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Abstract The state of Sikkim in India has many steep slopes and has been susceptible to

landslides. Since 1968 there have been innumerable losses of lives and properties due to

landslides. There is an urgent need for advance assessment of degrees of vulnerability and

delineation of the most vulnerable zone for shifting of the population and infrastructure to a

safer zone. The identification and formulation of most suitable and acceptable method for

such assessment is still nascent and research based. In this study, an attempt has been made

to integrate the concept of Shannon’s entropy with the information value-based statistical

model to evaluate the landslide susceptibility in the study area and assess the improvement

made through the integration of Shannon’s entropy by comparing the results with the

landslide susceptibility determined from the information value-based statistical model

alone. Initially, the thematic layers pertaining to all the causative parameters were overlaid

with the help of geographical information system that resulted in the formation of 78,256

numbers of polygons for each one of which landslide susceptibility was determined. For

each polygon, the total landslide information value (TLIV) was computed as the sum-

mation of the landslide information values determined for the individual sub-categories

present within the respective polygons. Again for each polygon, the Shannon’s entropy

value of the individual parameters was multiplied with the summation of the landslide

information values of all the sub-categories present within the respective parameters. The

product values computed for the different causative parameters were summed up to
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determine the total landslide information value with entropy (TLIV_e). Finally, the entire

study area was categorized into five zones of landslides susceptibility based on the TLIV

and TLIV_e, respectively. The prediction accuracy of the landslides determined based on

the landslide susceptibility derived from TLIV_e was found to be significantly high (91 %)

as compared to that derived from TLIV (85 %) indicating the potential contribution of

Shannon’s entropy in the improved delineation of the landslide susceptibility zones.

Keywords Landslides � Susceptibility � Information value � Shannon’s entropy

1 Introduction

Landslides have posed perennial problems in the Himalayas. Susceptibility analysis and

zonation are very important and significant aspects of the disaster mitigation system through

which the areas with different degrees of landslide susceptibility are segregated into various

zones. With the enhanced capability of the computing devices in terms of storage, speed and

flexibility, the geo-spatial technology has been potentially utilized to achieve improved

understanding and characterization of the various causative parameters of landslides. The

primary goal in landslide susceptibility analysis is to quantify the influence of each landslide

causative factor as a piece of information contributing to the final predictive information.

Landslide susceptibility analysis have been performed by many researchers and scientists

all across the globe during the last two decades (Shu-Quin and Unwin 1992; Pachauri and

Pant 1992; Van Westen et al. 1997; Pachauri et al. 1998; Uromeihy and Mahdavifar 2000;

Patanakanog 2001; Sakellariou and Ferentinou 2001; Sivakumar and Mukesh 2002; Dhakal

and Sidle 2002; Carro et al. 2003; George et al. 2007; Lee 2007; Jadda et al. 2009; Pradhan

and Ahmed 2010). Several statistical models have also been developed and employed for

performing such analysis. Logistic regression model was used for landslide mapping by

Atkinson and Massari (1998), Lee (2004, 2005) and Ramakrishna et al. (2005) along with

Frequency Ratio method (Lee and Sambath 2006; Lee and Pradhan 2006; Yilmaz 2009a;

Avinash and Ashamanjari 2010) and information value method (Ramakrishna et al. 2005).

Fuzzy Algebraic Function was used for landslide susceptibility modeling by Pistocchi et al.

(2002), Ercanoglu and Gokceoglu (2004) and Lee (2007). Artificial neural network was

used for landslide susceptibility study and modeling by Lee et al. (2003a, b, 2004, Yilmaz

2009b), Pradhan and Lee (2010) and many others. Knowledge-driven raster analysis for

landslide study has been conducted by Gupta et al. (2009). The information value method,

however, stands pivotal to all the methods.

The quantified information value for each of the causative factors and their sub-categories

summed together will give a composite landslide susceptibility index. Higher the index value

more vulnerable is the area to landslides. A thorough understanding of susceptibility is

possible if the study area is divided into a number of elements based on the variation of the

parameters that are considered, and the composite index value is computed for each of such

elements. The occurrence of varying composite index values within the study area will

enable the analyst to categories the polygon elements on the basis of them. To implement this

idea, information value theory, a widely used statistical model is applied by many researchers

in landslide susceptibility study (Yin and Yan 1988; Ramakrishna et al. 2005). The present

investigation was carried out in the Rumtek Samdung area of Sikkim, India involving

fourteen causative parameters identified in the area that were subcategorized into forty-eight
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subclasses. In the same study area, the landslide vulnerability assessment and zonation was

performed earlier using the same causative parameters and applying several methods. These

include tri-variate approach (Sharma et al. 2009a), landslide susceptibility assessment based

on soil characteristics (Sharma et al. 2009b, 2012b), ranking of causative parameters

(Sharma et al. 2011), experts’ weight and Shannon’s entropy (Sharma et al. 2012a), landslide

density of the causative parameters (Sharma et al. 2012c) and likelihood ratio approaches

(Sharma et al. (2012d), Fuzzy Logic (Sharma et al. 2013).The present method of study

introduces a new approach to perform the task of landslide susceptibility assessment. This

approach integrates the concept of Shannon’s entropy with the information value theory, to

compute the landslide information values of the different polygons. The landslide suscep-

tibility zonation determined through this new approach was compared with that derived from

the application of the information value model alone in order to determine whether there

occurs improvement through the new approach.

The objective of this study was to evaluate more robust method for landslide suscep-

tibility assessment through accurate delineation of the study area into various zones with

varying degrees of landslide susceptibility and try to improve the performance of earlier

established information value model with the help of Shannon’s entropy. The result of this

study will give new insight for researchers and geo-scientist involved in geo-statistical

modeling of trends, susceptibility and suitability, toward the integration of Shannon’s

entropy into the existing and earlier established methods for more accurate results.

2 Study area

The study area selected for this study the Rumtek Samdung area comprises of a sloppy

stretch of around 26 villages. The area is surrounded of Gangtok town in the east, south

district of Sikkim in the west, river Singtam in the south and a reserve forest area and some

part of north district in the north (Fig. 1). At the central part of the area lies the famous

Tinjuray hill which is a dense forest famous for availability of wide ranges of wild animals

and attracts many adventure trackers. However, this reserve forest area is excluded for the

study as no history of past landslides was found in the area. Within the study area, the rock

types found were mostly a week combination of chlorite, phyllite and schist (Fig. 2), where

as a small area was also characterized by a more stable Lingtse gneiss group of rocks. The

slope in the area varied from 15 to 90 % where as in between the big terraces also lies the

flat area that gives almost 0 % of slope. The land use land cover of the area is mostly

cultivated, barren land, mixed forest or dense forest. Drainage lines are available every

3–4 km and most of them are heavily inundated during the monsoon. Two important road

lines, the first one passing form Rumtek to Upper Samdung through Sang village and

second one passing through Ranipool to Lower Samdung through Singtam, link the vil-

lages in the upper and lower belts of the hill slopes. However, lots of link roads are being

newly constructed with unmanaged and muddy slopes on both sides of the road that adds

the landslide susceptibility of the area. Many permanent landslides are seen in the study

area (Fig. 3). Some of the landslides are stabilized after the first occurrence; where as many

of them have become the permanent landslide spots.

2.1 Methodology

The spatial data required for the study were collected from various stake holders. Table 1

lists the various spatial data used in this study with their source and description. The digital
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elevation model (DEM) was developed from the contour maps and the GPS collected

elevation data. The slope map and aspect map were derived from the DEM. The landslide

spots, the road lines, drainage lines and land use and land covers were identified from the

satellite images (Fig. 4). Other important landslide causative parameters were identified

and their spatial layers were integrated into common spatial reference in geographical

information system framework. Initially, the thematic layers corresponding to fourteen

causative parameters were overlaid into one single layer using the overlay tool of the

ArcGIS that yielded a final layer comprised of 78,256 polygons with each of the polygon

associated with attributes containing information about the presence of all the fourteen

causative parameters and their forty-eight sub-categories. Information value associated

with each causative sub-category is determined as the logarithm of the ratio of the relative

frequency of the landslides present within the sub-category to the relative frequency of the

landslides present in all the sub-categories, i.e., in the entire study area. Information model

is a statistical method based on the probability theory for spatial prediction of occurrence

of an event from the parameter and event relationship. It has proved to be a very useful

Fig. 1 Study area
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method for landslide susceptibility analysis and has been successfully used by several

researchers (Yin and Yan 1988, Ramakrishna et al. 2005).

The information value Ii for a sub-category i can be expressed as:

Ii ¼ log
Si=Ni

S=N
ð1Þ

where Si = number of polygons with the landslide events in sub-category i, Ni = total

number of polygons in the sub-category i, S = number of polygons with landslide events,

N = total number of polygons

The ratio in the numerator (Si/Ni) represents the landslide density in each sub-category

and the ratio in the denominator (S/N) represents the landslide density in the study area; in

each ratio the unit of measurement is the polygon).

Total information value (TLIVj) in any of the jth polygon is given by

Ij ¼
XM

i¼1

XjiIi ð2Þ

where Xji is the value of the parameter i which is equal to either 0 or 1 as defined earlier

depending upon its presence or absence in the jth polygon.

Fig. 2 Geological map of the study area
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j = 1,2,…N where N is the total number of polygons in the study area and

i = 1,2,3,…M where M is the total number of parameters considered.

The above model was used to determine the total landslide information Value (TLIV)

for each of the polygons that were created through the overlay of the fourteen spatial

layers. Greater the TLIV, more vulnerable is the polygon to landslide. The entire study area

was categorized into five zones of landslide susceptibility viz. least vulnerable zone,

moderately vulnerable zone and the most vulnerable zone considering the TLIVs based on

which a landslide susceptibility zonation map was prepared. The methodology adopted is

depicted with a flow chart diagram in Fig. 5.

2.2 Calculation of landslide information values of parameters

Landslide information value of a parameter or sub-category informs about its degree of

influence in causing the landslides. Landslide information values for all the sub-categories

of the different parameters considered were computed using Eq. 1. The information values

of the pedologic parameters are computed and tabulated in Table 1 where as for those of

the non-pedologic parameters are computed and tabulated in Table 2. It is to be reiterated

here that more the information value associated with the sub-categories of the parameter

higher is its susceptibility to landslides. It can be seen from the tables that the sub-

categories of soil parameters such as moderate deep, coarse loamy texture, shallow,

somewhat excessively drained, high hydraulic conductivity, low stoniness and severe

erosion have comparatively high information values indicating their higher susceptibility

and conduciveness to landslides. Looking at the slope variable, 15–30 % of slope and

above 60 % of slope have reported higher information values. Looking at the aspect, west,

south and southeast are showing higher information values. Hills facing south and

Fig. 3 Landslides of Sirwani village
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southeast showing higher information values and being more susceptible to landslides was

also reported earlier by Sarkar et al. (2008). In general, south facing slopes are said to have

less vegetation density and more of erosional activities under other constant influencing

parameters (Sinha et al. 1975).

2.3 Computation of TLIV

After overlaying spatial map layers pertaining to all the causative factors, the final resultant

layer named as rsf.shp was a map containing 78,256 polygons. For each of the polygons, 48

variables named as X1, X2, X3, etc. were introduced to denote the presence or absence of

the respective parameters in the polygon. For example, if in a polygon, the soil depth was

of moderate deep category then X1 = 1 else X1 = 0. Similarly if soil depth was of

moderate shallow category then X2 = 1 else X2 = 0. In the same manner, the presence or

absence of a parameter type was denoted by the values of X1, X2, X3,…,X48 as listed in the

third column of Tables 1 and 2. Finally, for each of the polygons in the study area, TLIV,

which is the total information value provided by all the influencing parameters existing in

the polygon was calculated using Eq. 2. Hence higher the TLIV value, higher is the

landslide susceptibility of the polygon. The TLIV calculated for all the 78,256 polygons

ranged from -3.676 to -1.898 with a mean of -2.5833, median of -2.5643 and a

standard deviation of 0.2747. The TLIV values were then grouped into five classes with

varying order of their expected landslide susceptibility using the natural breaks (Jenks)

method in ArcGIS. The polygons with TLIV ranging from -3.676 to -2.97 covering 5.56

sq. km of area were classified in the least vulnerable zone, the polygons with TLIV ranging

from -2.969 to -2.715 covering 20.22 sq. km. area were classified in the low vulnerable

zone, the polygons with TLIV ranging from -2.7149 to -2.508 covering an area of 26.38

sq. km in the moderately vulnerable zone, the polygons with TLIV ranging between

Fig. 4 Study area in Cartosat panchromatic image
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-2.5079 and -2.311 covering 24.28 sq. km. of area were classified in the highly vul-

nerable zone and polygons with TLIV ranging from -2.3109 to -1.898 covering 17.48 sq.

km. of area were classified in the most vulnerable zone as depicted in Table 3.

2.4 Validation of TLIV-based zonation and the susceptibility analysis

Classification of polygon elements vis-à-vis zonation of the study area is done based on the

statistically computed landslide information values of polygons that were further based on

the landslide information values supplied by each of the sub-categories and ranges of

parameters. It is important to compare the result of the zonation with the actual landslides.

Fig. 5 Methodology flowchart
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The actual landslide map available in the form of polygon was overlaid earlier during the

process of overlay analysis. Hence rsf.shp; the final overlaid spatial dataset containing

78,265 polygons contained a total of 614 polygons containing the instances of landslides.

In order to validate the zonation results, the numbers of such polygons were counted in

each of the susceptibility zones. Number of such polygons counted and the landslide

density computed for each of the susceptibility zones is depicted in Table 4. As depicted in

the table, the least vulnerable zone contained a total of 13 (2.12 %) polygons, low vul-

nerable zone contained 65 (10.59 %) polygons, moderately vulnerable zone contained 134

(21.82 %) polygons, highly vulnerable zone contained a total of 223 (36.32 %) polygons

and the most vulnerable zone contained a total of 179 (29.15 %) polygons with the

instances of past landslides. Figure 6 depicts the percentage of area and landslides in each

of the susceptibility zones. As depicted from the figure, the percentage of landslide is less

up to the moderately vulnerable zone in comparison with the percentage of area where as

in the high and the most vulnerable zone the percentage of landslides is more than the

percentage of area which also correlates and agrees with the fact that the higher vulnerable

areas will have more number of occurrences of landslides as compared to the less vul-

nerable areas. Higher percentage of landslides in higher susceptibility zones is also

depicted by line graphs in Fig. 7.

In order to further assess the relevance of zonation method and the result, landslide

density is computed for each of the susceptibility zones as a ratio of number of landslide

containing polygons to the total area in each of the zones. The computed landslide densities

for each of the zones are tabulated in last column of Table 9. As depicted in the table, the

landslide density constantly increases from the least value (2.34) at the least vulnerable

zone to the highest value (10.24) at the most vulnerable zone. Figure 8 depicts the land-

slide densities in different zones with the help of a bar chart.

Hence, the prevalence of higher percentage of landslides and higher landslide densities

in the higher susceptibility zones indicate the reliability of the zonation method. The

zonation map prepared for the study area based on this zonation method is depicted in

Fig. 9. The total numbers of polygons with landslides in the three highest vulnerable zone,

i.e., moderate, high and most vulnerable zones accounted for 536 (87 %) out of a total of

614. Hence, the prediction accuracy derived from the information value model for per-

forming the task of landslide prediction for the Rumtek Samdung study area is found to be

87 %.

2.5 Application of Shannon’s entropy on information value model

Shannon’s entropy (1948) is measure of uncertainty associated with a random variable

defined as the information content in any system. The average uncertainty defined as

Shannon’s entropy and denoted with function HN for an event or value is given by the

following expression:

HN ¼ �
Xn

i¼1

Pi log Pi ð3Þ

where Pi is the probability of occurrence of the ith event or value; for example, in case of

soil, i represents the three different types of soil textures viz. fine loamy, loamy and coarse

loamy.
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HN denotes the Shannon’s entropy for thirteen control parameters; H1 for soil depth, H2

for soil drainage behavior and so on as shown in Table 5.

Shannon’s entropy was earlier introduced and applied in landslides susceptibility

assessment to balance the influence of variation and prevalence of parameters within the

study area based on the knowledge-driven weights assigned to the sub-categories of the

different parameters (Sharma et al. 2012a). It is once again applied here in order to refine

the computed information value of the various sub-categories of the different parameters

with respect to their spatial variation and prevalence on the field. The total landslide

information value with entropy (TLIV_e) for each of the polygons lying within the study

area can be computed by further improving Eq. 2 in the following way:

TLIV e ¼
XM

i¼1

XjiIiHi ð4Þ

where Xji and Ii have the same meaning as given in Eq. (2) and Hi is the Shannon’s entropy

of the ith parameter. Shannon’s entropy computed for different causative parameters are

shown in Table 5.

The TLIV_e computed for 78,256 polygons present in the final resultant layer of the

data set ranged from -5.4289 to -1.815 with a mean of -3.0427, median of -2.8811 with

a standard deviation of .6495. Then the values of TLIV_e computed for the different

polygons were grouped into five categories of landslide susceptibility applying the natural

breaks (Jenks) method available with the ArcGIS. The different zones are named as the

least, low, moderate, high and most vulnerable zones in the increasing order of their

susceptibility to landslides. Higher the value of TLIV_e within a polygon, higher is its

susceptibility to landslides. The area and number of polygons lying within the different

susceptibility zones are shown in Table 6.

2.6 Verification and validation of TLIV_e-based zonation

For the verification and validation of the final landslide susceptibility map generated on the

basis of the TLIV_e, the various statistics pertaining to the occurrences of landslides in the

different susceptibility zones were compared with their actual occurrences in the respective

zones. Out of 614 polygons with the instances of landslide events of the past, it was found

that 14 (3.42 %) polygons with landslide events are falling in the least vulnerable zone, 18

(5.54 %) polygons with landslides are in the low susceptibility zone, 71 (18.73 %) poly-

gons are in the moderately vulnerable zone, 155 (33.55 %) polygons with landslides are in

the highly vulnerable zone and 356 (38.76 %) of polygons with landslides are in the most

vulnerable zone, respectively, as depicted in Table 6. The percentage of area, number of

Table 3 TLIV-based susceptibility classification

Ranges of TLIV Area (Sq Km) No. of polygons Type of zones

-3.676 to -2.97 5.56 (5.92 %) 7,500 (9.58 %) Least vulnerable zone

-2.969 to -2.715 20.22 (21.53 %) 16,598 (21.21 %) Low vulnerable zone

-2.7149 to -2.508 26.38 (28.09 %) 20,338 (25.99 %) Moderately vulnerable zone

-2.5079 to -2.311 24.28 (25.85 %) 20,997 (26.83 %) Highly vulnerable zone

-2.3109 to -1.898 17.48 (18.61 %) 12,823 (16.39 %) Most vulnerable zone

Total 93.92 (100 %) 78,256 (100 %)
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polygons and landslides lying within each susceptibility zone depicted by bar chart in

Figs. 10 and 11 as line graph more clearly depicts the rise of intensity of landslide from

lower to higher susceptibility zones. Analysis of the line graphs exhibit constant but

5.92%

21.53%
28.09% 25.85%

18.61%
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10.59%

21.82%

36.32%

29.15%
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Fig. 6 Bar chart for area and landslides in TLIV-based zonation
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Fig. 7 Line graph for percentage of area, polygons and landslides in TLIV-based zonation
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Fig. 8 Bar graph of landslide densities

Table 4 Computation of landslide densities in TLIV zonation

Type of zones No. of polygons with landslides Landslide density Prediction accuracy

Least vulnerable 13 (2.12 %) 2.34 87 %

Low vulnerable 65 (10.59 %) 3.21

Moderate vulnerable 134 (21.82 %) 5.08

High vulnerable 223 (36.32 %) 9.18

Most vulnerable 179 (29.15 %) 10.24

Total 614 (100 %) 6.54
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significant increase in the frequency of the landslide events from the least susceptibility

zone to the most vulnerable zone. The prevalence of considerable improvement in the

occurrence of landslides events in the upper two susceptibility zone (72 %) as compared to

their occurrence in the lower three susceptibility zones together, i.e., (28 %) indicates

significant influence of the Shannon’s entropy-based TLIV, i.e., TLIV_e on the suscepti-

bility zonation. Landslide densities computed for the different susceptibility zones as the

ratio of the number of polygons with landslides to the area covered by the respective

susceptibility zones exhibit smooth but noticeable increase from the least vulnerable zone

(3.31) to the most vulnerable zone (9.13) with the low, moderate and high vulnerable zones

associated with 4.74, 6.18 and 5.77 landslide densities, respectively. The landslide den-

sities computed for the different susceptibility zones are depicted in Table 7 and by a bar

graph in Fig. 12. In order to validate the results of the landslide susceptibility determined

from the Shannon’s entropy-based TLIV, i.e., TLIV_e prediction accuracy for this tech-

nique has been computed as the percentage of the total number of polygons with landslides

Fig. 9 Landslide susceptibility zonation with TLIV
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associated with the higher three landslide susceptibility zones out of the total number of

polygons with the landslides lying in all the susceptibility zones in the study area. The

Shannon’s entropy-based TLIV_e values provided significantly high prediction accuracy

of 91 %. Based on the TLIV_e values, a susceptibility zonation map was generated

superimposed with the actual landslides events of the study area (Fig. 13).

Table 6 Susceptibility classification with TLIV_e

Ranges of TLIV Area (Sq Km) No of polygons Type of zones

-5.4289 to -4.0635 6.35 (6.76 %) 8,204 (10.48 %) Least vulnerable

-4.0635 to -3.403 7.18 (7.64 %) 9,943 (12.71 %) Low vulnerable

-3.403 to -2.95 18.62 (19.83 %) 17,169 (21.94 %) Moderate vulnerable

-2.95 to -2.56 35.69 (38 %) 24,502 (31.31 %) High vulnerable

-2.56 to -1.815 26.08 (27.77 %) 18,438 (23.56 %) Most vulnerable

Total 93.92 (100 %) 78,256 (100 %)

Table 7 Percentage and density of landslides in TLIV_e type of zonation

Type of zones No of polygons with landslides Landslide density Prediction accuracy

Least vulnerable 21 (3.42 %) 3.31 91 %

Low vulnerable 34 (5.54 %) 4.74

Moderate vulnerable 115 (18.735) 6.18

High vulnerable 206 (33.55 %) 5.77

Most vulnerable 238 (38.76 %) 9.13

Total 614 (100 %) 6.54
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Fig. 11 Line graph for percentage of area, polygons and landslides in TLIV_e zonation
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Fig. 10 Bar chart showing percentage of area and landslides in susceptibility zones with TLIV_e zonation
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3 Discussion and conclusions

In the present study, comparative assessment was performed between the proposed

Shannon’s entropy integrated information value model and standard information value

3.31
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Fig. 12 Landslide densities in TLIV_e-based zonation

Fig. 13 Susceptibility zonation based on TLIV_e values
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model in terms of their potential of categorizing the study area into accurate landslide

susceptibility zones. This task comprised the following steps. First, the TLIV and TLIV_e

was computed for each representative polygon of the study area employing the standard

Table 8 Comparison of area and landslides in TLIV- and TLIV_e-based zonation

Susceptibility zones Area (Sq Km) Polygons with landslides

TLIV zonation TLIV_e zonation TLIV zonation TLIV_e zonation

Least 4.49 (4.78 %) 8.08 (8.60 %) 17 (2.77 %) 14 (2.28 %)

Low 16.59 (17.66 %) 10.12 (10.77 %) 77 (12.54 %) 18 (2.93 %)

Moderate 25.97 (27.65 %) 21.77 (23.18 %) 122 (19.87 %) 71 (11.56 %)

High 29.12 (31 %) 25.86 (27.53 %) 212 (34.53 %) 155 (25.24 %)

Most 17.75 (18.90 %) 28.09 (29.91 %) 186 (30.29 %) 356 (57.98 %)

Total 93.92 (100 %) 93.92 (100 %) 614 (100 %) 614 (100 %)

Table 9 Comparison of land-
slide densities under each sus-
ceptibility zone in TLIV- and
TLIV_e-based zonation

Susceptibility zones Landslide densities

TLIV zonation TLIV_e zonation

Least vulnerable zone 3.786191537 1.732673267

Low vulnerable zone 4.641350211 1.778656126

Moderately vulnerable zone 4.697728148 3.261368856

Highly vulnerable zone 7.28021978 5.993812838

Most vulnerable zone 10.47887324 12.67354931
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Fig. 14 Bar chart showing percentage of area under each susceptibility zone in TLIV- and TLIV_e-based
zonation
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Fig. 15 Bar chart showing percentage of past landslides under each susceptibility zone in TLIV- and
TLIV_e-based zonation
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information value model and Shannon’s entropy integrated information value model,

respectively. Using the natural breaks (Jenks) method of ArcGIS, the TLIVs and TLIV_e

values of the polygons were categorized into five classes of landslide susceptibility viz.

least, low, moderate, high and most vulnerable zones in order of their increasing sus-

ceptibility to landslides (Figs. 9, 13). For each landslide susceptibility zone, the percentage

of the number of polygons associated with the landslides and the landslide density were

determined. Then the prediction accuracy of each model was estimated as the percentage

of the polygons with landslides associated with only the higher three susceptibility zones

out of the five zones delineated.

The following inferences are drawn based on the comparative assessment of the results

obtained from both the models. Some of the landslide affected polygons that were

underestimated and categorized under less vulnerable zones by the TLIV model were

accurately delineated as being highly vulnerable through the TLIV_e model (Tables 8, 9,

Figs. 14, 15 and 16). As a result of the upward shift in the vulnerability status of the

polygons determined from the TLIV-based model to TLIV_e-based model, there occurred

corresponding increase in the landslide density in the higher vulnerable zones of the

TLIV_e model. This further resulted in significant increase in the prediction accuracy from

85 % in TLIV model to 95 % in TLIV_e model.

The investigation performed in the present research effectively demonstrated that

integration of the concept of Shannon’s entropy into the standard information value model

can result in improved categorization of the polygons into the accurate vulnerability zones

and thereby, increasing the prediction accuracy of the occurrence of landslides in the study

area.
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