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Abstract Groundwater arsenic (As) contamination affects millions of people in South

Asia. In this paper, we propose a composite vulnerability framework to identify, for

mitigation, the population who are at the highest risk of suffering adverse impacts from

exposure to As and warrant mitigation measures. Bihar, India, which was selected for the

case study, has large areas with As concentrations far exceeding the upper limits of

acceptable level of As in drinking water. Drawing on the existing social science research,

we identify a host of socioeconomic and demographic variables, in addition to As con-

centration in groundwater, which compound a community’s vulnerability to the adverse

effects of As. The result is a ‘‘composite vulnerability index,’’ which consists of bio-

physical, socioeconomic, and demographic factors that collectively determine a commu-

nity’s overall vulnerability to As. Additionally, using geographic information systems

(GIS), we represent the composite vulnerability index visually through a set of maps,

which highlight the interaction between different community characteristics to generate

unique community vulnerability profiles. In summary, this paper outlines a systematic

approach to understanding vulnerability to groundwater As, as both social and natural

construct, which can be applied to different geographic areas, and to improving decision

making and planning pertaining to diverse environmental problems.
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1 Introduction

1.1 Arsenic contamination: a naturally occurring hazard

Groundwater arsenic (As) contamination is a global phenomenon affecting more than 70

countries on six continents (Ravenscroft et al. 2011). As a densely populated region, the

Ganga–Meghna–Brahmaputra (GMB) plain intensively exploits groundwater resources,

experiencing a myriad of environmental impacts associated with local, regional, and global

issues. The vulnerability of GMB is enhanced due to threats from natural processes, and

socioeconomic and demographic forces. The GMB plain in India and Bangladesh contains

the highest As-contaminated contiguous area in South Asia (SA) affecting about 500

million people’s lives and encompasses an area of 569,749 km2 (Hossain et al. 2006). The

groundwater As contamination in India was first noticed in 1976 in the Chandigarh district,

about eight decades after the first case of As poisoning in Poland (1898) (Mandal and

Suzuki 2002). Later in 1982, India received a wake-up call because of another case of As

poisoning in North 24 Pargana district of the state of West Bengal (WB) (Chakraborti et al.

2003). The groundwater’s As contamination and its health impact on human beings has

been extensively studied in WB (Chowdhury et al. 2000; Mazumder et al. 2010; Guha

Mazumder and Dasgupta 2011; Rahman et al. 2013). A total of 111 community blocks (out

of 341) have been reported as As-affected blocks in 12 As-affected districts (out of 19)

(SOES 2006). About two decades after the WB case, very high concentrations of As were

detected in the groundwater in Bihar (Chakraborti et al. 2003). Later, the groundwater As

contamination was revealed in other geographic locations in India including Uttar Pradesh,

Jharkhand, Assam, Tripura Arunachal Pradesh, Nagaland, Manipur, Punjab, Haryana,

Himachal Pradesh, Chhattisgarh, Hyderabad, and Andhra Pradesh (Datta and Kaul 1976;

Mukherjee et al. 2006; Nickson et al. 2007). As is a group ‘‘A’’ carcinogen, and the ill

effects of exposure to it cause serious health problems among the affected groups, which

can lead to their economic and social marginalization. Reducing the risk from hazards of

natural origin (arsenic in this case) is a major challenge concerning global environment

change (Birkmann et al. 2013). Groundwater As contamination is most appropriately

considered a chronic hazard because of its long-term, cumulative harmful effects. A

chronic hazard presents unique challenges in terms of the public perception, which may

engender and influence subsequent policy responses.

1.2 Vulnerability: perspectives, indexes, and models

Vulnerability assessment of natural hazards and climate change has emerged in the past

decades as an important research field bringing together scientists from different disci-

plines (Adger et al. 2004; IPCC 2007; Parry 2007; Birkmann et al. 2013). In the absence of

a universal definition for vulnerability and common conceptualization, formulations of

vulnerability have proliferated (Birkmann et al. 2013). The natural science research

communities often focus on the quantification of different factors contributing to vulner-

ability, often to the exclusion of socioeconomic factors. These approaches highlight

physical vulnerability and often attempt to quantify damage ranges. These are illustrated

using vulnerability curves, which help determine acceptable levels of potential losses

(Kienberger et al. 2009; Papathoma-Köhle et al. 2011). In contrast, social science

approaches often encompass a broad focus and examine, in particular, the impact of

exposure to environmental hazards on individual households or a community, as well as

the contextual conditions that influence social vulnerability (Wisner 2004). According to
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Phillips and Fordham (2009), social vulnerability to natural hazards is driven by social

inequality and is deeply embedded in social structures that are often resistant to change

(Phillips and Fordham 2009). Many assessment approaches characterize vulnerability

according to the degree of susceptibility or fragility of communities, systems, or elements

at risk and their capacity to cope under adverse conditions. In recent years, different

frameworks have been developed to better systematize different facets of vulnerability,

most often in relation to climate change adaptation and disaster risk management (Birk-

mann et al. 2013). However, developing a universal metric or measurement tool for vul-

nerability assessments across all disciplines is challenging because of the definitional

elusiveness and heterogeneous nature and scale of analysis (temporal and spatial). The

vulnerability indexes or indicators are quantifiable measures envisioned to represent a

characteristic or a parameter of a system of interest using a single value, and have been

applied in different contexts using different variables (Cutter et al. 2008). Among all the

variables used to derive vulnerability indicators, socioeconomic status (wealth or poverty),

age, special needs population, gender, race, and ethnicity have been studied most exten-

sively as social factors that increase or decrease the impact of specific natural hazard

events on a local population (Tierney 2001; Tierney et al. 2001; Center 2002; Bates and

Swan 2007). It has been reported that selecting a single variable (e.g., race, gender, or

poverty) does not adequately capture the characteristics of the communities described. In

most cases, it is a combination of several socioeconomic attributes and circumstances,

which defines social burdens from natural hazards (Cutter et al. 2009).

The choice of methodology to derive vulnerability indicators and appropriate weighting

for each individual variable has been the most important constraint in vulnerability studies.

Because of the absence of reliable theoretical and/or statistical evidence needed to assign

weights, all indicators are usually assigned equal weight, thereby according them the same

relative importance (Cutter et al. 2009). However, indicators can also be weighted

according to the percent variance explained by each factor (Cox et al. 2006). Furthermore,

vulnerability maps can be invaluable for adapting and planning mitigation frameworks in

highly vulnerable areas. For the current study, we define vulnerability as the risk of

experiencing economic loss, health problems, social isolation, social discrimination, loss of

opportunities, or decline in socioeconomic status during the period of exposure to specific

or multiple socioeconomic or environmental problems. No previous studies have been

reported, which have applied the vulnerability framework to As contamination. This study

is the first of its kind to propose a conceptual composite vulnerability framework and

derive composite vulnerability indexes for As contamination.

2 Framework and methodology

2.1 Composite vulnerability framework

Deriving and mapping composite vulnerability (CV) to As contamination is a key step in

quantifying total vulnerability due to existing biophysical and socioeconomic conditions in

As-contaminated areas. The CV map has the potential to predict highly vulnerable areas

where As mitigation is an urgent necessity; type(s) of As-mitigation technology(s) requires

feasibility, sustainability for the specific vulnerable area(s); and the area(s) where the

likelihood of success of an As-mitigation program is greatest. The components of CV

framework are based on the concept that vulnerability is a function of exposure, sensitivity,

and adaptive capacity (Fig. 1). The definitions of these three elements of vulnerability
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assessment have been adapted for our work. Exposure can be defined as the degree of

environmental stress upon a particular unit of analysis; it may be represented as either

long-term change in environmental conditions or changes in the magnitude and frequency

of extreme events. Sensitivity is the degree to which a system will respond to a change in

the environment, either positively or negatively. Adaptive capacity is the ability of a

system to adjust to actual or expected environmental stresses, or to cope with the conse-

quences. Adaptive capacity is also considered ‘‘a function of wealth, technology, educa-

tion, information, skills, infrastructure, access to resources, and stability and management

capabilities’’ (UNEP 2003). Although, theoretically, technology plays a vital role in

enhancing societal adaptive capacity, we have omitted technology as a variable from our

study because groundwater As contamination mainly affects rural areas in SA, where

technological development has been minimal (Das 1999; Singh and Jha 2012).

2.1.1 Quantifying vulnerability indexes

The method to derive vulnerability indexes was modified and simplified for this study. The

core of the methodology is the method used to derive vulnerability indexes in the guide-

lines of the United Nations Environment Program’s Assessing Human Vulnerability to

Environmental Change (2003). Data were treated as per the UNEP guidelines (UNEP

2003). The variables used to derive vulnerability indexes are listed in Table 1.

The steps involved in quantifying vulnerability indexes are deriving vulnerability

interval value (VIV) and vulnerability indexes (VI). The VIV is derived by using Eq. (1).

Vulnerability Interval Value ðVIVÞ ¼ VVmax � VVmin

VImax

ð1Þ

where VVmax is the maximum value of vulnerability variable; VVmin is the minimum value

of vulnerability variable; and VImax is the maximum value of vulnerability index at ‘‘5

Fig. 1 Conceptual model of composite vulnerability framework
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levels’’ of vulnerability scale. After deriving the VIV, the VIs can be calculated based on

Eq. (2)

VIndex ¼ VVmin þ VIV ð2Þ

where VVmin is the minimum value of vulnerability variables and VIV is the vulnerability

interval value derived from the Eq. (1).

Furthermore, following these steps, five vulnerability indexes were derived and at every

consecutive step, VVmin was replaced with VI value of the previous step. Finally, five

levels of vulnerability indexes were derived and given appropriate weightage (weighted

equally), and each As-affected district was assigned an appropriate VI values (Table 2).

The VI values for As-contaminated areas were derived based on the As-concentration

profile of the area. The VI values from 1 to 5 were assigned based on As concentration in

the drinking water between 0–10 lg/L, 11–50 lg/L, 51–100 lg/L, 101–200 lg/L, and As

levels more than 200 lg/L, respectively. In the absence of fluoride (F), nitrate (N), and iron

(Fe) concentration data, areas with these contaminants were given the VI value ‘‘1’’ for

each contaminant and the area without these contaminations the VI value ‘‘0.’’ Areas

affected with flood and droughts were treated similarly to F-contaminated areas. We did

not characterize flood- or drought-affected areas according to the intensity of their

occurrence. Flood and drought in the region are chronic natural hazards and affect a largely

impoverished population, often resulting in mass displacement and loss of livelihoods. The

damage is significant, and evaluating flood or drought intensity based on their occurrence

and impacts in more than half of the districts in the state is beyond the scope of our work,

and even more importantly, unlikely to yield additional insights. Therefore, we only

considered the presence or absence of flood or drought in the As-affected areas as an

additional environmental stressor. Hydrogeochemical conditions also significantly con-

tribute to the sensitivity of As-prone areas. For example, the following characteristics of the

area such as geological formation, lithology, physiography, high HCO3
- load in the

groundwater have been correlated with the As concentration in affected areas (Lado et al.

2008; Winkel et al. 2008; Saha and Shukla 2013). Hydrogeochemical parameters such as

hydraulic conductivity and chemical composition are aquifer-specific and could be used to

predict As vulnerable areas (Lado et al. 2008, Winkel et al. 2008). For this study, we have

used information about the geological formation (Quaternary to upper quaternary = 1 and

Quaternary = 2), lithology of the areas (younger alluvial, older alluvial, and red sandy

Table 1 Indicator variables for vulnerability calculation

Exposure Sensitivity Adaptive capacity

Arsenic contamination
Fluoride contamination
Nitrate contamination
Iron contamination
Flood incidence
Drought incidence

Rural population (RP)
Population below the poverty line (BPL)
Scheduled caste population (SC)
Scheduled tribe population (ST)
Population growth rate (PGR)
Population density (PD)
Infant mortality rates (IMR)
Kala-azar prevalence
TB incidence
HIV prevalence
Geological formation
Lithology
Physiography

Total literacy rate
Female literacy rate
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soil = 1; younger alluvial and older alluvial soil = 2; younger alluvial and calcareous

alluvial soil = 3; and younger alluvial soil = 4), and the physiography (hill = 1; alluvial

plain = 2) of the areas.

2.2 Principal component analysis (PCA)

Principal component analysis (PCA) has been widely used in vulnerability studies (Cutter

and Finch 2008; Schmidtlein et al. 2008; Guillard-Gonçalves et al. 2014). PCA provides

an opportunity to reduce the dimensionality of the multivariate data sets (Warner 2012). In

large data sets with several variables, some of the variables may be positively or nega-

tively correlated. For instance, some of the variables essentially contain the same infor-

mation as the twenty-one vulnerability indicators that were used to derive composite

vulnerability indexes in this study (Warner 2012). Therefore, PCA finds a new orthogonal

coordinate system of uncorrelated predictors to represent the original vulnerability indexes

data (Warner 2012). PCA was performed on the data used to derive vulnerability indexes

in this study using the Statistical Package for the Social Sciences (SPSS) version 21 (SPSS

2012). Each component in PCA is a linear combination of the original variables used to

derive vulnerability indexes (Warner 2012). The first principal component is in the

direction of greatest variance in the original data set (Warner 2012). PCA produces

eigenvalue and loading, which are, respectively, a sum of the squared loadings on a

component and explain how strongly a variable is correlated with the component (Warner

2012). Loading of vulnerability indicators close to ±1 and greater than .5 was considered

significant (Warner 2012). A correlation matrix between all the variables was derived to

see the association between all the possible variables. PCA was performed with varimax

rotation to obtain easily interpretable component loadings, and the components with

eigenvalues greater than 1 were extracted (Warner 2012). A communalities test was also

performed to see that how much of the variance in each of the original variables is

explained by the extracted components (Warner 2012). Communalities for variables

greater than 50 % were desired. A scree plot was also derived, which is a graphical

presentation of the eigenvalues across the number of components (Warner 2012). Fur-

thermore, the extracted components were named based on the higher loadings of the

vulnerability indicators (Warner 2012). Since the number of indicators of exposure, sen-

sitivity, and adaptive capacity were heterogeneous, we derived a ratio to name each

component applying the following equation:

Ratio to name the principal components (RNPC)

¼ Total number of indicators with high loadings ð[ 0:40Þ
Total number of indicators in the data set

Therefore, the components were named based on the highest RNPC values close to ‘‘1.’’

Table 2 Vulnerability indexes
and associated vulnerability
category

Vulnerability indexes Vulnerability

VI-1 Resilient

VI-2 At risk

VI-3 Less vulnerable

VI-4 Moderately vulnerable

VI-5 Highly vulnerable
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2.3 The case study of Bihar state: a real-world case of a multi-stressor environment

2.3.1 Biophysical environment of the study area

Bihar, located in the GMB basin, is one of the worst As-affected states of India, sharing its

geographic boundary with Bangladesh, West Bengal, and Nepal—three of the most As-

affected vicinities of SA (Saha 2009). As contamination in the groundwater of Bihar is a

phenomenon only recently discovered; it was first investigated in 2002 in the Semaria Ojha

Patti village of the Shahpur block of the Bhojpur district (Chakraborti et al. 2003). The

state still follows the old standard of 50 lg/L set for As in drinking water established by the

World Health Organization (WHO 2004). Although the acceptable limit for As in drinking

water is 10 lg/L, set by the Bureau of Indian Standards (BIS), however, in the absence of

alternative sources, 50 lg/L of As is acceptable (BIS 2012). So far, out of a total of 82,000

groundwater samples tested for As contamination in 15 districts (of the total of 37 districts)

of Bihar, 11 % exceed 50 lg/L, covering 57 community blocks in fifteen districts (Saha

2009). The concentrations of naturally occurring As in groundwater in Bihar ([1,000 lg/L)

exceeded several times the As levels reported in groundwater in many countries such as

Chile, Brazil, Mexico, Germany, Hungary, United Kingdom, and USA (Nordstrom 2002,

Ghosh et al. 2005, 2007, 2008; Saha et al. 2009).

The spatial distribution of groundwater As in Bihar is irregular, and contamination occurs

in patches. The hot spots ([50 lg/L) have been found to be confined within the Holocene

newer alluvium of the thick multi-cyclic sand, clay, sandy clay, and silty clay sequence of a

depth within 50 m below ground level, jeopardizing the hand pump-based rural drinking

water supply in the state (Saha et al. 2009). The Pleistocene older alluvium was usually free

from As contamination. Additionally, a high positive correlation between As and iron con-

tamination has been found in the state, doubling the cost of filtration, and operation and

maintenance of filtration equipment due to multiple metal contamination (Saha et al. 2010).

Furthermore, the elevated As load is confined to the flood plain where rainfall facilitates

percolation of organic carbon to the groundwater, which stimulates microbial respiration,

triggering a reductive dissolution of As and iron in the solid phase (Mukherjee et al. 2012).

These hydrogeochemical phenomena produce HCO3
- in shallow groundwater that helps

mobilization of As in the groundwater (Saha et al. 2010). Geochemical analysis of As-

contaminated groundwater in Bihar reveals that the contaminated groundwater was found to

be near neutral to mildly acidic and dominated by alkaline earth (Ca2? and Mg2?) and weak

acid (HCO3
-) (Saha et al. 2008, 2010, 2011). The presence of high concentrations of HCO3

-

in groundwater significantly contributes to the hydrogeochemical evolution of groundwater

and trace metal mobilization in the area (Saha 2009). In a recent study, Saha and Shukla

(2013) have explained that the As-contaminated groundwater in the state is primarily evi-

denced by three hydrogeochemical facies dominated by Mg and HCO3 (Fig. 2). The influ-

ence of redox conditions on As mobility in the groundwater has been widely reported in the

literature (Ravenscroft et al. 2011). A mixed correlation between pH and As concentrations

has been reported in the state (Singh et al. 2014). There are studies investigating the asso-

ciation between the depths of the tested hand pumps and the concentrations of As in

groundwater in the state. However, none of them found any significant correlation between

the two parameters (Saha and Shukla 2013; Singh et al. 2014).

Although the state has rich groundwater, the fact is that shallow aquifers, on which the

rural water supply is heavily dependent, are contaminated with As, and this situation makes

it difficult to provide potable water in the affected areas (Saha and Shukla 2013). The state

is endowed with 36 % replenishable groundwater resource for further extraction. The
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transmissivity of the aquifer (3,718 and 6,986 m2/day) indicates its higher potentiality than

the aquifers in As-affected areas in WB (300–8,800 m2/day); hydraulic conductivity of the

groundwater ranges from 64.88 to 82.00 m, indicating very good aquifer potential; and the

deeper aquifer is protected by a middle clay, which may be developed for community

drinking water supply by deep tube wells having a yield capacity of 150 m3/h (Saha et al.

2011). This hydrogeochemical information is valuable and could help creating mitigation

strategies. However, further investigation in all the As-contaminated areas is warranted.

A toxic risk index ranging from .9 to 192.50 has also been derived in the state, exceeding

the lower and upper end of the ranges of the typical toxic risk index 1.00, suggesting that the

residents in the area might confront seriously adverse toxic health impacts (Singh and Ghosh

2012, Singh et al. 2014). The exposed communities were found to be consuming up to

1,469 lg/day of As against the maximum allowable limit of 200 lg/day through As-con-

taminated water and food materials (rice, wheat, maize, and lentils) in the state. Therefore,

the cumulative effect is making children (57/1,000) susceptible to cancer with an average

prevalence of skin pigmentation of 1.35 (Singh and Ghosh 2012, Singh et al. 2014). In a

recent study, consumption of As in excess of 200 lg/kg through cooked rice in India has

been linked with elevated genotoxic effect in human beings (Banerjee et al. 2013). A series

of obstetric outcomes were also documented in women exposed to As-contaminated

groundwater, and sixty persons with Arsenical skin lesions were reported in Bihar (Chak-

raborti et al. 2003). The As contamination zone is confined to the socioeconomically

deprived communities of the state living along the river Ganges, making the exposed pop-

ulation (more than 8 million) highly vulnerable to its toxic effects (Singh et al. 2014).

Fig. 2 Piper diagram showing different hydrogeochemical facies of As-contaminated groundwater in Bihar
(Source: Saha and Shukla 2013)
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2.3.2 Socioeconomic–demographic health conditions of Bihar

Globally, India is home to one of the largest populations of impoverished people, who are

highly vulnerable to health problems (Cord et al. 2009). Bihar is the second poorest state in

the country, where more than 33 million people currently live below the poverty line, with

a monthly per capita income of only Rs. 354.36 (about USD $7.8), and more than 2 million

people have little or no food security, resulting in dietary deficiencies that increase sus-

ceptibility to Arsenicosis (BRLPS 2007, Census 2013). The state has a total population

density of 1,102 person/km2 and a decadal population growth rate of 28.43 %. The total

literacy rate is only 48 %, due to inequitable access to education and a high dropout rate

(BRLPS 2007). The impacted communities are largely unaware of the contamination

problem because of poor literacy, especially for women whose literacy rate is only

33.53 %. Consequently, women lack equal access to resources; are more likely to be

impoverished and illiterate; and are susceptible to abandonment, divorce, ostracism, or

domestic violence when afflicted with Arsenicosis (BRLPS 2007; Brinkel et al. 2009). Fear

of contamination has affected social ties and resulted in fewer marriages, causing cultural

stress between generations (Bihardays 2011). Arsenicosis-affected individuals and com-

munities also face social marginalization, including alienation, stigmatization, and dis-

crimination. A typical community in an As-affected rural area is presented in Fig. 3.

Additionally, the high infant mortality rate, kala-azar prevalence, TB incidence, HIV

prevalence, frequency of diarrhea, and other diseases significantly contribute to vulnera-

bility of communities. Furthermore, multiple environmental contaminants such as F, N,

and other contaminants, as well as other environmental stresses such as flood and drought

Fig. 3 Typical community in an As-affected area in Bihar (Photograph by Sushant Singh 2013)
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incidence, in addition to exposure to stressors like climate change or regional biophysical

or political issues further amplify vulnerability to As.

2.4 Data collection and processing

Arsenic, fluoride, nitrate, and iron contamination data in different districts of Bihar were

extracted from the published literature and field survey (SOES 2006; Ghosh et al. 2007,

2008; Saha 2009; Saha et al. 2009; Singh 2011). The at-risk population was calculated

based on the number of blocks contaminated with As. In this study, we defined the

threshold for population at risk at 10 lg/L of groundwater As contamination (Nickson et al.

2007). Flood and drought incidence was pooled from federal reports. Socioeconomic,

demographic, and health-related data were extracted from the Census-2001 and policy

documents. Hydrogeological data were extracted from the published maps and state reports

(BSPCB 2007; GSI 2012; BAMETI 2014). All the data were standardized and processed

according to the UNEP guidelines (UNEP 2003).

A Shapefile for Bihar with district boundaries and rivers available at the http://www.

diva-gis.org/ was downloaded. All the data were incorporated into the attribute table, and

maps were created using ArcGIS 10.1 (ESRI 2012).

3 Results and discussion

3.1 Arsenic vulnerability maps (AVM)

The AVM explicates the areas contaminated with As ranging from 0 lg/L to [1,000 lg/

L of As (Fig. 4) and the population at risk due to ready access to the drinking water

sources with As levels more than 10 lg/L (Fig. 5). Five districts were found to be

contaminated with [1,000 lg/L of As including Buxar, Bhojpur, Patna, Samastipur, and

Bhagalpur. Nine districts were found to have As below the BIS standard of 50 lg/L in

the state (Fig. 4). A total of about 9 million population was found to be at risk in the

state. The population in about one-half of the As-affected districts was found to be highly

vulnerable to As contamination, amounting to a total population of about 4.4 million out

of the total at-risk population (Fig. 5). The least at-risk population in the As-affected

districts was found to be 7 % in Darbhanga district, covering only one block; however,

the highest As-affected population (63 %) was found in Khagaria district, covering a total

of three blocks (Fig. 5).

3.2 Mapping exposure

3.2.1 Mapping environmental vulnerability

Only Bhagalpur district was found to be a highly environmentally vulnerable area. Bha-

galpur is a unique As-affected area because the groundwater in this area is contaminated

with As, F, and N. Also, the district is affected by flood and drought incidences (Fig. 6).

Five districts Bhojpur, Buxar, Patna, Samastipur, and Vaishali were found to be moderately

vulnerable, followed by the less vulnerable two districts and four at risk. Only three

districts including Darbhanga, Lakhisarai, and Purnia were the resilient districts because of

the comparatively less biophysical stressors.
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3.3 Mapping sensitivity

3.3.1 Mapping socioeconomic–demographic vulnerability

A total of five districts including Vaishali, Samastipur, Darbhanga, Purnia, and Katihar

were found to be socioeconomically and demographically highly vulnerable (Fig. 5).

Among these districts, only Samastipur falls in the 500–1,000 lg/L As contamination

range (Fig. 4). Among the highly As-affected districts ([1,000 lg/L) and highly As

vulnerable populations, only Patna district was found to be socioeconomically and

demographically moderately vulnerable (Figs. 4, 7). The socioeconomic–demographic

vulnerability is a function of the population below the poverty line, population growth,

population density, SCs, and STs population (representing the lowest rungs of the caste

hierarchy). The socioeconomic–demographic vulnerability map explicates that in spite of

having a higher concentration of As and a highly vulnerable population size, the

socioeconomic and demographic conditions of the exposed population reduced the

vulnerability in the high As-contaminated areas and magnified the vulnerability in the

areas with lower levels of As contamination. With more than 1,000 lg/L of As levels in

the groundwater, Buxar, Bhojpur, and Bhagalpur districts were found to be socioeco-

nomically and demographically at risk, which is the second level at the vulnerability

index and only rank behind to reach the resilient stage, whereas the districts with As

Fig. 4 Arsenic contaminated districts of Bihar. The map is based on more than 30,000 drinking water
sources tested for As concentrations, pooled from several published sources. The mean value of As exceed
the BIS standards set for drinking water; however, the map represents the highest concentration detected in
the areas (SOES 2006; Ghosh et al. 2007; Saha 2009; Singh 2011)
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levels between 51 and 1,000 lg/L of As including Vaishali and Samastipur were found

to be socioeconomically and demographically highly vulnerable. Moreover, Darbhanga,

Purnia, and Katihar, which are comparatively less As-contaminated (\As 20 lg/L), were

the other three highly vulnerable because of the poor socioeconomic and demographic

conditions. Only two districts Lakhisarai (because of the lowest number of the most

vulnerable population (STs) and the lowest population density) and Munger (because of

the lowest population density in the areas) were found to be resilient districts in the

state.

3.3.2 Mapping health vulnerability

The population of Bihar is affected by several diseases such as diarrhea, tuberculosis,

filarial, polio, and kala-azar that are endemic in the state. This study demonstrates that

Katihar and Patna districts were highly vulnerable due to very poor health conditions,

followed by moderately vulnerable district Vaishali, less vulnerable districts Saran, Sa-

mastipur, Khagaria, and Purnia, and the at-risk districts Lakhisarai, Bhagalpur, Darbhanga,

and Kishanganj (Fig. 8). In Katihar, the infant mortality rate (59 %) and the HIV preva-

lence (2.5 %) were very high, and in Patna, the tuberculosis incidence (8.5 %) was the

highest among other districts (BRLPS 2007). In the moderately vulnerable district Vais-

hali, the kala-azar prevalence was the highest (11.4) followed by a high tuberculosis

incidence of 4.3 (BRLPS 2007). People with poor health will be more susceptible to

Arsenicosis; they lack the required physiological coping mechanism against any foreign

Fig. 5 Arsenic vulnerable population of Bihar
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agents in the body, therefore making them more vulnerable and sensitive to any additional

health problems.

3.3.3 Mapping geological vulnerability

Geologically, Darbhanga, Katihar, Khagaria, Kishanganj, and Purnia were found to be

highly vulnerable as the lithology of the areas is shaped by only younger alluvium, which

has been reported as the highly As-contaminated areas in the state. However, all these

districts are on the northern side of the River Ganges and have not been investigated for

groundwater As contamination (Figs. 4, 9). The moderately vulnerable districts were

Buxar, Bhojpur, Saran, Vaishali, Samastipur, and Begusarai. All these districts except

Begusarai have been found to be highly As-contaminated areas. The lithology of these

districts is mainly shaped by the younger alluvial and calcareous alluvial soil.

3.4 Mapping adaptive capacity

Kishanganj, Purnia, and Katihar were found to be the highly vulnerable areas because of

they have the lowest adaptive capacities (Fig. 10). The total literacy rates and the female

literacy rates in these districts were far below the average literacy rates in the state (BRLPS

2007). Katihar and Purnia both had a total literacy rate of only 35.1 %, whereas Kishanganj

Fig. 6 Environmental vulnerability map of Bihar
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had the lowest total literacy rate of only 31 % among all other districts (BRLPS 2007).

Two highly As-affected districts Bhojpur and Patna, along with one of the lowest As-

affected districts, Munger, were the resilient areas with higher literacy rates (Fig. 10).

Other highly As-affected areas Buxar and Bhagalpur were at risk followed by Samastipur

(Fig. 10).

3.5 Mapping composite vulnerability

A composite vulnerability map (CVM) is the map based on the average mean value of all

the vulnerability indexes covered in this study. It is important to mention here that the VI

values for exposure and sensitivity trended in a positive direction (the greater the VI,

greater the vulnerability). However, for adaptive capacity, the VI values trended in a

negative direction (the greater the VI, less adaptive capacity). The CVM elucidates that

Katihar was the only district found to be a highly vulnerable area, followed by the mod-

erately vulnerable areas of Vaishali, Samastipur, Khagaria, and Purnia; less vulnerable

areas were Buxar, Patna, Begusarai, Bhagalpur, Saran, Darbhanga, and Kishanganj dis-

tricts, respectively (Fig. 11). The Bhojpur and Lakhisarai districts were found to be the

districts at risk. Only one district, Munger, was found to be resilient with comparatively

higher adaptive capacities (Fig. 11). Surprisingly, between the two at-risk districts,

Bhojpur was one of the highly As-contaminated districts, with As levels in the groundwater

of more than 1,000 lg/L (Fig. 4).

Fig. 7 Socioeconomic–demographic vulnerability map of Bihar
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Additionally, the study suggests that besides higher concentrations of a carcinogenic

material (arsenic in this case), other biophysical, socioeconomic, demographic, educa-

tional, health, and environmental factors have a significant effect on the total vulnerability

in the area. Therefore, a CVM could be a very important decision-making tool to evaluate

the actual vulnerable areas as a function of composite vulnerability indicators. Among the

highly As-affected districts, which include Buxar, Bhojpur, Patna, and Bhagalpur

(As [ 1,000 lg/L), Bhojpur dropped two levels on the vulnerability index scale and

improved to be classified as an ‘‘at-risk’’ district (Fig. 11). The other three districts dropped

one level to being less vulnerable areas (Fig. 11). These findings suggest that vulnerability

of the area or the communities in the state do not depend entirely on the environmental

stressors like groundwater contaminations or other environmental hazards. Other factors,

including the socioeconomic and demographic status of the communities and geological

properties of the areas, play a vital role in shaping the total vulnerability of the population

and the region. These finding are in line with previous studies, which argue that there is a

need for multiple indicators to adequately assess the vulnerability of areas impacted by

natural hazards (Cutter et al. 2009).

3.6 Principal component analysis

According to the correlation matrix, a significant positive correlation between rural

population, flood incidence, and geological formation was found (Appendix 1). This

positive correlation suggests that flood incidences are more prevalent in rural areas, and

Fig. 8 Health vulnerability map of Bihar
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the geological formation is of quaternary age. These factors will contribute to the vul-

nerability in the rural areas in the state. Furthermore, a very high positive correlation

between BPL, kala-azar prevalence, TB incidences, flood incidences, lithology of the

areas, and physiography of the areas was also derived (Appendix 1). A high positive

correlation was found between the SC population and population density. Total literacy

and female literacy were found to be significantly negatively correlated with the ST

population. Population growth only had a strong negative correlation with total literacy

but was found to be strongly positively correlated with the lithology and the physiog-

raphy of the areas. This further explains that population growth is greater in the areas

with younger alluvial soil and in the alluvial plain in the state. Population density

showed a strong positive correlation with kala-azar prevalence and TB incidence

(Appendix 1).

Communalities of one-third of the variables were close to 1 and were reasonably high

for the rest of the variables, with only one variable drought incidence (.566) close to the

lower end of the acceptable value (Appendix 2). The extracted principal components have

been represented in Table 3.

The eigenvalues in the extracted five components that were found to be greater than one

ranged between 1.2 and 6.8 (Table 3). The first principal components explain about 33 %

of the variance; the second components accounted for 21 % of the variance; the third with

14.3 % of the variance; the fourth components for 7.5 %; and the fifth components for

5.9 % of the variance (Table 3). Together, the first five components accounted for a

cumulative 81.6 % of the variance in the vulnerability data set.

Fig. 9 Geological vulnerability map of Bihar
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The first PC contrasts the total literacy, female literacy, F-affected districts, and drought

incidence with other variables in the component. As discussed earlier, literacy rates (both

total literacy rate and female literacy rate) reduce total vulnerability, as they constitute a

very important component of the adaptive capacity of the communities. The extreme

negative loadings of total literacy rate (-.942) and female literacy rate (-.930) reflect that

the composite vulnerability is highly negatively affected by adaptive capacity (Table 4).

The sensitivity indicators, lithology (.760) and infant mortality rate (.740) with compar-

atively higher loadings, indicate that the composite vulnerability is affected by the sen-

sitivity of the areas. Other variables with loadings close to zero indicate an average

contribution to composite vulnerability (Saha and Shukla 2013). The second PC was

primarily marked by high positive loadings of eight sensitivity indicators with only one

variable geological formation with negative loading (Table 4). The third component was

marked by only the sensitivity indicators. The fourth component and the fifth component

were marked, respectively, with only three elements and two elements with loadings more

than .40.

The bend that appears on the scree plot also suggests that the variance will essen-

tially be explained by the five PCs (Appendix 3). A loading of more than .40 of each

variable in each component was interpreted and was considered in naming the com-

ponents (Warner 2012). The first component had high loadings of a total of 16 vari-

ables; both the adaptive capacity indicators, total literacy rate and female literacy rate,

had the highest loadings (Table 4). Furthermore, five exposure indicators out of a total

of six and nine sensitivity indicators out of a total of thirteen indicators were the other

Fig. 10 Adaptive capacity map of Bihar
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elements in the first component, with more than .40 loadings. Based on the RNPC, the

first component could be labelled ‘‘Adaptive Capacity’’; the second and the third

component as ‘‘Sensitivity’’; and the fourth and the fifth component as ‘‘Exposure’’

(Table 4). The fifth component had only two variables with loadings more than .40,

each from exposure and sensitivity. Considering the comparatively higher loading of the

Table 3 Eigenvalues of the principal components

Component Initial eigenvalues Extraction sums of squared loadings

Total % of variance Cumulative (%) Total % of variance Cumulative (%)

Total variance explained

1 6.891 32.812 32.812 6.891 32.812 32.812

2 4.423 21.063 53.875 4.423 21.063 53.875

3 3.003 14.298 68.173 3.003 14.298 68.173

4 1.584 7.542 75.716 1.584 7.542 75.716

5 1.235 5.882 81.598 1.235 5.882 81.598

6 .922 4.392 85.990

7 .877 4.174 90.164

8 .766 3.650 93.814

Extraction method: principal component analysis

Fig. 11 Composite vulnerability map showing total vulnerability in Bihar
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iron-affected district (.610) over the HIV prevalence (.514), we named the fifth com-

ponent ‘‘Exposure.’’

4 Conclusion

There exists a unique combination of biophysical and socioeconomic conditions in Bihar,

making it highly vulnerable to the effects of groundwater As contamination. The CVM

shows that Katihar is the only ‘‘highly vulnerable’’ district, followed by the ‘‘moderately

vulnerable’’ areas of Vaishali, Samastipur, Khagaria, and Purnia, and the ‘‘less vulnerable’’

areas of Buxar, Patna, Begusarai, Bhagalpur, Saran, Darbhanga, and Kishanganj, respec-

tively. Bhojpur and Lakhisarai districts were found to be ‘‘at risk.’’ Only Munger was

found to be a ‘‘resilient’’ district with a comparatively higher coping capacity. Vaishali,

Samastipur, and Katihar districts should be given priority in As-mitigation plans; low-cost

As-mitigation technology(s) would be the best fit for Vaishali and Purnia followed by

Darbhanga, Katihar, Samastipur, and Begusarai, respectively. The Bhojpur district would

be an ideal As-affected district to begin with an As-mitigation plan.

Table 4 Loading matrix of the principal components

Component

Adaptive capacity Sensitivity Sensitivity Exposure Exposure

Component matrixa

Total literacy 2.942 2.036 2.147 .113 .073

Female literacy 2.930 .105 2.150 .043 2.084

Lithology .760 .451 .123 .265 .053

Infant mortality rate .740 2.277 .105 2.018 2.185

Flood incidence .717 .373 2.124 2.060 2.082

Fluoride-affected districts 2.660 2.139 .390 .030 2.324

Rural population .651 .038 2.588 .353 .079

Population growth .561 .417 .355 .221 2.188

Arsenic-affected districts 2.557 .311 2.102 .511 2.047

Nitrate-affected districts 2.550 .155 .248 .398 2.344

Drought incidence 2.477 2.362 .364 .270 .050

Population density 2.311 .842 2.240 2.061 .053

Below the poverty line population .438 .797 .228 2.194 .086

Tuberculosis incidence 2.372 .796 .314 2.130 .212

Kala-azar prevalence .075 .684 2.388 2.289 2.187

Physiography .357 .636 .032 .629 2.253

HIV prevalence 2.039 .223 .761 2.011 .514

Scheduled caste population 2.392 .462 2.658 2.082 .294

Scheduled tribe population .620 2.143 .628 2.153 2.077

Geological formation .502 2.492 2.555 2.016 2.162

Iron-affected districts .363 2.411 2.122 .510 .610

Bold values indicate the significant loading values greater than 0.40

Extraction method: principal component analysis
a 5 Components extracted
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The CVM of Bihar has three major potential uses: first, to identify the ‘‘highly vulnerable’’

areas where As mitigation is the most urgent requirement; second, to identify types of feasible

and sustainable As-mitigation options for a specific vulnerable area; and third, to identify the

area(s) where the likelihood of success of an As-mitigation plan is greatest (Fig. 11). Our study

demonstrates that among the 15 As-affected districts, Katihar can be considered ‘‘highly vul-

nerable’’; therefore, this district should be given priority in an As-mitigation plan where As

mitigation is an urgent necessity. Although Katihar has very low levels of As concentration,

socioeconomically and demographically, health wise, and geologically, it is one of the ‘‘highly

vulnerable’’ areas in the state with the least adaptive capacity. As-mitigation policy should

accord the next highest priority to Buxar, Patna, Begusarai, Bhagalpur, and Saran followed by

other As-contaminated districts including Vaishali, Samastipur, and Khagaria. Although

Bhojpur was among the highly As-affected districts, because of its high level of adaptive

capacity, it was found to be ‘‘at risk.’’ Therefore, the likelihood of success of an As-mitigation

program in this district is very high. Vaishali, Samastipur, Khagaria, and Purnia are the

‘‘moderately vulnerable’’ areas that are socioeconomically and demographically heteroge-

neous in nature and fall under the socioeconomically and demographically highly vulnerable

areas in the state. Therefore, the expensive As-mitigation options would not work in any of these

districts. Considering the adaptive capacity of these three ‘‘highly vulnerable’’ districts,

Vaishali has a better adaptive capacity than the other districts. Therefore, among the ‘‘mod-

erately vulnerable’’ districts, Vaishali should be given priority, followed by Samastipur with

low-cost As-mitigation policies.

The PCA suggests that the five principal components essentially explain the variance in

composite vulnerability. The total literacy rate, the female literacy rate, rural population,

population growth, population below the poverty line, scheduled caste population, infant

mortality rate, flood incidence, drought incidence, As, F, N, lithology, and the geological

formation were found to be the most important variables to explain the variance of

composite vulnerability. The first component was the adaptive capacity, which further

suggests that the adaptive capacity of the communities makes relatively greater contri-

butions to reduce the total vulnerability. Moreover, other indicators of adaptive capacity

could be identified and studied to derive total vulnerability in areas under multiple envi-

ronmental and social stressors. For instance, additional information about people’s risk

perception of the As problem, the presence and functionality of institutions, interpersonal

trust, and trust in institutions working in those areas would be very helpful in under-

standing the adaptive capacity of the exposed communities. In our ongoing study, we

gathered household-level information about these indicators along with other socioeco-

nomic and demographic variables in three As-affected villages in Bihar, India, which

would be incorporated in the proposed vulnerability framework, and a CV could be

derived at the household level. This will make the CV decision-making tool more precise.

The empirical data from these three As-affected villages would help calibrate the CVM and

will testify to the predictive capacity of the CVM.
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See Table 5.
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Appendix 2

See Table 6.

Table 6 Communalities table

Extraction method: principal
component analysis

Initial Extraction

Communalities

Rural population 1.000 .902

Below the poverty line population 1.000 .923

Scheduled caste population 1.000 .894

Scheduled tribe population 1.000 .829

Population growth 1.000 .699

Population density 1.000 .870

Total literacy 1.000 .928

Female literacy 1.000 .908

Infant mortality rate 1.000 .670

Kala-azar prevalence 1.000 .743

Tuberculosis incidence 1.000 .933

HIV prevalence 1.000 .894

Flood incidence 1.000 .678

Drought incidence 1.000 .566

Arsenic-affected districts 1.000 .681

Fluoride-affected districts 1.000 .713

Nitrate-affected districts 1.000 .664

Iron-affected districts 1.000 .949

Geological formation 1.000 .830

Lithology 1.000 .870

Physiography 1.000 .993
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Appendix 3

See Fig. 12.
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