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Abstract This paper investigates the prediction of future earthquakes that would occur

with magnitude 5.5 or greater using adaptive neuro-fuzzy inference system (ANFIS). For

this purpose, the earthquake data between 1950 and 2013 that had been recorded in the

region with 2�E longitude and 4�N latitude in Iran has been used. Thereupon, three algo-

rithms including grid partition (GP), subtractive clustering (SC) and fuzzy C-means (FCM)

were used to develop models with the structure of ANFIS. Since the earthquake data for the

specified region had been reported on different magnitude scales, suitable relationships were

determined to convert the magnitude scales into moment magnitude and all records uni-

formed based on the relationships. The uniform data were used to calculate seismicity

indicators, and ANFIS was developed based on considered algorithms. The results showed

that ANFIS-FCM with a high accuracy was able to predict earthquake magnitude.

Keywords Adaptive neuro-fuzzy inference system (ANFIS) � Earthquake prediction �
Moment magnitude � Fuzzy C-means algorithm (FCM)

1 Introduction

Earthquake prediction is one of the most difficult problems in the world. Many efforts

have been made in earthquake prediction based on artificial intelligence. The studies

would be classified into two groups of those based on neural networks and those based on

fuzzy systems. Neural networks are much more popular techniques than fuzzy systems in

earthquake prediction, and the most efforts in predicting have been made by them. Yudong

et al. (1994) investigated the artificial neural network method for prediction of the type of

earthquake sequences. The results show that the performance of the artificial neural
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network approach is good (Yudong et al. 1994). BP neural networks are used to mid-term

earthquake prediction by Wang et al. (2000). They applied this method to space scanning

of North China. The result shows that the mid-term anomalous zone usually appeared

obviously around the future epicenter 1–3 years before earthquake (Wang et al. 2000). Liu

et al. (2005) proposed a method called constructive ensemble of RBF neural networks

(CERNN), in which the number of individuals, the number of hidden nodes and training

epoch of each individual are determined automatically. Experiments on datasets demon-

strate that CERNN can be applied to earthquake prediction (Liu et al. 2005). Alves (2006)

used an earthquake forecasting method that integrated in a neural network several fore-

casting tools that had been originally developed for financial analysis. This method was

tested with the seismicity of the Azores, predicting the July, 1998, and the January, 2004,

earthquakes, albeit within very wide time and location windows (Alves 2006). Neural

networks are investigated for predicting the magnitude of the largest seismic event in the

following month based on the analysis of eight mathematically computed parameters

known as seismicity indicators by Panakkat and Adeli (2007). The problem is modeled

using three different neural networks: a feed-forward Levenberg–Marquardt back-propa-

gation (LMBP) neural network, a recurrent neural network, and a radial-basis function

(RBF) neural network. The models are trained and tested using data for Southern Cali-

fornia and the San Francisco bay region. Overall the recurrent neural network model yields

the best prediction accuracies compared with LMBP and RBF networks (Panakkat and

Adeli 2007). Adeli and Panakkat (2009) investigated the application of a probabilistic

neural network for predicting the magnitude of the largest earthquake in a pre-defined

future time period in a seismic region using eight mathematically computed parameters.

The model is trained and tested using data for the Southern California region. The model

yields suitable prediction accuracies for earthquakes of magnitude (Adeli and Panakkat

2009). Sri Lakshmi and Tiwari (2009) studied artificial neural network methods based on

the back-propagation algorithm to predict behavior of earthquake dynamics in the crucial

tectonic regions of Northeast India (Sri Lakshmi and Tiwari 2009). Panakkat and Adeli

(2009) presented a recurrent neural network for predicting the location and time of

occurrence of future moderate-to-large earthquakes based on neural network modeling and

using eight seismicity indicators as input. Seismicity indicators are computed, and their

relationship to the latitude and longitude of the epicentral location and time of occurrence

of the following major earthquake is studied (Panakkat and Adeli 2009). Chattopadhyay

and Chattopadhyay (2009) estimated the magnitude of earthquake over Indian subconti-

nent using artificial neural network with back-propagation learning. The day, month, and

year of occurrence of the earthquake, latitude of the place, and the longitude of the place

are considered as the predictor variables. It has been found that the nonlinear multilayer

perceptron (MLP) produces estimates of earthquake magnitude with error \20 %

(Chattopadhyay and Chattopadhyay 2009). RBF neural network is used to predict the

magnitude of earthquake by Ying et al. (2009). Firstly, RBF neural network is used to

learn the data which include the information of earthquake. Then, they use the trained

RBF neural network to predict the test samples. The inevitable results indicate that the

method has certain application value (Ying et al. 2009). Yi et al. (2010) used a method

which momentum term with adaptive momentum factor was introduced into the gradient

descent method to modify the parameters of RBF neural network. Combined with the

improved RBF neural network model, the seismic time series were predicted (Yi et al.

2010). Sheng-Zhong (2010), investigated the probabilistic neutral network to predict the

magnitude of the serious earthquake in future time in a seismic area, depending on

mathematically computed parameters as seismicity indicators. The model can be used to
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predict earthquake magnitude (Sheng-Zhong 2010). Artificial neural networks have been

applied to learn the cyclic behavior of seismicity in the independent seism genic sources to

predict their future trends by Sharma and Tyagi (2010). The outcome of the ANN is used

to interpret the future seismicity of the future seismicity cycles (Sharma and Tyagi 2010).

Mohsin and Azam (2011) used both deterministic and un-deterministic optimized algo-

rithms to determine the future earthquake in Pakistan. Shah et al. (2011) studied the

application of ABC algorithm that simulates the behavior of a honey bee swarm. MLP

trained with the standard back-propagation algorithm (Shah et al. 2011). Xie et al. (2011)

used the seismicity variation rate as the input and create a neural network model for

prediction based on the earthquake data during the past period of time in East China.

Yaghmaei-Sabegh (2012) used an approach for ranking of ground motion prediction

equations named generalized regression neural networks (GRNN) as a one-pass learning

algorithm, and an effective type of radial-basis neural network was chosen. The results

showed potential of designed GRNN for ranking of ground motion prediction equations

(Yaghmaei-Sabegh 2012).

Although neural networks enjoy great popularity, the solution that network has

learned cannot be expressed explicitly and for the user it is a black box. On the other

hand, in fuzzy systems against neural networks, it is possible to formulate rules which

are based on linguistic expressions and to apply them for learning processes. There are

few researches on earthquake prediction that have been done based on fuzzy models.

Wang et al. (1997) investigated the application of fuzzy associative memory (FAM)

network model for earthquake prediction. This system has functioned for knowledge

learning without disadvantages of neural network, which the learned knowledge implied

in network is difficult to be interpreted by expert system (Wang et al. 1997). A neural

network model named impulse force based on ART neural network (IFART) is pre-

sented, and IFART network is applied to predict magnitude of earthquake by Liu et al.

(2004). The principle, learning and rules of fuzzy artificial neural network model, is

introduced to predict seismic trend after main shock by Cong et al. (2006). Andalib et al.

(2009) used a methodology for the development of a fuzzy expert system with appli-

cation of earthquake prediction. The rules were created by an expert to generate a fuzzy

rule base. The model was employed to attain the performance of an expert who used to

predict earthquakes in the Zagros area in Iran based on the idea of coupled earthquakes

(Andalib et al. 2009). Zhong and Zhang (2010) obtained the risk class through fuzzy

theory by one candidate assessment unit into consideration. A fuzzy mathematical pre-

diction model of three-gorge reservoir in China has been created. It is concluded that

compared with other mathematical prediction models, the reservoir-induced earthquake

prediction model based on the fuzzy theory can analyze data with fuzzy processing

(Zhong and Zhang 2010).

It is sometimes difficult to specify parameters of a fuzzy system for earthquake

prediction. Several factors have an impact on this phenomenon, and determining the

fuzzy rules and function parameters has not been quite possible by an expert human. The

combination of neural networks and fuzzy systems which is called neuro-fuzzy can help

to solve this problem and can be enhance the performance of the model. In this paper,

the application of one of the most powerful neuro-fuzzy systems with the purpose of

predicting magnitude of the future earthquakes of equal to or greater than 5.5 is

investigated. A seismic region in Iran was chosen as the study zone, and the data of

earthquakes occurring between 1950 and 2013 were collected to develop a predictive

ANFIS model.
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2 Dataset

To evaluate the ability of each model by artificial intelligence a set of data that considered

to train and test the system is needed. In this paper, the information of recorded earth-

quakes in International Institute of Earthquake Engineering and Seismology (IIEES) has

been used. This database is available for free download at www.iiees.ac.ir. The collected

data consists of 1958 earthquakes which are recorded in the region with 2�E longitude and

4�N latitude between 1950 and July 10, 2013.

2.1 Uniformization of magnitude quantities

Lack of uniformity in the reported magnitude scales in the IIEES led to determining

relationships to uniformize numbers of magnitude. In order to convert magnitude scales,

reliable database was used for the earthquakes occurred between 1950 and 2013 in the

specified region and those records were taken that the moment magnitude scale and one of

the other magnitude scales were reported. The International Seismological Center (ISC)

was reference for mb and Ms. The last reported event that has been recorded in two scales

was on February 6, 2010. Therefore, for earthquakes that occurred after that date, reference

of National Earthquake Information Center (NEIC) was used. For the local magnitude

scale, IIEES as a local reference in Iran was considered. Harvard Seismological Center

(HRVD) was used for moment magnitude, and for other records that HRVD was not

reported Mw, the Global Centroid Moment Tensor (GCMT) was taken into consideration.

2.2 mb to Mw conversion

Additionally, there are 20 records that both scale mb and Mw are reported by ISC. The

range of recorded magnitude for mb was 4.6–5.9 and for Mw was between 4.8 and 6.4.

Table 1 shows the information of the record.

Orthogonal and least squares regressions and based on distribution of the available

values, quadratic regression was performed to determine the best relation between mb and

Mw (Table 2). Parameters R2, MAE, and RMSE, respectively, are correlation coefficient,

mean absolute errors, and root mean squared errors. The results showed that the least

squares regression has better performance than orthogonal regression. Among these, the

strongest relation which has acceptable correlation coefficient of 83 % is the quadratic

regression. The relation of this regression has the minimum error RMSE and MAE in

comparison with the results of other regressions. That is also visible from the distribution

of points in Fig. 1. However, for smaller values of the interval mb whose records are less

than 4.6, the Eq. (1) cannot be used. The obtained results for lower values of the range mb

from the equation of the curve 1 will be far from reality. The changes of value in the range

of \4.6 are also unclear. Therefore, for the amounts of upper than 4.6, the Eq. (1) was

Table 1 The number of taken
records for converting mb to Mw

Scale Author

ISC NEIC GCMT HRVD

mb 18 2 – –

Mw – – 7 13
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selected, and for the range of \4.6 it was assumed that the Eq. (2) is proportional to the

slope of the changes and provided better results than Eq. (3) was used.

2.3 Ms to Mw conversion

To convert Ms to Mw, 19 records including magnitudes between minimum 3.9 and

maximum 6.4 magnitudes were reported. Scale of Mw was also between 4.8 and 6.4.

Table 3 shows information of the records.

From the applied regression analysis for converting Ms to Mw, least squares regression

and growth function form regression provided the best results. Table 4 shows the results of

the correlation coefficient, RMSE, and MAE for these regressions.

The presented equations in Table 4 have very similar results. It seems that Eqs. (5) and

(6) are more suitable equations due to lack of complexity of the data distribution and are

easier than Eq. (4). Artificial intelligence models produce results based on values that have

been given to them. The closer the data are to reality, the stronger the results are. The

Table 2 The obtained equations and their results from the regressions for converting mb to Mw

Number of equation Regression type Relation R2 RMSE MAE

Eq. 1 Quadratic Mw = 26.111 - 8.977 mb ? 0.952 mb2 0.83 0.16 0.12

Eq. 2 Least squares Mw = 1.02 mb - 0.0187 0.73 0.20 0.17

Eq. 3 Orthogonal Mw = -1.160 ? 1.244 mb 0.69 0.22 0.19

Fig. 1 The applied regressions for converting mb to Mw. The circles in the figure show the amounts of mb
and Mw for 20 available records
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selected equation in this section will be applied directly to calculate the seismic indicators

which are used in modeling and because of closer obtained results of the regressions,

additional criteria for the selection proper equation between the presented relationships are

determined. If it is specified that the linear Eqs. (5) and (6) have less error than Eq. (4) then

Eq. (6) is chosen because of its better results than Eq. (5). For this purpose, analysis of

variance and standard deviation has been done. The results showed that Eq. (4) was also

better than linear equations. According to Fig. 2 distribution of the observed points was

in a linear form. Moreover, according to Table 5, the standard deviation coefficients

Eq. (4) is less than linear equation. Therefore, to convert the scale Ms to Mw, Eq. (4)

was used.

2.4 ML to Mw conversion

There were only 11 records to convert the recorded values of the scale ML to Mw

(Table 6). Range of magnitude for ML was reported between 4.8 and 5.1 and between 4.8

and 6 for Mw. It should be noted that IIEES that is an Iranian reference is used to take data

with local magnitude scale ML.

Due to the large number of records that have been recorded with ML scale in recent

years for the chosen region, determining of the relationship between ML and Mw was very

important. Selecting an inappropriate relationship would have bad effects on the results of

the model. Several regressions were used to determine the best relationship. The results are

shown in Table 7. Due to the distribution of points in Fig. 3 and the values for the

correlation coefficient, MAE and RMSE, Eq. (7) seems more appropriate. However,

because the range of variation ML for 11 reviewed records was more than 4.8 and the most

recorded earthquakes had ML value less than this amount, Eq. (7) was selected to convert

ML to Mw only for amounts greater than 4.8. The obtained slope changes in the Eq. (7)

show that if the goal was to determine the corresponding value of Mw for magnitudes

\4.8, the amounts of Mw would change in a little closer to 5 and it could not be acceptable

for all of the considered range, and therefore, Eq. (7) cannot provide a good prediction for

small amounts. It is also true for the quadratic regression in a way that using this equation

for small amounts will show large amount that is visible from the shape and slope curve of

Table 3 The number of taken
records for converting Ms to Mw

Scale Author

ISC NEIC GCMT HRVD

Ms 19 – – –

Mw – – 5 14

Table 4 The obtained equations and their results from the regressions for converting Ms to Mw

Number of equation Regression type Relation R2 RMSE MAE

Eq. 4 Growth Mw = EXP (1.134 ? 0.11 Ms) 0.98 0.062 0.050

Eq. 5 Least squares Mw = 2.369 ? 0.609 Ms 0.97 0.072 0.055

Eq. 6 Orthogonal Mw = 2.287 ? 0.627 Ms 0.97 0.068 0.053
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the Eq. (7). Therefore, if we assume that the slope of the linear regression is approximately

true for earthquakes that were recorded with a magnitude value\4.8, Eq. (8) can be used to

convert ML to Mw. It is worth mentioning that according to Table 7, Eq. (8) has more

correlation and less error than Eq. (9); therefore, it is more suitable for converting values of

\4.8.

Fig. 2 The applied regressions for converting Ms to Mw. The circles in the figure show the amounts of Ms
and Mw for 19 available records

Table 5 The results of variance and standard deviation analysis for choosing Ms to Mw

Type of regression Residual of
regression

Mean
square

Std. error of the estimation Std. error of
coefficients

Constant Ms

Growth 0.002 0.091 0.012 0.021 0.004

Least squares 0.081 2.784 0.071 2.369 0.609

Table 6 The number of taken records for converting ML to Mw

Scale Author

IIEES GCMT HRVD

ML 11 – –

Mw – 6 5
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2.5 Scale conversion

After the relationship was determined, all 1958 data taken from IIEES were converted to

moment magnitude. Table 8 shows the scale conversion results and the number of values

in each of the studied decades. It is clear that the number of recorded earthquakes which

had been recorded before 1980 consisted of a small number of events due to the lack of

seismic instruments recorded in different parts of the region. According to Table 8, the

area that has been studied in this paper and had five earthquakes with magnitude upper than

6.5 and one earthquake with magnitude upper than 7 has been a very high seismicity region

in the recent 63 years. Therefore, subject of earthquake prediction has great importance for

this region.

Table 7 The obtained equations and their results from the regressions for converting ML to Mw

Number of
equation

Regression
type

Relation R2 RMSE MAE

Eq. 7 Exponential Mw = 4.972 ? 3.331e-012 EXP(4.561 ML) 0.84 0.13 0.09

Eq. 8 Least squares Mw = 1.691 ? 0.678 ML 0.57 0.21 0.17

Eq. 9 Orthogonal Mw = -0.87 ? 1.184 ML 0.25 0.28 0.21

Eq. 10 Quadratic Mw = 29.32 - 10.071 ML ? 1.04 ML2 0.80 0.14 0.12

Fig. 3 The applied regressions for converting mb to Mw. The circles in the figure show the amounts of ML
and Mw for 11 available records
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3 Determining and evaluating seismicity indicators

Collection of data is required as inputs and output to create a model. Based on the entered

information, the system is trained to provide good results. Large amounts of the entered

data into the model will increase the accuracy in the learning process. For creating ANFIS,

a region with the longitude 56–58 and latitude 27–31 in Iran has been selected, and

information of the occurred earthquakes between 1950 and 2013 in the region has been

collected. This dataset was used to train and test the model.

There are 38 records out of 1958 that have magnitude of 5.5 and greater. Each of these

records is considered as a base and will be named basis earthquake. The main idea in this

paper is that magnitude of next basis earthquake can be predicted by earthquakes that

occurred after basis earthquake in the past. For this purpose, three input variables which are

calculated for each record were used. The first of them is the logarithm of the seismic

moment of earthquake (LM0). To determine the seismic moment the Eq. (11) which was

calculated by Hanks was used (Hanks and Kanamori 1979):

Log M0 ¼ 1:5 Mwþ 16:1 ð11Þ
To determine the two input remained variables, the region was considered in a grid

network so that the distance between each of the lines was 0.1. The point at 27 latitude and

56 longitude is considered as the origin of the grid network with coordinates 0 and 0. In

this network, e.g., point with 4 width and 0 length is corresponding to latitude 56 and 31

latitude. By rounding amounts for longitude and latitude of each event and considering it in

one decimal, each record will be defined on lines of the grid network. Using the network

causes the simulation of earthquakes location for the model to be much simpler. The

repetition rates of the points are higher in mesh mode; this issue will increase the accuracy

of the model to find the best result. Two seismic indicators along with other input LM0 are

the length XO and width YO positions of each record in the grid network. Figure 4 shows

position of all 1958 data in the network.

The main goal of ANFIS model is the amount prediction of moment magnitude for the

future earthquakes which would occur with magnitude 5.5 or higher (basis earthquake). For

this purpose, the difference between magnitude of each earthquake record and the basis

future earthquake was determined. This value was calculated for all records and used as

output DMw and was applied to train and to test the model.

Table 8 The number of magnitudes recorded at investigated decade in considered region

Year Mw Total

\4.5 4.5–4.9 5–5.4 5.4–5.9 6–6.4 6.5–6.9 7–7.5

1950–1960 0 1 4 1 1 0 0 7

1961–1970 3 26 8 5 0 0 0 42

1971–1980 37 103 26 8 3 1 0 178

1981–1990 62 114 14 4 3 1 1 199

1991–2000 143 48 15 4 0 2 0 212

2001–2010 963 96 17 2 1 0 0 1079

2011–2013 199 35 6 1 0 0 0 241

Total 1407 423 90 25 8 4 1 1958
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The number of last basis earthquake in the region is 1768. Therefore, calculating DMw

values for records that have occurred after this record may not be possible. It is also not

feasible to determine DMw for the record number 1768 which is a basis earthquake.

Finally, there were 1767 available records, and for each of them four indicators were

calculated. Table 9 shows the calculated values for some records. The data in this table

related to earthquakes that occurred between two basis earthquake with magnitudes of 5.5

and 5.8.

4 ANFIS

One of the first hybrid neuro-fuzzy systems for function approximation was Jang’s model

(Jang 1993). Adaptive neuro-fuzzy inference system (ANFIS) is a fuzzy inference system

implemented in the framework of adaptive networks. The model proposed can construct an

input–output mapping based on both human knowledge in the form of fuzzy rules and

stipulated input–output data pairs. It presented a Sugeno-type fuzzy system in five-layer

network (the input layer not counted by Jang).

Figure 5 shows ANFIS with two inputs x and y and one output z. Suppose that the rule

base contains two fuzzy if–then rules of Takagi and Sugeno’s type:

Rule 1 : If x is A1 and y is B1; then f1 ¼ p1x þ q1y þ r1

Rule 2 : If x is A2 and y is B2; then f2 ¼ p2x þ q2y þ r2

Then, the corresponding equivalent ANFIS architecture is shown in Fig. 5.

Fig. 4 The grid network for the specified region in Iran for all 1958 data that occurred between 1950 and
2013. In this network, point with coordinates 0 and 0 is the location of point with 27 latitude and 56
longitude
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The node functions in the same layer are of the same function family as described below

(Jang 1993):

Layer 1: Every node i in this layer is a square node with a node function

O1
i ¼ lAi

xð Þ ð12Þ

where x is the input to node i and Ai is the linguistic label (such as ‘‘small’’ or ‘‘large’’)

associated with this node function. In other words, O1
i is the membership function of Ai and

it specifies the degree to which the given x satisfies the quantifier Ai. Any continuous and

piecewise differentiable function, such as commonly used bell-shaped, trapezoidal or tri-

angular-shaped membership functions (MF) are qualified candidates for node function in

this layer.

Layer 2: Every node in this layer is a circle node labeled P which multiples the incoming

signals and sends the product out. For instance,

Table 9 The number of magnitudes recorded at investigated decade in considered region

Information of records Seismicity indicators

Date Time Latitude Longitude Mw LM0 XO YO DMw

9/29/1962 6:54:00 28.29 57.48 5.5 24.28625 1.5 1.3 0.3

10/16/1962 11:58:41 30.63 57.36 4.6 22.95695 1.4 3.6 1.2

10/16/1963 7:02:26 28.15 57.79 4.9 23.44100 1.8 1.2 0.9

3/11/1964 11:34:23 27.90 57.61 4.9 23.43425 1.6 0.9 0.9

5/11/1964 6:07:41 28.13 57.38 5.2 23.90225 1.4 1.1 0.6

7/21/1964 11:46:54 27.60 56.46 4.9 23.43425 0.5 0.6 0.9

8/10/1964 6:18:40 30.10 57.67 4.9 23.43425 1.7 3.1 0.9

12/19/1964 11:31:55 27.50 56.88 5.2 23.90225 0.9 0.5 0.6

12/22/1964 4:36:34 28.16 56.90 5.8 24.78425 0.9 1.2 -0.3

Fig. 5 Structure of ANFIS with two inputs and two rules. A square node (adaptive node) has parameters
while a circle node (fixed node) has none (Jang 1993)
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wi ¼ lAi
xð Þ � lBi

yð Þ; i ¼ 1; 2: ð13Þ

Each node output represents the T-norm operators that combine the possible input

membership grades in order to compute the firing strength of a rule.

Layer 3: Every node in this layer is a circle node labeled N. The ith node calculates the

ratio of the ith rule’s firing strength to the sum of all rules’ firing strengths:

wi ¼
wi

w1 þ w2

; i ¼ 1; 2: ð14Þ

For convenience, outputs of this layer will be called normalized firing strengths.

Layer 4: Every node i in this layer is a square node with a node function

O4
i ¼ wi fi ¼ wi pixþ qiyþ rið Þ ð15Þ

where wi is the output of layer 3, and pi; qi; rif g is the parameter set. Parameters in this

layer will be referred to as consequent parameters that are adjustable.

Layer 5: The single node in this layer is a circle node (adaptive node) labeled
P

that

computes the overall output as the summation of all incoming signals, i.e.,

O5
i ¼ overall output ¼

X

i

wi fi ¼
P

i wifiP
i wi

ð16Þ

It is not adjustable.

For learning of ANFIS, a combination of two methods of back-propagation (gradient

descent) and least squares estimate (LSE) are used. First, parameters of the introduction

section are supposed steady, and result parameters are estimated using least squares

method. Then, result parameters are supposed steady and error back-propagation is used to

correct the parameters of introduction. This process is repeated in each learning cycle

(Bezdek and Pal 1992).

5 Methods

Two methods are commonly used to generate ANFIS: grid partition (GP) and subtractive

clustering (SC). ANFIS with GP algorithm uses a hybrid learning algorithm to identify

parameters of inference system. It applies a combination of the least squares method and

the back-propagation gradient descent method for training ANFIS membership function

parameters.

Grid partition divides the data space into rectangular sub-spaces using axis-paralleled

partition based on pre-defined number of MF and their types in each dimension. The

number of rules depends on the number of input variables and on the number of MF used

per variable, and this partition strategy needs a small number of membership function for

each input. It encounters problems when we have a moderately large number of inputs

(Jang and Sun 1996).

Clustering is a task of assigning a set of data into groups called clusters to discover

structures and patterns in a dataset, and the radius of a cluster is the maximum distance
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between all the points and the centroid. There are two main clustering methods: the hard

clustering and the fuzzy clustering. The hard clustering is based on classify each point of

the dataset just to one cluster. In fuzzy clustering, objects on the boundaries between

several clusters are not forced to fully belong to one of them. The subtractive clustering

method (SC) as a hard clustering was proposed by Chiu (1994). The SC method assumes

that each data point is a potential cluster center and calculates the potential for each data

point based on the density of surrounding data points. The measure of potential for a data

point is a function of its distances to all other data points. A data point with many

neighboring data points will have a high potential value. The data point with highest

potential is selected as the first cluster center, and the potential of data points near the first

cluster center is destroyed. Then data points with the highest remaining potential as the

next cluster center and the potential of data points near the new cluster center are

destroyed. It is notable that the influential radius of cluster is critical for determining the

number of clusters and data points outside this radius has little influence on the potential.

Also, a smaller radius leads to many smaller clusters in the data space, which results in

more rules (Chiu 1994).

In this paper, GP, SC, and another technique that is called FCM are used to create the

ANFIS model. FCM is a powerful unsupervised algorithm. Fuzzy c-means (FCM) clus-

tering was first reported by Dunn (1973). It can be extended by Bezdek (1981). FCM is an

algorithm where each data point has a membership degree between 0 and 1 to each fuzzy

subset. In other words, each data in FCM can be belonged to all groups with different

membership grades. The algorithm produces an optimal c partition by minimizing the

weighted within group sum of squared error function Jm (Dunn 1973):

Jm ¼
XN

i¼1

Xc

j¼1

um
ji d2 xi; vj

� �
ð17Þ

where X ¼ x1; x2; . . .; xNf g � IRm is the dataset in the m-dimensional vector space, N is

the number of data items, c is the number of clusters with 2 B c \ N, uji is the degree of

membership of xi in the jth cluster, m is the weighting exponent on each fuzzy membership,

vj is the prototype of the center of cluster j, d2 xi; vj

� �
is distance measure between object xi

and cluster center vj.

To create an ANFIS with FCM, data are clustered by FCM algorithm and then ANFIS

method is applied on the clustered data.

6 Earthquake magnitude prediction

As mentioned before, three seismic indicators for each record including logarithm of

seismic moment LM0, the location of each record in grid network XO and YO as inputs,

and also the difference between magnitude of the next basis earthquake and each record

DMw were used as an output to modeling.

Additionally, there were 1,767 available data for ANFIS while 1,500 cases were used

for training, 267 remaining data were used for testing the model. It should be mentioned

that the training data were the records between 1950 and January 24, 2009. The records

that occurred after this date include 267 data that were used to test the model.

During data processing, the data should be normalized to bring all of the variables into

proportion with one another. Normalization is a method to classify the range or interval of

values that are different to same scale and similar. If scales are very dissimilar for the
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different values, the bigger one will have a higher contribution to the output error and so

the error reduction algorithm will be forced on the variables of higher values, neglecting

the information from the small values variables (Sola and Sevilla 1997). This action

ensures that no exceptionally large-valued descriptors will have an undue effect on the

network and also increases the speed and accuracy of the system in training. A simple

normalization relationship within the value of 0.1–0.9 which is used to normalization in

this paper is the following equation:

xi ¼ 0:8
x� xmin

xmax � xmin

þ 0:1 ð18Þ

where xi is the normalized value of a certain parameter, x is the measured value for this

parameter, xmin and xmax are the minimum and maximum values in the database for this

parameter, respectively.

To find the best results based on GP, SC, and FCM methods, datasets were used

randomly and many models were created. It was found that the FCM model was much

faster than the other two methods and the algorithm of GP needed more time. Also, the

rules to achieve the desired results that FCM takes are lower than those of both the GP and

SC. Table 10 shows the results of the experiment of the model for the GP method. MF

parameter in the table is Membership Function. Parameters R2, MAE, and RMSE have

been calculated based on denormal data.

It is clear from Table 10 that with increasing the number of MF, the rules and unknown

parameters of the problem were increased. In ANFIS, modeling with GP algorithm was

also found that the best results are obtained by Gaussian membership function with three

MF (Model 1 in Table 10).

In the SC method, radius of the cluster should be defined before modeling. The smaller

radius will create the greater number of unknown parameters. In Table 11, the best results

obtained by the SC algorithm for the test phase are presented. According to this table, the

best model was number 6. In a general comparison between the model number 1 of GP and

model 6 of SC, it was found that the GP algorithm had less error but needed more rules to

solve the problem.

To create ANFIS with FCM algorithm, the number of clusters was predefined for the

model. Therefore, to find the proper state, many models with different number of clusters

Table 10 The results of the three best models that obtained from ANFIS by GP algorithm

Number of model MF Number of MF Number of rules R2 MAE RMSE

1 Gaussian 3 27 0.94 0.149 0.173

2 Gaussian 4 64 0.44 0.202 0.467

3 Gaussian 5 125 0.23 0.262 0.602

Table 11 The results of the three best models that obtained from ANFIS by SC algorithm

Number of model Radius of cluster Number of rules R2 MAE RMSE

4 0.20 16 0.90 0.159 0.194

5 0.25 13 0.90 0.163 0.198

6 0.30 10 0.95 0.163 0.181
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were created. The best model in the test results are shown in Table 12. As it is clear from

the table, FCM compared with SC and GP has less number of rules and has more speed and

also presents better results.

According to the above statements, among the models presented in Tables 10, 11, and

12, the models 7–9 have the best results and the model 8 is the most powerful system.

Therefore, for prediction of basis earthquakes in the future, ANFIS with FCM algorithm

with 12 clusters will be used.

The output model was the difference between the earthquake magnitude of each event

and the magnitude of the basis earthquake. By adding amount of the output neuro-fuzzy

model of ANFIS and magnitude of considered earthquake, the magnitude of the future

earthquake of 5.5 or greater will be predicted. As it was mentioned earlier that for testing

the model, records of 267 earthquakes occurring after 01/24/2009 were used. There was no

basis earthquake in these 267 records. It means that earthquakes with magnitude 5.5 or

greater have not occurred in the mentioned period. But the 268th record was a basis

earthquake with moment magnitude 5.6 which is used to calculate DMw in the seismic

indicators calculation step. Therefore, all 267 earthquakes must be predicting the earth-

quake with magnitude 5.6. In Table 13, information of some data with their indicators,

output value of selected ANFIS, and the determined magnitudes that were calculated from

the output of the model are presented. The table shows ANFIS-FCM had amount of targets

with high accuracy.

The final results contain 21 cases of predicting exactly 5.6 magnitude. The minimum

and maximum values obtained from the prediction, respectively, are 5.6 and 6. Therefore,

the model produced results with acceptable tolerances. The summary of predicted mag-

nitude of earthquakes has been illustrated in Table 14.

Table 12 The results of the three best models that obtained from ANFIS by FCM algorithm

Number of model Number of cluster Number of rules R2 MAE RMSE

7 10 10 0.94 0.158 0.180

8 12 12 0.95 0.150 0.172

9 15 15 0.95 0.150 0.173

Table 13 The results of some test data. Here, the goal is determine the moment magnitude with amount 5.6
for the basis earthquake

Date Latitude Longitude Mw LM0 XO YO LMw Net output Mw for the
next base
earthquake

6/24/2010 28.43 57.08 3.8 21.79199 1.1 1.4 1.80534 2.05438 5.8

6/30/2010 27.83 56.70 3.9 21.99557 0.7 0.8 1.66962 1.73119 5.6

7/8/2010 28.02 57.01 3.9 21.89378 1.0 1.0 1.73748 1.77828 5.7

7/11/2010 28.47 57.48 4.1 22.19915 1.5 1.5 1.53390 1.66505 5.8

7/19/2010 28.27 57.95 3.6 21.48662 2.0 1.3 2.00892 2.33016 5.9

7/24/2010 28.01 56.68 4.3 22.60631 0.7 1.0 1.26246 1.35518 5.7

7/26/2010 27.89 56.36 3.7 21.69020 0.4 0.9 1.87320 1.98801 5.7

The mean of net output in this table is the obtained output values from the neuro-fuzzy model based on
denormal data
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7 Results

In this paper, moment magnitude of the earthquakes of 5.5 or greater in the region with 2

longitude and 4 latitude that will occur in the future has been predicted by ANFIS. To do

this, the three inputs and one output were used. The system was trained by 1,500 data from

earthquakes that occurred in the region. Then, dataset consisting of 267 records, which is

used to predict a basis earthquake with magnitude 5.6 that will occur in the future, was

used. Many ANFIS models based on GP, SC, and FCM were developed, and it was found

that the ANFIS-FCM predicts the earthquake magnitude with higher accuracy than other

models.

Iran is one of the most earthquake prone countries in the world, and prediction of future

earthquakes and earthquake risk analysis is important in this country. In order to predict the

earthquake, many steps have been taken; however, more is required to be taken. This study

was an attempt to provide a model based on one of the most fuzzy algorithms to predict

magnitude of future large earthquakes. The ANFIS-FCM based on information that has

been presented in this paper is capable of obtaining the best results with high precision.
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