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Abstract Expedient prediction of storm surge is required for emergency managers to

make critical decisions for evacuation, structure closure, and other emergency responses.

However, time-dependent storm surge models do not exist for fast and accurate prediction

in very short periods on the order of seconds to minutes. In this paper, a time-dependent

surrogate model of storm surge is developed based on an artificial neural network with

synthetic simulations of hurricanes. The neural network between six input hurricane

parameters and one target parameter, storm surge, is trained by a feedforward backprop-

agation algorithm at each of 92 uniform time steps spanning 45.5 h for each storm. The

basis data consist of 446 tropical storms developed from a joint probability model that was

based on historical tropical storm activity in the Gulf of Mexico. Each of the 446 storms

was modeled at high fidelity using a coupled storm surge and nearshore wave model. Storm

surge is predicted by the 92 trained networks for approaching hurricane climatological and

track parameters in a few seconds. Furthermore, the developed surrogate model is vali-

dated with measured data and high-fidelity simulations of two historical hurricanes at four

points in southern Louisiana. In general, the neural networks at or near the boundary

between land and ocean are well trained and model predictions are of similar accuracy to

the basis modeling suites. Networks based on modeling results from complex inland

locations are relatively poorly trained.
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1 Introduction

Recent storms have produced devastating flooding by hurricane-generated storm surge,

wave setup, wave run-up, and rainfall-induced runoff. Emergency managers require fast

and accurate estimates of inundation to make critical decisions for evacuations, structure

closures, and emergency response before, during, and after storm landfall. Emergency

managers’ decisions directly impact the safety of the public and emergency responders. If

the decisions are too conservative, unnecessary evacuation can lead to significant socio-

economic costs and complacency. On the other hand, insufficient warning leads to a wide

array of social impacts potentially including wide spread casualties.

Key emergency management decisions must be made more than 24 h in advance of

storm landfall. The NOAA National Hurricane Center (NHC) provides forecast of the

hurricane track, storm size, and intensity including significant uncertainty. Emergency

managers routinely rely on the NHC’s storm surge forecasts. These forecasts are made

using ensemble runs of the low-fidelity numerical storm surge model SLOSH (Sea, Lake,

and Overland Surges from Hurricane, Jelesnianski et al. 1992). The SLOSH model used by

the NHC is computationally efficient and stable. For emergency management decisions on

a regional scale, these predictions are essential and extremely useful (Forbes and Rhome

2012). However, the model lacks fidelity because it lacks near-coast resolution, it neglects

key processes such as wave forcing, and it uses parameterized wind and pressure fields for

forcing (Blain et al. 1994; Resio and Westerink 2008; Kerr et al. 2013). As discussed in

Forbes and Rhome (2012), the NHC SLOSH predictions are satisfactory for regional surge

prediction considering that average track prediction errors exceed 40 miles at 24 h from

landfall and 70 miles at 48 h.

On the other hand, the US Army Corps of Engineers (USACE) Coastal and Hydraulics

Laboratory (CHL) has led application of coupled high-fidelity wave and surge modeling

with intense development since Hurricane Katrina (e.g., IPET 2007). A coupled ADCIRC

(ADvanced CIRCulation model: Luettich et al. 1992; Westerink et al. 1992) for storm

surge modeling with WAM (WAve prediction Model: WAMDI Group 1988) and

STWAVE (Steady-State Spectral Wave Model: Smith et al. 2001) for wave modeling

(FEMA 2007; IPET 2007; LACPR 2009) has been used to produce highly accurate sim-

ulations of hurricane inundation. Coupled model validation has been run for Hurricanes

Katrina, Gustav, and Ike (IPET 2007; LACPR 2009). The USACE Coastal and Hydraulics

Laboratory routinely runs the coupled ADCIRC–STWAVE model known as CSTORM-

MS in a forecast mode in order to provide USACE emergency managers with high-fidelity

forecasts for operations involving flood gates, pump stations, and similar functions as well

as general operational coordination and health and safety functions in coordination with

FEMA and state and local governments (http://chl.erdc.usace.army.mil/chl.aspx?p=s&a=

Spotlight;12). Dietrich et al. (2013) provide a summary of a similar system. In addition to

high fidelity, these models can provide inundation depths and surge, as well as waves,

winds, and currents over the grids. Unfortunately, the increased complexity of the high-

fidelity models, the additional wave forcing process, and the increased number of com-

putational points produce a large computational demand. Thousands of hours of CPU time

are required for each simulation. For flood prediction, CSTORM-MS is usually run with

H*Wind wind and pressure fields from NOAA (Powell et al. 2010) or something similar.

These wind fields are typically provided well into the NOAA 6 h advisory update period

resulting in limited time available from update to update for high-fidelity forecast runs. So

using high-performance computers, multiple simulations of an approaching hurricane for

probabilistic analysis are not presently feasible. In order to run multiple realizations or run
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a new between-update realization given a change in hurricane conditions, a compromise

would be required that reduces the fidelity of the CSTORM-MS coupled model. In addi-

tion, updated wind and pressure fields would not be available. In summary, during a typical

hurricane 6 h NOAA advisory update period, low-accuracy low-fidelity NHC SLOSH

estimates provide the public and emergency managers with region-scale approximate

storm surge estimates while high-fidelity high-accuracy models provide a single deter-

ministic estimate. However, there are no operational estimates in the US that provide high-

fidelity estimates of hurricane response, including inundation, rapidly and in a statistical

context. This leaves emergency managers in an unenviable position when trying to make

critical decisions.

The significant barrier to solving the problem of fast and accurate inundation forecasts is

the huge computational effort required to make accurate forecasts. The Surge and Wave

Island Modeling Study (SWIMS: Smith et al. 2011, 2012) in the USACE developed a

surrogate model to predict peak storm surge and wave height over a gridded domain based

on a moving least-square response-surface methodology with a database of high-fidelity

simulations (Taflanidis et al. 2012, 2013a, b, 2014). Hsieh and Ratcliff (2010) developed

an artificial neural network for prediction of the peak storm surge response for Louisiana.

However, the above surrogate approaches are based on a basis set of peak responses and

cannot deal with time series forecasting of storm surge and wave height at a specific area.

Prediction of the inundation depth hydrograph and associated wave and wind response is

essential for emergency mangers to understand how flooding will develop and recede as

the storm passes. So a time-dependent surrogate model is needed for high-fidelity pre-

diction of hurricane response statistics using machine learning techniques.

Among the machine learning techniques, artificial neural networks have been widely

used for time series forecasting not only storm surge, but also waves and hydrological

variability. Storm surge has been forecast by an artificial neural network with measured

surge data at a single tide gauge and/or meteorological data including surface pressure,

wind forcing, and tidal level estimated by a harmonic analysis or numerical simulation.

While only measured data are used as input neurons in some studies (Makarynskyy et al.

2004; Rajasekaran et al. 2005; Makarynska and Makarynskyy 2008), the measured surge

data and the meteorological data were used in more cases (Lee 2006; Tseng et al. 2007;

Charhate and Deo 2007; Lee 2008; Siek et al. 2008; De Oliveiria et al. 2009; You and Seo

2009; Bajo and Umgiesser 2010; Hsieh and Ratcliff 2010; Chen et al. 2012). The above

methods are virtually all site specific and not effective for predicting real-time time-

dependent storm surge.

Emergency managers and decision makers need a tool to predict real-time storm surge

inundation as a hurricane approaches critical facilities including public facilities, impor-

tance infrastructure, and residential districts. The term real time is used to describe the very

fast prediction of storm surge inundation in advance of storm landfall immediately fol-

lowing the issuance of a NOAA tropical storm advisory. The purpose of this study is to

develop a time-dependent surrogate model in order to quickly and accurately predict time

series of storm surge and storm surge inundation. The time-dependent surrogate model

based on an artificial neural network with the database of high-resolution and high-fidelity

numerical models will be run in very short execution time on the order of seconds with a

stand-alone PC. The fast execution time allows real-time predictions for a range of hur-

ricane conditions and tracks that are statistically plausible, and allows probabilistic sim-

ulations to evaluate risk and support emergency management decision making.
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2 Synthetic hurricanes

2.1 Simulation of synthetic hurricanes

A set of 446 synthetic storms has been simulated by STWAVE ? ADCIRC as a coupled

high-fidelity numerical hydrodynamic model (FEMA 2007; IPET 2007; LACPR 2009).

Here, storms are referred to as synthetic because they are not historical but were defined

from a joint probability model. This set of synthetic hurricanes spans and efficiently

populates practical parameter space for the coast of Louisiana. Two sets of 152 high-

intensity storms each were selected for eastern and western Louisiana by considering the

probable combinations of central pressure, radius of maximum wind speed, forward speed,

heading direction, and track. Figure 1 shows the storm tracks for both synthetic and

historical storms used in this study. The synthetic storms are defined by five primary tracks

and four secondary tracks in eastern Louisiana and a similar number for western Louisiana.

Each set of 152 storms includes 50 in Category 3, 52 in Category 4, and 50 in Category 5

by the Saffir-Simpson intensity scale. Furthermore, surge levels are influenced by the storm

size as well as the storm intensity (e.g., IPET 2007). Radii of the maximum wind speed for

each hurricane category are distributed as follows: 11–35 nautical miles in Category 3,

8–25 nautical miles in Category 4, and 6–21 nautical miles in Category 5. The recurrence

interval of the 152 high-intensity storms ranges between 1 in 50 years and 1 in 3,500 years.

In addition, 71 low-intensity storms were also generated for the same regions of east and

west Louisiana yielding a total of 446 storms.

Figure 2 shows the atmospheric–hydrodynamic modeling system with four modeling

components and their interaction. Wind and atmospheric pressure were calculated by the

planetary boundary layer (PBL) model, and these were used as input for ADCIRC and

WAM. The WAM results were used as boundary conditions for STWAVE. The surge

levels were then calculated by ADCIRC forced with wind and atmospheric pressure and

wind-wave radiation stresses from the coupled STWAVE model including river discharge.

Fig. 1 Storm tracks for Louisiana (LACPR 2009) with synthetic storms as colored lines, eastern Louisiana
storms are red lines, western Louisiana storms are blue lines, Hurricane Katrina is solid black line, and
Hurricane Gustav is dashed black line
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This surge model was validated for Hurricanes Katrina and Rita with the actual tide, but

the local mean still water level was used for the simulation of the surge level for the

synthetic storms. In all of the synthetic storms, a uniform steric water level adjustment of

0.36576 m from terrestrial datum (NAVD88 2004.65) was applied over the simulation

domain to account for the seasonal thermal expansion of sea surface and the average offset

between local mean sea level (LMSL) and NAVD88 (FEMA 2007). In application or

validation, the steric adjustment should be subtracted from the storm surge computed by

the surrogate model, and then, the actual tide should be added at a specific area.

2.2 Selection of forecast points in southern Louisiana

Figure 3 and Table 1 show the selected save points in southern Louisiana for storm surge

prediction. These points were selected based on the critical flood protection system, i.e.,

flood gate (i.e., Seabrook, 17th Street Canal, and WCC), IHNC surge barrier and poten-

tially vulnerable levee points (i.e., levee junctures) because these areas demand detailed

hydrograph response prediction for effective emergency management. Specifically, deci-

sion makers and emergency managers can better control flood gates and pump stations

based on the predicted inundation level. Two points were also co-located near water level

gage stations to assist in forecasting and validation. Furthermore, the points were dis-

tributed within the vulnerable area in southern Louisiana.

3 A time-dependent surrogate modeling

3.1 Surrogate model based on an artificial neural network

The artificial neural network has been widely applied in complicated engineering problems

because this surrogate modeling strategy relatively easily detects complex relationships

between inputs and outputs. A neural network is interconnected with numerous artificial

neurons in a group. Figure 4 shows the neural network architecture employed in the

Fig. 2 Atmospheric–
hydrodynamic modeling system
(LACPR 2009)
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present study for predicting surge level with single input, hidden, and output layers. The

first network n1 is expressed as

n1 ¼W1 � pþ b1 ð1Þ

where pðR� 1Þ is the input with R elements, and W1ðS1 � RÞ and b1ðS1 � 1Þ are the input

weight matrix and the bias of the hidden layer with S1 neurons, respectively. The output of

the hidden layer a1 ¼ f1ðn1Þ is calculated with the first network, and this output is also

used as the input for the output layer. The second network n2 is expressed similarly:

n2 ¼W2 � a1 þ b2 ð2Þ

where W2ðS2 � S1Þ and b2ðS2 � 1Þ are the weighting factors and bias of the output layer

with S2 neurons. The final output a2 ¼ f2ðn2Þ is calculated with the second network. In

Eqs. (1) and (2), f1 and f2 are transfer functions in the hidden layer and the output layer,

respectively. The neurons in each layer can be various types of functions such as a linear

approximation and a classification decision. This process represents a biologically plau-

sible approximation to a real neuron-based system.

Table 2 lists the characteristics of the present artificial neural network model. The

network was trained by the Levenberg–Marquardt algorithm (LMA Levenberg 1944;

Marquardt 1963). The LMA is applied to numerical solutions on minimizing problems,

which arise in least squares curve-fitting and nonlinear programming. The LMA is well

known as an algorithm of generic curve-fitting problems in many software applications.

Since the LMA interpolates between the Gauss–Newton algorithm (GNA) and the

method of gradient descent, this method is more robust than the GNA, which means that

a solution is easily found even if the starting point is very far from the final minimum.

The backpropagation algorithm in the LMA not only is suited for a multilayer feed-

forward network, but also is structured by a supervising learning method. The tan-

Fig. 3 The selected 30 points in southern Louisiana
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sigmoid and the linear transfer functions are the most commonly used transfer functions

for a backpropagation algorithm. When the sigmoid transfer function is used in the

output layer of a multilayer network, the outputs are limited to a small range. However,

when the linear transfer function is used in the network, the outputs can freely take on

any value without any limitation so the linear transfer function was used in the present

study. The number of hidden layers was based on previous neural network studies in

coastal engineering (Mase et al. 1995; Van Gent et al. 2007; Yoon et al. 2013). The

number of neurons ranges from one to 20 normally, but in this study varied between 16

and 25 depending on the target performance defined by a specific value of the correlation

coefficient. Data were divided by a random process with 70 % for training, 15 % for

validation, and 15 % for testing.

Table 3 shows an example of a time series simulation of a synthetic storm for the time-

dependent surrogate model. Each of the synthetic storm simulations consists of 92 time

Table 1 Latitude and longitude
of the selected points in southern
Louisiana

No. of point Longitude (�) Latitude (�)

1 -89.9607 29.2670

2 -89.9099 29.8457

3 -90.3680 30.0503

4 -89.4067 28.9317

5 -89.2465 29.1338

6 -89.7969 29.5711

7 -90.5840 30.0548

8 -89.8107 30.1962

9 -89.6730 29.8702

10 -90.1300 29.4700

11 -90.0900 29.6700

12 -89.5300 29.5400

13 -90.4348 29.7862

14 -89.6400 29.5300

15 -89.8700 29.5700

16 -89.2662 30.1419

17 -89.7372 30.1699

18 -90.1131 30.0262

19 -89.9329 29.2618

20 -89.8624 30.1183

21 -89.9380 30.0063

22 -90.1169 30.0222

23 -90.0274 29.9656

24 -90.1355 29.9329

25 -90.3073 29.9148

26 -90.0646 29.8561

27 -90.0694 29.8711

28 -90.0748 30.0324

29 -90.2415 29.3374

30 -90.1378 29.1218
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steps, and the landfall in each storm occurred at the 44th time step. As the time interval of

one step is 30 min, there are 21.5 and 24 h before and after the landfall, respectively. In

Table 3, xlon and xlat are longitude and latitude of storm track positions, cp; vf ; h are,

respectively, the central pressure, the moving speed, and the heading direction, and Rp is

the radius of exponential pressure profile for the PBL wind and pressure model. Rp is

related to the radius of maximum wind speed.

In the present time-dependent surrogate model, the network is individually trained with

the inputs and the target at each time step as follows:

netti ¼ train ðxti ; gtiÞ ð3Þ

where x ¼ ½xlon; xlat; cp; vf ; h;Rp� and gti is the target storm surge at each time step ti (i = 1,

2, …, 92). Figure 5 shows the calculation process for the storm surge prediction. As

described in Table 2, the acceptable performance criterion of the network is defined by a

correlation coefficient of 0.995 with all the data including training, test, and validation data

for the initial network. The initial network is trained with this criterion and 16 neurons in

Fig. 4 Neural network architecture

Table 2 Characteristics of the present artificial neural network model

Item Characteristic

Training algorithm Levenberg–Marquardt (backpropagation)

Type of network Multilayer feedforward network

Transfer function f1; f2 Tan-sigmoid and linear in the hidden layer and output layer

Input pð6� 1Þ Longitude (�), latitude (�), central pressure cp (mb), moving speed of storm vf

(kt), heading direction h (�), radius of exponential scale pressure Rp (nm)

Output a2 Normalized surge level (m) for each time step ~gs

Number of hidden layer 1

Number of neuron in the
hidden layer

Variable (16 * 25)

Performance Correlation coefficient

Criterion of performance Maximum correlation coefficient

Data division Random (train 70 %, validation 15 %, test 15 %)
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the hidden layer with 20 different random data divisions into training, validation, and test

subsets. This initial network is repeated up to the maximal epoch of 200 in one training.

Then, if the trained network does not satisfy the criterion, the number of neurons ascends

stepwise with a uniform step size up to 25. When the performance of the network still does

not approach the initial criterion, the criterion is reallocated as the maximal correlation

coefficient in the previous 200 training sets (i.e., 20 different data divisions 9 10 different

numbers of neurons). The network with the modified criterion is trained again by the same

process as mentioned above. Then, the surge level at each time step is simulated by the

trained network along with new inputs of six storm parameters at each time step as follows:

gti
N ¼ sim ðnetti ; xti

NÞ ð4Þ

where gti
N and xti

N are, respectively, the predicted surge level and new inputs at time step ti.

Table 3 An example of inputs and target of a synthetic storm (no. 001) for ANN

Time step
(unit:
30 min)

Inputs Target Remarks

xlon (�) xlat (�) cp (mb) vf (kt) ha (�) Rp (nm) gs (m)

1 -88.54 25.81 960 10.9 157.4 11 0.454 Before landfall (43 steps)

2 -88.76 25.99 960 10.8 161.6 11 0.505

3 -88.68 25.93 960 11 160.7 11 0.514

4 -88.92 26.11 960 11.2 159.8 11 0.511

5 -88.85 26.05 960 11 160.7 11 0.519

6 -89.07 26.23 960 10.8 161.6 11 0.518

7 -88.10 26.17 960 10.8 161.7 11 0.525

8 -89.22 26.35 960 10.8 161.7 11 0.524

9 -89.14 26.28 960 11 162.9 11 0.529

10 -89.37 26.48 960 11.2 164 11 0.527

: : : : : : : :

44 -91.07 29.17 960 11 187.6 11 0.614 Landfall

45 -91.04 29.08 960 10.9 188.9 11 0.600 After landfall (48 steps)

46 -91.14 29.34 960 10.8 190.2 11 0.584

47 -91.10 29.25 960 11.1 189.5 11 0.573

48 -91.22 29.52 960 11.5 188.8 11 0.557

49 -91.18 29.43 961.3 11.1 189.5 11 0.554

50 -91.29 29.69 962.7 10.8 190.2 11 0.546

51 -91.25 29.60 964 10.9 188.9 11 0.539

52 -91.37 29.86 965.3 11 187.7 11 0.528

53 -91.33 29.77 966.5 10.9 189 11 0.515

54 -91.44 30.03 967.8 10.8 190.3 11 0.505

: : : : : : : :

92 -92.86 33.28 994.9 10.8 190.9 11 0.434

a Heading direction of storm: to the north: 180�, to the east: 270�, to the west: 90�, to the south: 0�
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3.2 Moving average of the surrogate model

Because a relationship between the response at time ti and that at ti�1 was not considered in

the above calculation process, the predicted storm surge can be discontinuously oscillating.

In order to improve this problem, the moving average is applied to the storm surge

calculated by the previous equation as follows:

gti
� ¼ filter ðgti

N ;WLÞ ð5Þ

where gti
� is the filtered storm surge at each time step ti, and WL is the window length in the

moving average. This moving average is equivalent to low-pass filtering with the response

of the smoothing given by the following equation:

gti
� ¼

1

2M þ 1
gtiþM

N þ gtiþM�1

N þ � � � þ gti�M

N

� �
ð6Þ

where M is the number of neighboring data points on either side of gti
N , and 2M þ 1 is the

window length.

Initial Net(t)
(Nn=16, cc0=0.995)

Different number of neuron
in the hidden layer

Random data division
(train 70%, validation 15%, test 15%)

Training Netij(t)
(feedforward backpropagation:

the maximal epochs of 200)

cc > cc0

Trained Net(t)

Yes
No

j=j+1

j=1~20

i=16~25

t=1~92

i=i+1

Eta(t) = sim(Net(t), x(t))

Eta*(t) = filter(Eta(t),WL)
(moving average with WL)

Fig. 5 Flow chart of the
prediction procedure of storm
surge
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3.3 Performance of the surrogate model

In order to improve the accuracy of the surrogate model, the moving average was applied. It

is important for a window length of the moving average to be optimized because the result

can be different depending on the window length. Therefore, a sensitivity analysis was

performed to determine the optimal window length of the moving average. Of the 30

original save point locations, 25 points trained reasonably well using the raw model output,

while 5 had complications with training such as too few storms with inundation. The 5 save

points with complicated training (13, 15, 17, 20, and 29) required modifications of the raw

model output in order to train well. For the present discussion, these save points are dis-

carded. The focus in this paper is on save point locations 3, 4, 9, and 18 as shown in Table 4.

These locations were selected among the 30 locations to facilitate external validations

because measured data existed at these locations for Hurricanes Katrina and Gustav. In the

next section, this information will be used for the historical hurricane validation. The 4

selected points are representative of the larger group of 25 points that trained well.

Two primary metrics are used to define surrogate model accuracy: correlation coeffi-

cient and mean square error. Here, the correlation coefficient (cc) is defined as a nor-

malized covariance with respect to the standard deviation of X and Y in the following

equation.

ccXY ¼
COVðX1;X2Þ

rX1
rX2

¼
PN

i¼1 ðxi � xÞðyi � yÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

i¼1 ðxi � xÞ2
PN

i¼1 ðyi � yÞ2
q ð7Þ

Table 4 Sensitivity analysis of the surrogate model at save points 3, 4, 9, and 18

Window length Point 3 Point 4 Point 9 Point 18

cc mse cc mse cc mse cc mse

Without 0.917 0.00331 0.987 0.00035 0.930 0.00604 0.927 0.00369

3 0.958 0.00179 0.994 0.00021 0.966 0.00306 0.962 0.00194

5 0.970 0.00166 0.996 0.00024 0.976 0.00269 0.972 0.00182

7 0.974 0.00196 0.996 0.00036 0.979 0.00290 0.977 0.00215

9 0.976 0.00262 0.995 0.00055 0.980 0.00344 0.978 0.00283

11 0.976 0.00362 0.994 0.00083 0.980 0.00422 0.978 0.00378

13 0.974 0.00496 0.992 0.00120 0.979 0.00522 0.977 0.00497

3, 5 0.967 0.00167 0.995 0.00021 0.973 0.00274 0.971 0.00178

3, 7 0.970 0.00181 0.995 0.00021 0.976 0.00285 0.975 0.00198

3, 9 0.971 0.00213 0.995 0.00021 0.977 0.00316 0.976 0.00243

3, 11 0.971 0.00261 0.995 0.00022 0.976 0.00363 0.976 0.00306

3, 13 0.971 0.00323 0.995 0.00024 0.976 0.00424 0.976 0.00385

5, 7 0.973 0.00181 0.996 0.00025 0.978 0.00279 0.976 0.00202

5, 9 0.975 0.00213 0.996 0.00025 0.979 0.00310 0.978 0.00246

5, 11 0.975 0.00261 0.996 0.00026 0.979 0.00357 0.978 0.00310

5, 13 0.975 0.00322 0.995 0.00027 0.979 0.00419 0.978 0.00389

7, 9 0.976 0.00229 0.996 0.00036 0.980 0.00321 0.978 0.00260

7, 11 0.976 0.00276 0.996 0.00037 0.980 0.00368 0.979 0.00324

7, 13 0.976 0.00338 0.995 0.00038 0.980 0.00430 0.978 0.00402
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where COV and r indicate the covariance and the standard deviation, respectively, xi is the

target surge, yi is the predicted surge by the surrogate model at the same moment, N is the

number of time steps, and x and y are the mean values of target surge and predicted surge.

The parameter cc with overbar, with values given in Table 4, denotes the ensemble average

of the correlation coefficients for 446 synthetic storms. The mean square error is expressed

as follows:

mse ¼
PN

i¼1 ðyi � xiÞ2

N
ð8Þ

As above, mse with overbar, with values shown in Table 4, denotes the ensemble average

of the mean square errors for 446 synthetic storms. cc for the 4 select locations without the

moving average applied was 0.982 while that for the 25 points was 0.983. mse for the 4

points was 0.003 while that for the 25 points was 0.004.

A single moving average was used with window lengths of 3, 5, 7, 9, 11, and 13, and a

double moving average was also applied with window lengths of (3, 5), (3, 7), (3, 9), (3,

11), (3, 13), (5, 7), (5, 9), (5, 11), (5, 13), (7, 9), (7, 11), (7, 13), (9, 11), (9, 13), and (11,

13). Because the peak storm surge appears near the moment of landfall and the storm

landfall occurs at the 44th time step, 92 time steps are divided into before landfall (time

steps 1–50) and after landfall (time steps 51–92).

The cc is significantly higher for all window lengths for all 25 points than that without

consideration of the moving average. This is illustrated in Table 4 for the 4 select points. In

order to determine the optimal window length, the save points were ranked based on bands

of cc and mse. Generally, cc was banded in increments of 0.002, while mse was banded in

increments of 0.0005 and the two ranks were summed. The optimal window sizes were

selected as corresponding to the lowest rank sums. Results were similar for the 25 points

and 4 select points. The accuracy of the predicted surges with window lengths (5, 7), (5, 9),

(5, 11), and (7, 9) is better than others. Finally, the window length of (5, 11) was selected in

this study because the longer window length is better than the short span after landfall in

order to reduce the oscillation of the predicted surge. The final selection was somewhat

subjective because the best cc and mse metrics varied between pre-landfall, peak surge,

and post-landfall. However, cc and mse metrics for the best performing window lengths

were very similar, so the final choice would not be expected to impact the results sig-

nificantly and the peak surge was uniformly well predicted.

Figure 6 shows the performance of the developed surrogate model with and without

consideration of the moving average at the four select points. The correlation coefficient

considerably increases by incorporating the moving average. The high- and low-intensity

storms in eastern Louisiana are numbered from 1 to 152 and 376 to 446, and the high- and

low-intensity storms in western Louisiana are from 153 to 304 and 305 to 375, respec-

tively. In general, because the four select save point locations are all located in eastern

Louisiana, low correlation coefficients are associated with storms 153 and 375 in western

Louisiana. When the correlation coefficient of the surrogate model is less than 0.8, the

effect with consideration of the moving average is relatively remarkable as shown in Fig. 6

and Table 6. Table 5 shows the distribution of correlation coefficient at the points. The

neural network of save point 4 was well trained; there is no case with a correlation

coefficient less than 0.9. Because save point 4 is located near the boundary between ocean

and land in southern Louisiana, the relationship between the hurricane parameters, i.e.,

track, central pressure deficit, moving speed, heading direction, radius of maximum wind

speed and storm surge, is relatively strong. However, the correlation coefficient of
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networks at save points 3, 9, and 18 near inland lakes (Lake Pontchartrain and Borgne) is

smaller than that of the network at save point 4. Nevertheless, the percentage exceeding

correlation coefficient of 0.9 in the synthetic storm suite is over 95 % at those points. So,

the trained neural networks at these points were acceptable in engineering application as

shown in Figs. 7 and 8. In order to improve the neural networks at the points 3, 9, and 18,

other parameters (e.g., wind speed and wind direction) may be required in the training

process. However, if these new parameters are added in the training process, an extra-

operational computational effort would be required because this information is not readily

available at the time of the NOAA 6 h tropical storm advisory.

(a) (b) 

(c) (d) 

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Number of Storm

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

cc without MA
cc with MA of span (5,11)

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Number of Storm

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

cc without MA
cc with MA of span (5,11)

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Number of Storm

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

cc without MA
cc with MA of span (5,11)

0 50 100 150 200 250 300 350 400 450
0

0.2

0.4

0.6

0.8

1

1.2

Number of Storm

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

cc without MA
cc with MA of span (5,11)

Fig. 6 Correlation coefficients with or without consideration of a moving average as function of the
number of storm. a Save point 3, b save point 4, c save point 9, d save point 18

Table 5 Distribution of correlation coefficient for the surrogate model at save points 3, 4, 9, and 18

Condition Point 3 Point 4 Point 9 Point 18

No. of storm % No. of storm % No. of storm % No. of storm %

cc C 0.9 428 96.0 446 100 424 95.1 429 96.2

0.8 B cc \ 0.9 11 2.4 0 0 17 3.8 8 1.8

0.7 B cc \ 0.8 3 0.7 0 0 5 1.1 5 1.1

cc \ 0.7 4 0.9 0 0 0 0 4 0.9

Total 446 100 446 100 446 100 446 100
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4 Historical hurricane validation

Hurricanes Katrina and Gustav passed over the region of southern Louisiana in 2005 and

2008, respectively. Areas were severely damaged, and high storm surges were recorded

during two hurricanes. In addition, extensive measured data sets, including high water

marks and continuous gage data, exist for these storms. So, these storms represent good

validation data sets for the time-dependent surrogate model. Among the selected 30 save

points given in Table 1, continuous water level measurement stations are located near

points 3, 4, 9, and 18 and both provide tide and water level during the two hurricanes. For

point 18, there is no tide information during Katrina. Furthermore, the time-dependent

surrogate model is also validated with the modeled storm surge from Dietrich et al. (2012)

at the same points. Dietrich et al. (2013) developed a coupled wave and circulation model

using SWAN ? ADCIRC, with a high-resolution unstructured mesh in the Gulf of Mexico

and southern Louisiana.

The historical hurricane parameters are obtained from the Atlantic hurricane database

(HURDAT2—http://www.nhc.noaa.gov/data/#hurdat) and the extended best track from the

National Hurricane Center (NHC) as shown in Table 6. HURDAT2 database did not

provide the radius of maximum wind speed and for that reason the value was obtained from

the extended best track based on observations. Because the PBL wind and pressure model

uses the radius of exponential pressure profile Rp instead of the radius of maximum wind

speed Rmax, Rp was converted into Rmax using the empirical equation proposed by Cardone

(1999)

Rmax ¼ 0:5387þ 0:9524 Rp � 0:00575 R
2

p þ 1:17� 10�5 R3
p ð9Þ

where both radii are in nautical miles. For small values of Rp (less than roughly 10 nm), the

two radii are roughly equal. For large values of Rp (more then 100 nm), Rmax is approx-

imately Rp=2. The moving speed and the heading direction of storm are calculated with the

longitude and latitude of storm track as given in Table 7. The historical hurricane

parameters are then interpolated to produce 92 time steps with the time interval of 30 min,

and these are used as inputs for the surrogate model for each time step.

Figure 9 shows comparison of storm surge between the surrogate model, the mea-

surements, and the high-fidelity numerical model for two historical hurricanes. The storm

surge predicted by the surrogate model is in good agreement with the measured data of

Hurricane Katrina and Gustav and the high-fidelity model at save point 4 because the

neural network was well trained as shown in Figs. 6b and 7. This point is located at the

end of the Mississippi river adjacent to the Gulf of Mexico, so that a relationship

between the input parameters and storm surge is strong. The peak value of the surrogate

model prediction is much closer to the measured peak surge than that of the

SWAN ? ADCIRC model. However, because other points are located near inland lakes,

i.e., Lake Pontchartrain (point 3, 18) and Lake Borgne (point 9), the accuracy of the

storm surge predicted by the surrogate model at these points is lower than that at save

point 4 as shown in Figs. 6a, c, d, and 8. Nevertheless, the predicted storm surge before

storm landfall is similar to that of the SWAN ? ADCIRC model at points 3 and 9 as

shown in Fig. 9. A trend of storm surge after storm landfall at point 9 is also similar to

b Fig. 7 Performance of the time-dependent surrogate model at save point 4. a Storm 50 (cc = 0.999),
b storm 100 (cc = 0.996), c storm 150 (cc = 0.999), d storm 200 (cc = 0.998), e storm 231 (cc = 0.993),
f storm 244 (cc = 0.976), g storm 330 (cc = 0.998), h storm 400 (cc = 0.999)
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that of SWAN ? ADCIRC and measured data. Although the predicted storm surge at

save point 18 for Hurricane Gustav approaches the measured data before storm landfall,

the predicted surge at the same save point for Hurricane Katrina underestimates the

simulation of SWAN ? ADCIRC and the measured data.

As the accuracy of the surrogate model is similar to that of a high-fidelity model, i.e.,

SWAN ? ADCIRC or STWAVE ? ADCIRC, the present time-dependent surrogate

model is reasonable and acceptable for application. The results after storm landfall at save

points 3, 9, and 18 along inland lakes are relatively poor compared to that at save point 4

near a boundary between ocean and land. There are some reasons why the accuracy of the

b Fig. 8 Performance of the time-dependent surrogate model at save point 18. a Storm 50 (cc = 0.997),
b storm 100 (cc = 0.979), c storm 150 (cc = 0.974), d storm 200 (cc = 0.989), e storm 231 (cc = 0.952),
f storm 244 (cc = 0.460), g storm 330 (cc = 0.831), h storm 400 (cc = 0.990)

Table 6 Average correlation coefficient with or without consideration of moving average at the four points

Case Point 3 Point 4 Point 9 Point 18

cc w/o MA 0.9174 0.9873 0.9303 0.9272

cc with MA 0.9750 0.9955 0.9793 0.9782

Table 7 Historical hurricane parameters

Name of
hurricane

Time
(YY/MM/DD/HH)

Parameters

xlon (�) xlat (�) cp (mb) Rmax (nm) Rp (nm) Remark

Katrina 2005/08/28/12 -87.7 25.7 909 20 23.65

2005/08/28/18 -88.6 26.3 902 20 23.65

2005/08/29/00 -89.2 27.2 905 20 23.65

2005/08/29/06 -89.6 28.2 913 20 23.65

2005/08/29/12 -89.6 29.5 923 20 23.65 Landfall

2005/08/29/18 -89.6 31.1 948 25 31.18

2005/08/30/00 -89.1 32.6 961 30 39.37

2005/08/30/06 -88.6 34.1 978 30 39.37

2005/08/30/12 -88.0 35.6 985 30 39.37

Gustav 2008/08/31/12 -85.5 24.8 961 15 16.84

2008/08/31/18 -86.7 25.9 960 15 16.84

2008/09/01/00 -87.7 26.9 953 20 23.65

2008/09/01/06 -89.0 27.9 954 25 31.18

2008/09/01/12 -90.3 28.8 955 25 31.18

2008/09/01/15 -90.7 29.2 954 25 31.18 Landfall

2008/09/01/18 -91.4 29.8 958 25 31.18

2008/09/02/00 -92.3 30.7 971 20 23.65

2008/09/02/06 -93.1 31.4 981 30 39.67

2008/09/02/12 -93.5 32.1 989 30 39.67

2008/09/02/18 -93.9 32.7 993 30 39.67
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surrogate model is not good at these points. First, the bathymetry/topography and mor-

phology of those areas are complicated with marsh, inland lake, and artificial and natural

structures. Many of these features are not explicitly resolved in the model mesh. Secondly,

the characteristics of the synthetic storms may be different compared with those of the
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Fig. 9 Historical hurricane validation of the time-dependent surrogate model. a Katrina at save point 3,
b Gustav at save point 4, c Katrina at save point 4, d Gustav at save point 9, e Katrina at save point 18,
f Gustav at save point 18
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historical storm after storm landfall. The post-landfall infilling and decay within the

synthetic storms are highly idealized and typically not of particular significance in most

modeling studies because of the focus on peak surge. In complicated topography as exists

near save points 3, 9, 18, it is likely that more detailed characterization of the post-landfall

storm characteristics and resulting storm surge will be required to better resolve these

areas. Furthermore, while the data set that was used in the training process was based on a

half-hour time interval, the historical hurricane parameters were provided at a 6-h time

interval. So, the quality between two data sets was fundamentally different. In order to

resolve this problem in future studies, the characteristics of the synthetic storm set should

be updated to cover those of the historical storms.

5 Conclusions

In this study, a time-dependent surrogate model that accurately and rapidly predicts storm

surge was developed using a basis of 446 synthetic hurricane simulations computed by

STWAVE ? ADCIRC. The basis data set was constructed specifically to span and opti-

mally sample practical probability space and parameter space. Even though it is difficult to

achieve fast and highly accurate simulation of storm surge prediction by a single high-

fidelity numerical hydrodynamic model, the present study resolved this problem by using

an artificial neural network trained on the 446 storms in the basis data set. The network

included input storm parameters track latitude, track longitude, central pressure, moving

speed, heading direction, and radius of exponential scaling pressure and output parameter

storm surge. The architecture of the network is structured by the two-layer feedforward and

was trained by the backpropagation algorithm to reach a criterion of maximum correlation

coefficient between output and target storm surge at each time step. The artificial neural

network was shown to model the 446 basis storms at 25 save point locations with high

accuracy. The developed surrogate model was validated with two historical hurricanes at

four of the 25 save points. While the performance of the present model was excellent at the

boundary between ocean and land (i.e., save point 4), the accuracy of the model decreased

in the complex inland areas, which are composed of marsh, inland lake, and artificial and

natural structures (i.e., save points 3, 9, and 18). Moreover, the accuracy was different

depending on the location of storm at the same place. In general, while the storm surge was

accurately predicted before storm landfall and including peak surge, the accuracy

decreased after storm landfall. The relatively poor prediction post-landfall was likely due

to highly idealized modeling of the post-landfall storm surge in the 446 synthetic storms

because the focus of the synthetic storm modeling was the peak storm surge. So, storm

infilling and overland drainage were of relatively lower importance. The time-dependent

surrogate model based on an artificial neural network machine learning model was shown

to predict storm surge with accuracy similar to the basis data set based on coupled high-

fidelity hydrodynamic modeling.
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