc analysis) is available for a large number of

buildings. In a moderate seismic-prone region, where it is often difficult to mobilize

resources for the reduction in seismic risk, the idea of using readily available data to

expand the assessment to any given region is obviously of interest. Using the information

available in Grenoble, we propose two vulnerability proxies (GVM proxy) defined using

the ARL and SVM methods. These proxies create a relationship between two building

characteristics (present in the French national census database) and their most probable

EMS98 vulnerability class. Since INSEE data are available for the whole of the French

territory, it is possible to apply the GVM proxy to simulate the impact of historic

Fig. 14 Evaluation of the level of damage for the Arette earthquake scenario considering a 1967
urbanization (left column) and b 2008 urbanization (right column), using the GVM proxy obtained from
ARL. Damage is grouped by slight D1 (top row), moderate D2 ? D3 (middle row), and severe D4 ? D5

(bottom row) according to the EMS98 damage scale
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earthquakes on present-day urbanization and/or to forecast damage levels in the impacted

zone a few seconds after the occurrence of an earthquake. Even though the proxies were

created for France-like environments, their application to other European cities should be

tested. Furthermore, the INSEE dataset provides information on residential buildings only.

No commercial buildings were included in our damage estimations.

The flexibility and adaptability of the method is one of its main advantages. If the

information available is on the scale of a building, the estimation of vulnerability and

damage can obviously be carried out on this same scale. This method can easily be applied

Fig. 15 Evaluation of the level of damage for the Arette earthquake scenario considering a 1967
urbanization (left column) and b 2008 urbanization (right column), using the GVM proxy obtained from
SVM. Damage is grouped by slight D1 (top row), moderate D2 ? D3 (middle row), and severe D4 ? D5

(bottom row) according to the EMS98 damage scale
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anywhere provided basic information on the buildings is available. We show the adapt-

ability of the method regarding the information available. Having more (or more detailed)

independent attributes during the training phase increases the accuracy of the vulnerability

class estimation. For example, national census information, satellite or airborne photo-

graphs, and cadastral data are cheap sources of information available over a large scale,

and further exploration of the impact of urban parameters on vulnerability could be tested

in more detail in the future. According to our analysis, SVM provides a better estimate of

damage classification compared with historic data. Unfortunately, historic descriptions of

damage are sparse and imprecise, and the effectiveness of SVM compared with the ARL

method must be confirmed.

The technique was validated in Nice and finally tested for two historic earthquakes that

caused damage in France. Although the attributes describing the buildings are very basic,

the analyses provide results that confirm the suitability of our solution, providing reliable

estimates of damage for earthquake scenarios. EMS98 intensity scale can be closely

considered as a definition of the ground motion since it includes in its definition the seismic

vulnerability of buildings. In this study, validations of the method were performed with

historic earthquakes and based on reported macroseismic intensities considered as ground

motion. Forecasted intensities as produced by ShakemapTM might be available minutes

after an earthquake.

In Nice, a more sophisticated method (RiskUE), based on a relatively detailed

description of structural features and using macroseismic intensity as the ground motion

parameter, produced similar levels of damage across the city.

Because of the lack of elements of comparison and the shortage of details about historic

damage, it is difficult to quantify the assessment errors that might be obtained for a given

earthquake. However, the data mining method, which consists in defining the best rela-

tionship between attributes and vulnerability class during the learning phase, appears to be

well suited to the large-scale assessment of seismic vulnerability and thus to the simulation

of seismic damage. We were able to highlight certain obvious trends, such as the reduction

in the proportion of vulnerable buildings with the development of urbanization. We also

confirmed and quantified the increasing effects of earthquakes in terms of damage, mainly

due to the explosion of urbanization and urban concentrations in certain areas prone to

Table 6 Comparison between damage observed during the 1967 Arette earthquake (SisFrance) and
damaged simulated using the GVM proxy obtained by ARL and SVM methods

City or Town Observed Simulated (ARL) Simulated (SVM)

Basses_Pyrénées (global) 2,283 damaged 5,319 D1?2 5,229 D1?2

340 heavy damaged
or destroyed

189 D3

38 D4?5

160 D3

29 D4?5

Arette, Lanne and Montory
(epicentral area)

40 % heavy damaged
or destroyed

270 D1?2

104 D3?4?5 (22 %)
269 D1?2

95 D3?4?5 (20 %)

Arette (Repic = 6 km) Many heavy damaged
some destroyed

150 D1?2

30 D3 (11 %)
6 D4?5 (2 %)

146 D1?2

28 D3 (10 %)
6 D4?5 (2 %)

Montory (Repic = 2 km) All slight damaged
40 heavy damaged

51 D1?2

35 D3?4?5 (total 87 %)
53 D1?2

32 D3?4?5 (total 86 %)

Lanne (Repic = 0.5 km) Many damaged
some destroyed

94 D1?2?3 (75 %)
8 D4?5 (6 %)

93 D1?2?3 (74 %)
6 D4?5 (5 %)
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seismic hazard. For example, in the Lambesc region, if the 1909 earthquake had occurred

in 2013, there would have been serious consequences in terms of casualties and economic

losses: 430 buildings would have suffered severe levels of damage (D4 and D5), a dozen

buildings would have been completely destroyed (D5), and more than 9,400 buildings

would have been affected by moderate damage (D2 and D3). Even over a period of

40 years, urbanization development increases the seismic risk of a region (Arette earth-

quake simulation). We observed a strong increase in damage, even for an earthquake of

moderate magnitude, with levels comparable to those observed during earthquakes of

similar magnitude in L’Aquila in Italy or Christchurch, New Zealand. It is clear that with a

smaller information sample (attributes/vulnerability classes), a particular machine or proxy

may be developed for any location to estimate regional damage. These elements are

essential to enable the evaluation of economic and human losses. Once the distribution of

vulnerability classes is known, the consequences in terms of damage can be simulated

rapidly after an earthquake, providing an additional element to the simulation of ground

motion via ShakemapTM for a seismic warning system.
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Appendix

Support vector machine definitions (SVM)

For the sake of simplicity, a formal definition of the linear binary case is first presented.

The nonlinear case (still binary) is then studied. At last, the multiclass case is considered

(n-class classification problem). Definitions are built following Teukolsky et al. (2007) and

Cortes and Vapnik (1995).

Linear classification

Before entering into the mathematical definitions, a qualitative graphical description will

help understanding the basic foundation of the method. Given some data points belonging

to one of two classes (binary problem), viewed as p-dimensional vectors (a list of

Comparison bewtween ARL and SVM  estimated damage for Arette Earthquake in 2008
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Fig. 16 Comparison between ARL and SVM estimated damage for the Arette earthquake scenario in 2008
and for different damage levels (histogram). Difference between the percentage of buildings damaged in
each IRIS unit estimated using ARL and the percentage estimated using the SVM method. Slight damage D1

(left), moderate damage (middle), severe damage (right). Note the change in axis ranges between figures
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p numbers) for SVM, many planes might exist that classify the data (Fig. 17). Intuitively, a

good separation is achieved by the plane that has the largest distance to the nearest training

data point of any class (so-called functional margin), since in general the larger the margin

is, the lower the generalization error of the classifier. Therefore, the basic idea is to choose

the plane so that the distance from it to the nearest data point on each side is maximized.

Given some training data D, a set of points of the form

D ¼ fðxi; yiÞjxi 2 R
p; yi 2 �1; 1f ggn

i¼1

where the yi is either 1 or -1, indicating the class to which the point xi belongs. Each xi is

a p-dimensional real vector. We want to find the maximum-margin hyperplane that divides

the points having yi ¼ 1 from those having yi ¼ �1. Any hyperplane can be written as the

set of points x satisfying

w � xþ b ¼ 0

where � denotes the dot product and w the normal vector to the hyperplane. The parameter
b
wk k determines the offset of the hyperplane from the origin along the normal vector w

(Fig. 18). If the training data are linearly separable, we can select two hyperplanes in a way

that they separate the data and there are no points between them, and then try to maximize

X2

X1

A B

C

Fig. 17 Different separating
hyperplanes. A does not separate
the classes. B does, but only with
a small margin. C separates them
with the maximum margin

w

 w.x 
+ b = 0

 w.x 
+ b = -1

 w.x 
+ b = 1 ||w||

2

||w||
b

X1

support 
vectors

X2
Fig. 18 Maximum-margin
hyperplane and margins for an
SVM after training with samples
from two classes. Samples on the
margin are called the support
vectors
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their distance. The region bounded by them is called ‘‘the margin.’’ These hyperplanes can

be described by the equations (see Fig. 18)

w � xþ b ¼ 1 and w � xþ b ¼ �1

By using geometry, we find the distance between these two hyperplanes is 2
wk k, so we

need to minimize wk k. As we also have to prevent data points from falling into the margin,

we add the following constraint: for each i either

w � xi þ b� 1 for xi of the first class; or

w � xi þ b� � 1 for xi of the second class

This can be rewritten as

yiðw � xi þ bÞ� 1 for all 1� i� n

The optimization problem is then posed as:

Minimize(in w; bÞ wk k; subjected to ðfor any i ¼ 1; . . .; nÞ yiðw � xiÞ� 1

To simplify the problem, it is possible to alter the equation by substituting wk k, the norm of

w, with 1
2

wk k2
without changing the solution (the minimum of the original and the modified

equation has the same w and b). This is a quadratic programming optimization problem.

Minimize(in w; bÞ 1
2

wk k2; subjected to ðfor any i ¼ 1; . . .; nÞ yiðw � xiÞ� 1

In mathematical optimization, the method of Lagrange multipliers is a strategy for

finding the local maxima and minima of a function subject to equality constraints.

By introducing Lagrange multipliers a, the previous constrained problem can be

expressed as

min
w;b

max
a� 0

1

2
wk k2�

Xn

i¼1

ai½yi w � xi þ bð Þ � 1�
( )

This problem can now be solved by standard quadratic programming techniques and

programs. The ‘‘stationary’’ Karush–Kuhn–Tucker condition implies that the solution can

be expressed as a linear combination of the training vectors

w ¼
Xn

i¼1

aiyixi

Only a few ai will be greater than zero. The corresponding xi is exactly the support

vector that lies on the margin and satisfies

yi w � xi þ bð Þ ¼ 1

From this, we can derive that the support vectors also satisfy

w � xi þ b ¼ 1

yi

¼ yi , b ¼ w � xi � yi

which allows defining the offset b. In practice, it is more robust to average over all support

vectors Nsv
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b ¼ 1

Nsv

XNsv

i¼1

ðw � xi � yiÞ

A modified maximum-margin idea was proposed, allowing for mislabelled examples. If

there exists no hyperplane that can split the examples (some points may fall within the

margins), the Soft Margin method will choose a hyperplane that splits the examples as

cleanly as possible, while still maximizing the distance to the nearest cleanly split

examples. The method introduces slack variables fi, which measure the degree of mis-

classification of the data xi.

yi w � xi þ bð Þ� 1� fi 1� i� n

The optimization becomes a trade-off between a large margin and a small error penalty.

The final equation leads to a quadratic programming solution. The membership decision

rule is based on the sign function, and the classification is done by ynew ¼ sgn w � xnew þ bð Þ
where ðw; bÞ are the hyperplane parameters found during the training process, and xnew is

an unseen sample.

Nonlinear classification

In addition to performing linear classification, SVMs can efficiently perform nonlinear

classification using what is called the kernel trick, implicitly mapping their inputs into

high-dimensional feature spaces. For machine learning algorithms, the kernel trick is a way

of mapping observations from a general set S into an inner product space V, in the hope that

the observations will gain meaningful linear structure in V. Linear classifications in V are

equivalent to generic classifications in S. The trick to avoid the explicit mapping is to use

learning algorithms that only require dot products between the vectors in V, and choose the

mapping such that these high-dimensional dot products can be computed within the ori-

ginal space, by means of a kernel function. The resulting algorithm is formally similar, and

the maximum-margin hyperplane can be fitted in the transformed feature space. The

transformation may be nonlinear, and the transformed space was high dimensional;

therefore, even if the classifier is a hyperplane in the high-dimensional feature space, it

may be nonlinear in the original input space (Fig. 19). There exist several choices of kernel

O(x)

Original space (S) Transformed space (V)
2-D 3-D

H (linear)H (non-linear)

Fig. 19 Kernel machine. The separation surface can become linear when feature vectors are mapped in a
high-dimensional space (here 3D—right) while it may be nonlinear in the original input space (here 2D—
left)
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function k. The Kernel is related to the transform /ðxiÞ by the equation

kðxi; xjÞ ¼ /ðxiÞ � /ðxjÞ.
Generally, the Gaussian kernel is a common good choice kðxi; xjÞ ¼

exp � 1
2
jxi � xjj2=r2

� �
, and it proved to give the best results in our study. Therefore, the

classifications in this work are done using this kernel.

Multiclass SVM

Even if SVM are intrinsically binary classifiers, in practice several-classes classifications

are usually of interest. Different multiclass classification strategies can be adopted, based

on the binary analysis or the less used ‘‘all-together’’ method. The former is the dominant

approach, which reduces the single multiclass problem into multiple binary classification

problems and can be of the form (among others):

One versus all

Involves training N different binary classifiers, each one trained to distinguish the data in a

single class from the data in all remaining classes. Classification of new instances is done

by a winner-takes-all strategy, in which the classifier with the highest output function

assigns the class.

One versus one

Builds binary classifiers that distinguish between every pair of classes. Classification is

done by a max-wins voting strategy, in which every classifier assigns the instance to one of

the two classes, then the vote for the assigned class is increased by one vote, and finally,

the class with the most votes determines the instance classification. The one-versus-one

classification proved to be more robust in the majority of cases, and showing the best

results is the one selected in our study.
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