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Abstract Located at the low-lying deltaic floodplain of Ganges–Brahmaputra–Meghna

river basin, Bangladesh suffers damages from flooding with regularity. From the per-

spective of long-term planning and management, a reliable flood damage function is a

critical component in the estimation of flood-induced economic loss. Such functions are,

however, notoriously difficult to develop. This study utilizes in-stream water level and

flood-affected area (FAA) data from Flood Forecasting and Warning Center and Bangla-

desh Water Development Board to evaluate the best form and data input characteristics of

flood damage functions for Bangladesh. The performance of various function configura-

tions (geographic data, water level data, and function form) was tested. The Nash–Sutcliffe

efficiency and residual error analysis results suggest that, in general, the logistic function

performs better than the other two function forms, and the maximum of daily-maximal

water level is the best suited to estimate (FAA). As expected, when information is available

from all basins (the Ganges, the Brahmaputra, and the Meghna), the resulting flood damage

functions provide the most accurate estimations of FAA. Furthermore, the comparison

between single- and multivariable flood damage functions does not demonstrate a clear

advantage of using multivariate function in our study area. When flood damage functions

with finer spatial and temporal resolution can be constructed using remote sensing tech-

nology or hydrodynamic modeling, the intra-year and district-level changes to FAA can be

evaluated. These findings provide a better flood management plan for Bangladesh and have

potential to be generalized to other similarly flood-affected nations.
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1 Introduction

Bangladesh annually suffers the consequences of its location in the low-lying deltaic

floodplain of the Ganges–Brahmaputra–Meghna (GBM) river basin. Heavy monsoon rainfall

and a poor drainage system result in large-scale flooding and have amounted to billions of

dollars in losses over the past 30 years (Yu et al. 2010). Even in ‘‘normal’’ years, about 20 %

of Bangladesh (31,000 km2) is flooded, while up to about 80 % of the land area is considered

flood prone (Mirza 2002; Biswas 2008). Situated at the mouth of the GBM rivers, Bangladesh

receives an annual sediment load between 0.5 billion and 1.8 billion tons per year. This

inundation of sediment gradually changes the valley geometry and floodplain topography and

regularly results in a reduction in water conveyance capacity (Biswas 2008).

It has long been recognized in Bangladesh that engineering measures such as storage,

marginal embankments, and improvement of water ways can play a role in the mitigation

of flood damage. More recently acknowledged is the importance of non-structural mea-

sures such as river basin planning and management, flood forecasting and early warning

systems, and flood plain zoning. In 1972, the Flood Forecasting and Warning Center

(FFWC) was founded under the Bangladesh Water Development Board (BWDB) to work

as the national focal point with respect to flood monitoring, forecasting, warning, and

dissemination of information. Currently, FFWC utilizes advanced software such as

‘‘MIKE11’’ and ‘‘Flood Watch’’ to provide real-time forecasts and warning services during

the monsoon season (Islam et al. 2010).

Flood management studies can be generally classified as motivated by the problems of (1)

long-term planning and management or (2) emergency response. The concern of this paper is

planning and management, and the problem is addressed through an evaluation of candidate

flood damage functions for Bangladesh at the national level. Flood damage functions are a

component of most river basin planning studies aiming at the estimation of economic losses

due to floods. They can be incorporated in the model framework either as an objective

(Malekmohammadi et al. 2010) or as a constraint (Karamouz et al. 2008). The reliability of

calculated economic loss results (e.g., Lund 2002; Zhu and Lund 2009) is dependent on a

reasonable flood damage function. However, many previous studies have concluded that the

construction of ‘‘monetary-based’’ flood damage functions is not supported by the quantity

and quality of data available, which are often plagued by errors in field surveys and in value

estimation, among other scale-specific difficulties (USACE 1996; Booij 2004; Merz et al.

2004; Messner et al. 2007; Thieken et al. 2008). In this paper, we address the problem of

unavailable or unreliable damage information by defining flood damage in terms of ‘‘affected

area’’ and utilize a systematic approach to evaluate the potential utility of candidate flood

damage functions for Bangladesh. We analyze information from the three contributing basins

(the Ganges, the Brahmaputra, and the Meghna), using a variety of flood characteristics (e.g.,

water level), and with multiple functional forms (linear, exponential, and logistic). Historical

water level data from the FFWC and flood-affected area (FAA) data from the BWDB are the

primary data sources. Results of this study have the potential to improve flood damage

functions generally, and especially for Bangladesh’s national flood management program.

2 Literature review

A number of previous studies have explored flooding issues in Bangladesh from a variety

of aspects, such as the relationship between rainfall and flood severity, the construction of

flood warning systems, and flood impact mitigation. A summary of these studies is
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provided here. This review of the literature is specific to those studies related to the use of

flood damage functions in river basin planning models and the construction of flood

damage functions. The most commonly used metrics of flood magnitude and flood damage

forms are identified.

2.1 Flooding in Bangladesh

Recent catastrophic floods took place in 1988, 1998, 2004, and 2007 (Islam et al. 2010),

causing losses from one to over two million metric tons of rice, or 4–10 % of the annual

rice production. These losses pose a significant threat to food security in Bangladesh.

Dasgupta (2007) found that flood-prone districts in Bangladesh tend to have consistently

greater headcount ratios of poverty and that floods cause spikes in poverty headcount ratio,

especially in historically flood-prone areas.

Flooding primarily takes place during the monsoon season as the GBM Rivers dispel

enormous discharge that converges in an area with low gradient and flat terrain (Dhar and

Nandargi 2000). Flooding in Bangladesh is caused by a combination of flash floods from

neighboring hills, inflow of water from upstream catchments, overbank spilling of rivers

from in-country rainfall, and drainage congestion. The Ganges and the Brahmaputra are

two of the most sediment-heavy rivers in the world. According to Islam et al. (1999), the

annual combined suspended sediment load of the two rivers in Bangladesh is 1,037 million

tons (approximately 300 in the Ganges and 700 in the Brahmaputra). Of the total sus-

pended sediment load, approximately half is delivered to the coastal area of Bangladesh.

Drainage congestion due to bank erosion is particularly problematic in the Brahmaputra

River where there is a significant intra-annual variability in water level, as well as active

changes in the course of the river (Sharma et al. 2005, 2010). There has been marked

coastal erosion in the western portion of the GBM delta during the past 50 years in

response to sea-level rise and a decreased sediment load (due in large part to the intro-

duction of upstream barrages) (Rahman et al. 2011), a pronounced aggradation (accretion)

in the east during the past 300 years (Allison and Kepple 2001), and a reduction in water

conveyance capacity throughout (Biswas 2008).

Mirza (2002, 2003) evaluated the relationship between monsoon timing and three

extreme historical floods in Bangladesh in 1987, 1988, and 1998 and suggested that the

extreme floods of 1988 and 1998 were attributable to the concurrence of peak flows in the

Ganges and the Brahmaputra. The author conducted a sensitivity analysis for 20 years of

floods of the Ganges, Brahmaputra, and Meghna rivers under different GCM scenarios

(IPCC Coupled Model Intercomparison Project phase 3, CMIP 3) and concluded that the

probability of flooding in the basin will increase. Studies of the Brahmaputra River in India

have found that floods on that river in recent years have already become more severe, due

to an increased frequency of extreme weather events and a variety of newly emerged

manmade interventions: occupation of the floodplain, destruction of wetlands, and poor

management of flood control measures (Bhattachaiyya and Bora 2009; Jamir et al. 2008).

2.2 Applying flood damage functions in a river basin model

Originally proposed by White (1964), flood damage functions are among the most common

methods for flood damage estimation worldwide (Dutta et al. 2003). Flood damage

functions define the relationship between flood severity (as measured by depth, volume,

duration, etc.) and projections of resultant damage, which are usually derived using his-

torical flood damage information and questionnaire survey data through regression and
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other data-driven approaches (Smith 1994). Table 1 presents the location and key char-

acteristics of select examples of previous flood damage function studies. According to

Table 1, the applicable spatial scale of approaches of this type has been as large as a

country (or basin, if transnational) or as small as a city. The choice of flood damage

variables throughout the studies is fairly standard. Monetary loss (absolute or percentage)

is the most common dependent variable, and in-stream water level or land-based inun-

dation flood depth is the most widely used flood characteristics (independent variables).

However, the function shape varies from study to study, with logistic, exponential, and

linear functions three of the most commonly used.

Detailed guidelines or handbooks for flood damage estimation are available for Aus-

tralia (UNSW 1981), the USA (Davis 1985; USACE 1996), the UK (Penning-Rowsell

et al. 2005), and the EU (Messner et al. 2007). These reports provide theoretical back-

ground and step-by-step guidance for the application of flood damage functions to flood

impact and risk assessment. Normally, streamflow duration curves are constructed first

(based on modeling results or observations), and the expected flood damage is calculated

under different flow conditions using a flood damage function. When the flow pattern

changes due to climate change impacts or human behavior changes, the expected flood

damage will change correspondingly.

Long-term flood planning and management projects of significant scale often warrant the

development of a mathematical model of the water resources system that considers both

physical hydrological environments and anthropogenic influences. When such models have

been built, and if flood management is among the considerations, flood damage functions as

described above can be incorporated in the water resources system modeling structure. Most

of these studies used monetary loss to define flood damages. Some studies use single-

objective optimization, such as Karamouz et al. (2008), which minimized the total cost for

flood mediation actions: sandbags, embankment, and levee construction. Zhu and Lund

(2009) minimized the total cost for levee design, and Malekmohammadi et al. (2010)

determined the optimal reservoir operation to minimize flood damages. Other studies eval-

uated the ‘‘trade-off’’ between flood damages and mediation cost (Yazdi and Neyshabouri

2012b; Woodward et al. 2014). Woodward et al. (2014) also suggested using multi-objective

methods to consider flood risk management to avoid the drawback that single-objective

optimization does not necessarily provide a comprehensive view of the solution space and can

therefore potentially distort the decision-making process. In a real multi-objective modeling

framework, objectives do not have to be in the same unit (e.g., monetary). For example, Yang

and Cai (2011) evaluated the trade-off between the total economic loss (flood loss and

recreational loos) and fish biodiversity for reservoir reoperation purpose.

In this study, to avoid the pitfalls of monetary data inadequacies, we use FAA as an alter-

native to the monetary-based flood damage. FAA is published annually by BWDB as an

indicator of the year’s flood severity. We hypothesize that, for the purposes of planning and

management modeling, the minimization of FAA is a reasonable surrogate for minimization of

monetary damage. FAA can be translated into monetary terms through inclusion of land-use/

land-cover data (including a number of other complicating factors related to both the value and

vulnerability of land-use types) but has not been quantitatively evaluated in this study.

3 Study area and data

The BWDB has a network of monitoring stations through which daily water level and

runoff have been collected throughout the nation since the 1950s. Three key stations, one
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in each basin, are used in this study. The Rajshahi station on the Ganges River, the

Bahadurabad station on the Brahmaputra River and the Bhairab Bazar station on the

Meghna River were chosen after a preliminary check of the length of the data record (at

least 40 years). The locations and historical daily water level for these stations are given in

Fig. 1. Bahadurabad station has the most complete dataset (least missing data) from 1949

to 2009. Rajshahi station has the longest dataset (from 1922 to 2006) but with sparse data

prior to 1957. Bhairab Bazar station has coverage only from 1959 to 2006. In Fig. 1, we

show the time series from 1951 to 2009 during which time water level data are available

from all three stations. Each station has its own ‘‘dangerous water level,’’ defined by the

BWDB. They are as follows: 18.5 meter above sea level (masl) for Rajshahi (Ganges

River); 19.5 masl for Bahadurabad (Brahmaputra River); and 6.5 masl for Bhairab Bazar

(Meghna River). Dashed lines in Fig. 1 show dangerous water levels for these stations,

specifically. These dangerous water levels are used as a critical water level in each warning

system. The annual flood reports published by BWDB (2012) provide time series of annual

FAA (km2), beginning in 1954. The bars in Fig. 1 present the data graphically. Forty-eight

years from 1954 to 2009 were selected in which the FAA data and water level data from all

three basins are mostly overlapped, making possible the construction of flood damage

functions. This period included several years of exceptional (1987, 1988, 1998, and 2007)

and catastrophic (1955, 1974, and 2004) floods (labeled on Fig. 1), as defined by Mirza

(2002). Thirty-six years of data were used for model development, and 12 years were used

for evaluation.

Fig. 1 a Ganges–Brahmaputra–Meghna Basin and water level stations; b daily water level data
(1951–2009) for three water level stations and FAA in Bangladesh. The dashed lines represent dangerous
water level for three stations
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4 Methodology

The goal of this work is to evaluate candidate flood damage functions in Bangladesh as

one element in a basin-wide water resources planning model for the Brahmaputra. The

primary purpose of the water resources planning model is to evaluate water allocation in

terms of basin-wide economic profits resulting from hydropower development, irrigation

network improvement, flood mitigation, and other investment options. A reliable flood

damage function is a required component of an analysis for this purpose. In order to

satisfy this requirement, it was necessary to first identify the explanatory factors. Based

on the limitations posed by the available data, and in keeping with standard methods

presented in the literature, we attempted to model the FAA using information from all of

the following: (1) an understanding that the best predictive river flow source might be

one of the three rivers (Ganges, Brahmaputra, or Meghna) or some combinations of the

three; (2) the expectation that the predictive flow characteristic might be the water level

or the flood duration; and (3) the shape of the function might be exponential, logistic, or

linear. We will explain the contribution of each factor in this section. One limitation of

using daily water level data alone (not in coordination with daily streamflow measure-

ments) is that we are forced to assume that the rating curve (water level-flow volume) is

not significantly nonlinear. This might not be a good approximation for such sediment-

heavy rivers for which the cross-section might be altered annually, as suggested by

Hopson and Webster (2010). Future studies are recommended to explore this question

further.

4.1 Individual basin information

Streamflow data from three stations Rajshahi, Bahadurabad, and Bhairab Bazar can be

used individually to represent the Ganges, Brahmaputra, and Meghna river basins,

respectively, or collectively to indicate the state of the delta area for the entire GBM.

Forty-six thousand km2 of the drainage area of the Ganges basin is located inside

Bangladesh (Ahmad and Ahmed 2003), and the long-term average annual total runoff is

355 billion cubic meters (BCM) into Bangladesh (Mirza et al. 2003). The Brahmaputra

has a similarly sized drainage area located inside Bangladesh (47,000 km2). The average

annual total runoff is 642 BCM, almost double that of the Ganges. The Meghna River

has the smallest drainage area (36,000 km2) located in Bangladesh, but still contributes

average annual total runoff of 149 BCM to Bangladesh.

The Brahmaputra and Meghna river basins experience slightly earlier water level

rises than does the Ganges due to the progression of the summer monsoon air mass

from the southeast to the northwest (Mirza 2003). In general, the water levels start to

rise between mid-April and early-May in the Brahmaputra and Meghna and reach their

peaks between July and August. The water level in the Ganges begins to rise between

mid-May and early-June and reaches its peak in August or September. Islam et al.

(2010) explained that, in addition to the predictable seasonality of the monsoon rainfall,

sea surface temperature and the El Niño-southern oscillation (ENSO) also likely affect

flow and water level in these three basins. During years in which the flood peak of the

Ganges and Brahmaputra coincided (potentially attributable to the effects of ENSO),

extreme floods (e.g., 1988 and 1998) have occurred in Bangladesh (Mirza 2003).
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4.2 Flood characteristics

Table 1 summarizes the river flow characteristics used as independent variables for

damage estimation in previous studies. Water level, or more descriptively, the river stage,

is one of the most commonly used flood descriptors. According to daily water level data

obtained from the BWDB, the long-term average daily water levels are 12.89, 15.58, and

3.52 masl at Rajshahi, Bahadurabad, and Bhairab Bazar stations, respectively. In this

study, since FAA data were available only on an annual basis, only one value of water level

could be correlated to FAA each year. We therefore tested the predictive power of two

related versions of water level: (1) the maximum of the monthly average water level

(MML) for each year and (2) the maximum daily water level (MDL) for each year. In the

case of the MML, average monthly values were first calculated by averaging the daily

water levels for each month, and the maximum of the 12 monthly averages was then used

in the correlation with annual FFA. In the case of the MDL, the maximum of the 365 (or

366) daily water levels was correlated directly with annual FFA.

In addition to the water level, flood duration is another commonly used flood charac-

teristic in flood damage function construction. Duration is important especially for extreme

flood events. Ahmad and Ahmed (2003) concluded that one reason that the 1998 flood

event in Bangladesh was especially destructive was its long duration (65 vs 20 days in

1988). To address this, we calculate the total number of days when daily water level in

each river is above its respective dangerous water level line (DAL) and use this number as

an indicator for flood duration. Finally, we define a ‘‘Flood Index’’ (FI) as the product of

the MDL and the DAL and used it as the fourth tested flood characteristic. This approach is

similar to that of Ahmed and Mirza (2000) who presented a flood intensity index as the

product of flood duration (number of days) and the depth of the flood above the flood

danger level for a given area.

4.3 Function format

We tested three forms of flood damage functions in this study: linear, exponential, and

logistic. Equation (1) is the linear flood damage function.

Flood Affected Area ¼ a� FCþ b ð1Þ

where a and b are model parameters and FC is the chosen flood characteristic such as MDL

or DAL described in the previous section. A linear model is the most straightforward

modeling format, where a represents the marginal change of FAA per unit changes of FC

(slope).

Equation (2) is the exponential flood damage function. Like the linear function, two

parameters c and d are needed to determine the shape of the exponential curve. Generally

speaking, the function is usually more sensitive to d than to c.

Flood Affected Area ¼ c� ed�FC ð2Þ

Stedinger and Grygier (1985) suggested a logistic flood damage function following the

general logistic format (Richards 1959), and this is included here as Eq. (3). Four

parameters minimal flood characteristic (MinFC), critical flood characteristic (CFC), G and

e are used to determine the shape of the logistic function (S-curve), and the ‘‘Max Flooded

Area’’ can be estimated based on the historical record.
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Flood Affected Area ¼ Max Flooded Area

1þMinFC� e�GðFC�CFCð Þ1=e
ð3Þ

Values of parameters in these equations are determined by statistical parameter estimation

methods: ordinary least squares (OLS) estimates. Figure 2 demonstrates the shape of these

three formats. The dotted line is an example of (1), the dashed line is an example of (2),

and the solid line is an example of (3).

5 Results

Nash–Sutcliffe efficiency (NSE) was used to evaluate the performance of each function

configuration. A specific function configuration is composed of the selected: (1) basin data;

(2) flood characteristic; and (3) function format. The maximal positive and negative

residuals were used to evaluate the error.

5.1 Nash–Sutcliffe efficiency of function configurations

Table 2 summarizes NSE values for different function configurations. We first evaluated

the average NSE across basins, flood characteristics, and the three function formats. Based

on the NSEs shown in Table 2, of the three basins, the Meghna River water level is the best

predictor of FAA in Bangladesh. The overall average NSEs for the Meghna, Brahmaputra,

and Ganges are 0.506, 0.321, and 0.12, respectively. If water level information from all

three basins is used, the average NSE increases to 0.522. The flood characteristic with the

best predictive power is the MDL, with an average NSE across all basins of 0.467. DAL

(NSE = 0.322) and FI (NSE = 0.321) are the least effective predictors. Of the flood model

forms, the logistic function has the highest average NSE value (0.476) across all basins.

The linear function has a similar NSE value (0.435), and the exponential function has the

lowest average NSE value (0.191).

Fig. 2 Conceptual diagram of flood damage functions with observed flooded area
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According to Table 2, the best model (the highest NSE value) is a logistic function using

the MDL mean from all three basins. We designate this function configuration ‘‘Fit 1,’’

which identified as ‘‘a’’ in Table 2. However, in some cases, water level data might not be

available simultaneously for all three basins. Using data only from the Brahmaputra River

(which has the longest period of water level data), the best flood damage function is a logistic

curve based on MDL. The Brahmaputra-MDL-to-Bangladesh-FAA flood damage function is

termed ‘‘Fit 2’’ and so labeled as ‘‘b’’ in Table 2. Likewise, the best fit using only Meghna

River data fits a logistic curve to MML data. The Meghna-MML-to-Bangladesh-FAA

relationship is labeled as ‘‘c’’ (termed ‘‘Fit 3’’) in Table 2. No reasonable estimation can be

made of FAA in Bangladesh using water level data only from the Ganges River.

5.2 Residual error analysis and model uncertainty

The NSE efficiency is an indicator of the general performance of a function, but does not

provide information regarding maximal bias, which provides an upper end to the distri-

bution of possible flooded area. In order to evaluate function bias, we calculated the

maximum positive and negative residual errors for each function configuration and sum-

marized these findings in Fig. 3. Figure 3 shows that the max-negative residuals are larger

than max-positive residuals, meaning that the function underestimates larger FAAs more

severely than it overestimates smaller FAAs. However, when an exponential function is fit

to DAL and FI, the Meghna and the Brahmaputra show much larger positive residual error.

Interestingly, in terms of basin selection, data from Ganges show the smallest positive

residual, meaning that if we estimate FAA using only Ganges water level data, the

overestimation will be the smallest. On the other hand, when data from all basins are used,

the negative residual will be the lowest, which means that the underestimation of FAA will

be smallest. Of the flood characteristics, use of MDL results in the smallest positive

residual, while use of MDL, DAL, and FI all results in similar negative residuals. Of the

three function shapes, the logistic function shows the lowest positive and negative

residuals.

As in the results of the NSE analysis, individual combinations of predictive factors show

different results. Fitting an exponential function to the Ganges’ FI gives the smallest

positive residual, but also the greatest negative residual. Similarly, fitting a logistic

function to the Meghna-MML resulted in a small negative residual. However, the positive

residual is not as good. Figure 3 suggests that in order to reduce both positive and negative

residuals, use of water level data from all basins is preferable. We plotted results (calcu-

lated FAA) from all model runs in time series and superimposed them with observations to

show the model uncertainty range. Some models (most of them with exponential format)

significantly overestimate FAA in 1974 and 1998, and most models underestimate FAA in

1988. The uncertainty (band width) is much larger for extreme flood years compare to

normal flood years.

We can combine the analysis of NSE, residual bias, and model uncertainty and identify

the function configuration that results in higher NSE and smaller residual bias. In general,

the logistic function provides better performance than the other two function types, and of

the flood characteristics, MDL is the best predictor. Taking these findings into account, we

identified the top three function configurations of factors (Fit 1, Fit 2, and Fit 3 indicated as

‘‘a’’, ‘‘b’’, and ‘‘c’’ in Table 2) from Fig. 4 and plotted them against historical observations

in Fig. 5. Fit 1 captures the FAA in year 1988 and 1998 (exceptional floods) and year 1974

(catastrophic floods) relatively well. The highest residual error is 7,267 km2 in 1998. Fit 2

misses the FAA in year 1987 (exceptional flood) by 39,000 km2. That is because,

2782 Nat Hazards (2015) 75:2773–2791

123



T
a

b
le

2
N

S
E

o
f

d
if

fe
re

n
t

fl
o

o
d

d
am

ag
e

fu
n

ct
io

n
co

n
fi

g
u

ra
ti

o
n

s

N
as

h
–

S
u

tc
li

ff
e

ef
fi

ci
en

cy
M

ax
o

f
m

o
n

th
ly

d
ai

ly
-m

ea
n

W
L

M
ax

o
f

d
ai

ly
-m

ax
W

L
D

ay
s

ab
o

v
e

D
W

L
F

lo
o

d
in

d
ex

G
a

n
g
es

L
in

ea
r

0
.1

1
7

0
.1

4
3

0
.1

8
6

0
.1

8
7

E
x

p
o
n

en
ti

al
-

0
.0

3
6

-
0

.0
1

9
0

.0
5
6

0
.0

5
5

L
o

g
is

ti
c

0
.1

4
1

0
.2

1
0

0
.1

9
8

0
.2

0
0

B
ra

h
m

a
p
u

tr
a

L
in

ea
r

0
.3

2
0

0
.4

4
7

0
.5

0
4

0
.5

0
2

E
x

p
o
n

en
ti

al
0

.3
1

6
0

.6
1

6
-

0
.4

1
3

-
0

.3
7
4

L
o

g
is

ti
c

0
.3

6
0

0
.6

3
0

b
0

.4
7
2

0
.4

6
9

M
eg

h
n

a

L
in

ea
r

0
.5

1
8

0
.5

2
8

0
.5

6
3

0
.5

8
2

E
x

p
o
n

en
ti

al
0

.4
5

5
0

.4
7

8
0

.3
5
6

0
.2

8
0

L
o

g
is

ti
c

0
.6

2
7

c
0

.5
9

5
0

.5
4
6

0
.5

4
5

A
ll

L
in

ea
r

0
.4

3
8

0
.5

4
4

0
.6

8
8

0
.6

8
9

E
x

p
o
n

en
ti

al
0

.4
5

5
0

.7
0

6
0

.0
6
9

0
.0

5
3

L
o

g
is

ti
c

0
.5

9
3

0
.7

2
7

a
0

.6
4
0

0
.6

6
1

a
th

e
b

es
t

fi
tt

ed
fu

n
ct

io
n

u
si

n
g

d
at

a
fr

o
m

al
l

th
re

e
b

as
in

s
b

th
e

b
es

t
fi

tt
ed

fu
n

ct
io

n
u

si
n

g
d

at
a

fr
o
m

B
ra

h
m

ap
u

tr
a

o
n

ly
c

th
e

b
es

t
fi

tt
ed

fu
n

ct
io

n
u

si
n

g
d

at
a

fr
o

m
M

eg
h
n

a
o

n
ly

Nat Hazards (2015) 75:2773–2791 2783

123



according to the water level data from BWDB, the monsoon flood in that year was largely

attributable to high water level and longer duration in the Meghna, specifically. This is also

the reason why Fit 3 captures the FAA in that year. Both single-basin functions (Fits 2 and

3) underestimate the FAA in year 1998 (exceptional flood) due to missing information

from the Ganges. As discussed earlier, the 1998 flood was exceptional largely because of

the occurrence of flood peaks in the three rivers simultaneously (without the typical delay

in the Ganges peak resulting from east–west monsoon movement).

5.3 Function validation

Due to limitations in the available data, we were only able to validate the flood damage

functions using water level data from the Brahmaputra alone. Twelve years were used,
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Fig. 3 Maximum positive and negative residual errors of different function configurations
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Fig. 6 Example flood damage function validation using Brahmaputra water level data only and logistic
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including year 2007, which was classified as an exceptional flood year, and year 1955,

which was classified as a catastrophic flood year. Figure 6 presents results using four flood

characteristics and with the logistic function as an example. According to Fig. 6, all four

flood characteristics capture the 1955 FAA relatively well, although small underestimation

occurs in all functions. However, only the function using MDL captures the 2007 FAA.

This is also the major reason why this function configuration outperforms all but one (‘‘Fit

1’’) of the function configurations tested. However, this function configuration is also the

only one (among the four validated) that overestimates the 1995 FAA. This is because the

max daily water level in 1995 is high at Bahadurabad (20.36 meters compared to the

dangerous water level of 19.5 meters), but with relatively fewer days above the dangerous

water level in that year (14 days, compared to year 2007, which has 21 days). Therefore,

the FAA calculation is biased upward by this water level information.

6 Discussion

This section discusses the comparison between single- (shown in the result section) and

multivariable flood damage functions and points to potential improvements for future

studies.

6.1 Multivariate nonlinear flood damage function

Schroter et al. (2014) tested the complexity of flood damage models and concluded that for

their case study area (Germany), models with additional independent variables outperform

models using only water depth as independent variables. We have conducted a similar

evaluation in our case study area, Bangladesh, to check whether the same conclusion can

be drawn.

In the previous section, all functions use a single predictor. Here, we use a data mining

approach, genetic programming (GP), to construct multivariate flood damage functions.

GP is a heuristic algorithm which has been shown to be an efficient method by which to

construct an equation with multiple independent variables (e.g., Savic et al. 1999; Dorado

et al. 2002; Yang et al. 2008). Following the rules of natural selection, GP is a symbolic

learning technique that determines the best format and coefficients for the regression

function. To evaluate results from different data sources, we use GP to construct flood

damage functions: (1) using data from all three basins and (2) using data from the Brah-

maputra only. The best GP relationship resulting (among 100 trails) from the use of data

from all three basins is given in Eq. (4).

Flood Affected Area ¼ MDLB þ DALG þ DALB þ DALMð Þ � MDLM � 0:7ð Þ ð4Þ

where MDLB is the maximum daily water level from Brahmaputra, and DALG, DALG, and

DALG are number of days above dangerous water level from Ganges, Brahmaputra, and

Meghna, respectively. The best GP results using data only from the Brahmaputra are given

in Eq. (5).

Flood Affected Area ¼ 4 MDLB þ DALBð Þ � MDLB � 0:895ð Þ ð5Þ

Note that all MDL and DAL values in Eqs. (4) and (5) are standardized. Actual FAA

results are compared with their single-variable counterparts (‘‘Fit 1’’ and ‘‘Fit 2’’) in Fig. 7.

No significant improvement is observed. The NSE is 0.721 for Eq. (4) and 0.727 for ‘‘Fit
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1’’; the NSE is 0.565 for Eq. (5) and 0.630 for ‘‘Fit 2.’’ Figure 7a shows that Eq. (4) and

‘‘Fit 1’’ both capture extreme floods in year 1998 and 1988. Although Eq. (4) outperforms

‘‘Fit 1’’ in year 2004, it significantly overestimates the year 1974. Similar results can be

seen in Fig. 7b. Equation (5) slightly improves the result in year 1998 but underestimates

the year 1988. The overestimation in year 1995 is less in Eq. (5), but it results in over-

estimates in years 1977–1986.

These results suggest that switching from a single-variable flood damage function to a

multivariate flood damage function does not necessarily improve the model performance in

Bangladesh; this is contrary to the conclusion from Schroter et al. (2014) for Germany.

Geographic differences, observation uncertainty, and different definition of flood damages

all likely to contribute to this contrary result.

6.2 Finer resolution extensions

Because FAA data were only available at the scale of the entirety of Bangladesh, flood

damage functions evaluated in this study were limited to their effect on all of Bangladesh.

Data did not support basin-specific explorations. Therefore, these functions are sufficient

for the long-term planning purpose as discussed above, but cannot be used to evaluate

intra-year or district-level FAA effects. Data with finer temporal and spatial resolution

would be necessary for that task.

There are two ways in which better data could be generated to improve studies of this

type: (1) processing remote sensing data for inundation (flood-affected) area and (2) using

a hydrodynamic model to calculate inundation area. Satellites and airborne instruments
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Fig. 7 Observed and modeled flood-affected area for single and multivariate flood damage functions
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provide remotely sensed information that can be used to estimate the extent and dynamics

of flood inundation for large areas. For example, Amarnath (2013) developed an algorithm

to map flood inundation area from satellite images using the original optical data from

moderate resolution imaging spectroradiometer (MODIS) to calculate 8-day, pixel level

(250–500 m) flood inundation area for South Asia. By superimposing population or land-

cover (crop type) data, the inundation area can be further processed for real flood damages.

Islam et al. (2009) also used MODIS data with different methods to map flood inundation

in Bangladesh. A comprehensive review of this method specific for Monsoon Asia is

provided by Sanyal and Lu (2004). Neal et al. (2012) and Wu et al. (2012) used global

satellite rainfall data and hydrodynamic models to compute 1-km-resolution flood inun-

dation area globally. Usually, a 2D flood model will be incorporated with the hydrody-

namic model using the continuity equation to link flow (volume) fluxes with water depth

changes in each cell. Furthermore, a momentum equation can be used to track the water

balance between cells (e.g., Bates et al. 2010). A number of recent papers document the

ability of macro-scale hydrological models to forecast streamflow when coupled with

large-scale weather/climate forecasting models, which have demonstrated utility on a

number of different timescales, especially for large basins in South Asia (e.g., Indus Basin

by Shrestha et al. 2014). Combining these macro-scale hydrological models with the

functions developed in this work, water management officials could obtain real-time

projections of FAAs. This has the potential to address the ‘‘timing’’ issue that has so far

been neglected. Advances in probabilistic forecasting could then enable risk-based deci-

sion-support frameworks, as proposed by Dale et al. (2014).

After careful validation with observed data, the conclusion is that both methods could

provide reliable flood inundation area data at a finer resolution, which would help to

construct flood damage functions at the sub-national and sub-annual level.

7 Conclusion

From the perspective of river basin planning and management, a reliable flood damage

function is critical for estimating economic loss due to floods. This is especially true for

countries such as Bangladesh that suffer flood damages every year. Heavy monsoon

rainfall and a poor drainage system result in annual flooding and have inflicted billions of

dollars in damages on the country in the past 30 years (Yu et al. 2010). The FFWC was

founded under the BWDB as the national agency responsible for flood monitoring, fore-

casting, warning, and dissemination of information. Using the FFWC water level data from

stations located in the Ganges, Brahmaputra, and Meghna basins, and FAA data from

BWDB, we tested flood damage functions developed using information from: the water

level of the three contributing river systems; with different flood characteristics (the

maximum of the monthly average water level ‘‘MML,’’ the maximal daily water level

‘‘MDL,’’ days when daily water level is above the dangerous water level ‘‘DAL’’ and

Flood Index ‘‘FI’’); and with different function forms (linear, exponential and logistic).

Using the NSE and residual error analysis, we found the logistic function to outperform

the other two function forms (linear and exponential) and MDL to be the most suitable

flood characteristics (following by the MML). However, using the linear function with

DAL and FI information from all basins also provided reasonable results. As expected,

when information is available from all three basins, the resulting food damage functions

provide the most accurate FAA estimation. If, however, information were not available for
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all three basins, using the water level data from Brahmaputra and Meghna could still

provide a reasonable estimate of FAA in Bangladesh.

The comparison between single and multivariate flood damage function does not

demonstrate a clear advantage of using multivariate function in Bangladesh. Flood damage

functions with finer spatial and temporal resolution could be constructed with the help from

remote sensing technology or hydrodynamic modeling. These enhanced flood damage

functions can be used to evaluate intra-year or district-level FAA changes for Bangladesh.
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