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Abstract The purpose of this article is to study the three-parameter (scale, shape, and

location) generalized exponential (GE) distribution and examine its suitability in proba-

bilistic earthquake recurrence modeling. The GE distribution shares many physical prop-

erties of the gamma and Weibull distributions. This distribution, unlike the exponential

distribution, overcomes the burden of memoryless property. For shape parameter b[ 1,

the GE distribution offers increasing hazard function, which is in accordance with the

elastic rebound theory of earthquake generation. In the present study, we consider a real,

complete, and homogeneous earthquake catalog of 20 events with magnitude above 7.0

(Yadav et al. in Pure Appl Geophys 167:1331–1342, 2010) from northeast India and its

adjacent regions (20�–32�N and 87�–100�E) to analyze earthquake inter-occurrence time

from the GE distribution. We apply the modified maximum likelihood estimation method

to estimate model parameters. We then perform a number of goodness-of-fit tests to

evaluate the suitability of the GE model to other competitive models, such as the gamma

and Weibull models. It is observed that for the present data set, the GE distribution has a

better and more economical representation than the gamma and Weibull distributions.

Finally, a few conditional probability curves (hazard curves) are presented to demonstrate

the significance of the GE distribution in probabilistic assessment of earthquake hazards.

Keywords Recurrence interval � Memoryless � Generalized (exponentiated)

exponential distribution � Conditional probability � Northeast India

1 Introduction

It has long been observed that moderate to great earthquakes usually occur in a repetitive

manner (Rikitake 1976; Utsu 1984; Kagan and Jackson 1991; Faenza et al. 2008; Working

Group 2008; Chen et al. 2013). Various probability distributions, namely the exponential
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(Poisson), gamma, lognormal, and Weibull distributions, are regularly used to model in-

terevent times of such earthquakes (Utsu 1984; Cornell and Winterstein 1986; Nishenko and

Buland 1987; Anagnos and Kiremidjian 1988; Parvez and Ram 1997; SSHAC 1997; Yadav

et al. 2010; Yazdani and Kowsari 2011; Chen et al. 2013; Pasari and Dikshit 2013). These

distributions, though very popular because of their easy interpretation and robust application

in several fields, have certain drawbacks. For instance, the exponential distribution, which is

also connected to the discrete Poisson distribution, possesses the memoryless property,

which contradicts the physics of the earthquake-generating mechanism as illustrated in the

‘elastic rebound theory’ (Reid 1910). Similarly, computation of the distribution function or

survival function of a gamma distribution is difficult when the shape parameter is non-

integer (Johnson et al. 1995). The closed form of the distribution function of the sum of

independent and identically distributed (i.i.d.) Weibull or lognormal random samples is

hardly available. This implies that the distribution of the mean of i.i.d. Weibull or lognormal

random samples is difficult to obtain (Gupta and Kundu 1999). Besides, the Weibull and

lognormal distributions do not show a reproductive (hereditary) property. Therefore, we

often end up with situations where studying of other probability models may be required.

Apart from the exponential (Poisson), gamma, lognormal, and Weibull distributions,

previous studies have used the triple exponential model (Kijko and Sellevoll 1981),

Brownian passage time distribution (Matthews et al. 2002), Pareto distribution (Kagan and

Schoenberg 2001; SSHAC 1997), Rayleigh distribution (Yazdani and Kowsari 2011),

negative binomial distribution (Dionysiou and Papadopoulos 1992), generalized gamma

distribution (Bak et al. 2002), and a few other distributions (SSHAC 1997; Working Group

2008) to determine the underlying pattern of earthquake interevent times and subsequently

to strengthen the concept of empirical recurrence modeling. Nevertheless, the most

appropriate and versatile distribution function for earthquake recurrence modeling still

remains an open research question.

1.1 Scope and objective

Earthquake recurrence modeling in northeast India using the exponential, gamma, log-

normal, and Weibull models was carried out previously by Parvez and Ram (1997), Yadav

et al. (2010), and Pasari and Dikshit (2013). This article uses the GE distribution to

estimate the recurrence time of large earthquakes.

The GE distribution (Gupta and Kundu 1999) is a particular member of the general class

of exponentiated distributions proposed by Gupta et al. (1998) as F(t) = [G(t)]b, where

G(t) is the base distribution and b [ 0 is a shape parameter. It is also known as the

exponentiated exponential distribution (Gupta and Kundu 2007). The GE distribution

shares many physical properties of gamma and Weibull distributions. This distribution, as

an important tool for lifetime data analysis, has widespread applications in the field of

medical and biological research (Gupta and Kundu 1999, 2007). However, no study has

been carried out to date to explore the suitability of the GE distribution in the field of

natural hazards. In view of this, the present research aims to introduce the three-parameter

GE model in seismic recurrence studies and to investigate its effectiveness in earthquake

recurrence modeling of large earthquakes. The efficacy of the GE model is determined by

comparing it to the popular gamma and Weibull models that have been serving as leading

earthquake recurrence models for the last few decades. The overall methodology for the

present study is arranged in three steps: model description, parameter estimation, and

model comparison. Toward the end, we also provide a few conditional probability curves

(using the GE distribution) to assess future earthquake hazards in the study region.
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1.2 Seimotectonic settings of the study area and earthquake data file description

We consider the northeast part of India and its adjoining regions (20�–32�N and 87�–

100�E) for the present study. This region falls under seismic zones V (most seismically

active zone), IV (high), and III (moderate) on the seismic zonation map of India (BIS

2002). A number of active thrust faults (Fig. 1), namely main boundary thrust (MBT),

main central thrust (MCT), Lohit thrust, Misami thrust, and Sagaing thrust, are present in

the study area (Gupta et al. 1986; Yadav et al. 2009). This region has experienced many

large earthquakes in the past (Thingbaijam et al. 2008). Among these, two massive great

earthquakes (marked in Fig. 1), namely the Shilong plateau earthquake of June 12, 1897

(Mw 8.1) and the upper Assam earthquake of 15 August 1950 (Mw 8.5) caused extensive

loss of life and property in the Indian subcontinent (Oldham 1899; Poddar 1950; Molnar

and Pandey 1989; Bilham and England 2001). A detailed discussion of the general

Fig. 1 Seismotectonic map of northeast India and its adjacent regions consisting of several faults, thrusts,
lineaments, and structural features; two stars mark the epicentral locations of the 1897 Shilong earthquake
and 1950 Assam earthquake. The map also highlights four active seismogenic source zones: eastern
syntaxis-zone I, Arakan-Yoma subduction belt-zone II, Shilong plateau-zone III, and Himalayan frontal
thrusts including MCT and MBT-zone IV (modified after Gupta et al. 1986 and Yadav et al. 2009)
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seismotectonic setting, historical seismicity, and earthquake losses of northeast India may

be found in Gupta et al. (1986), Nandy (1986), Kayal (1996), Thingbaijam et al. (2008),

and the references therein.

We use a real, complete, and homogeneous earthquake catalog (Yadav et al. 2010) of 20

events (M C 7.0) spanning the period 1846–1995. These events are listed in Table 1, and

their geographical epicentral locations are shown in Fig. 2. At this point, it can be noted that

no major earthquake (M C 7.0) has occurred in the study region since 1995. Thus, the present

catalog accounts all main shocks with magnitude M C 7.0 for the period 1846–2013.

It is evident from Table 1 that most of the Himalayan earthquakes are of shallow-type

(focal depth \ 80 km) earthquakes and thus more hazardous. The present study, however,

aims to estimate future earthquake occurrences purely on the basis of empirical modeling

of earthquake event gaps (time); hence, it does not consider any kind of social, positional,

geological, or geophysical influences in the analysis.

2 Preliminaries and the GE model description

Let T be a positive random variable of inter-occurrence times of successive events with the

density function f(t), distribution function F(t), and hazard function h(t). Let te and s denote

the elapsed time (time beyond the last occurrence) and the residual time (remaining time to

Table 1 List of M C 7.0 earthquakes that occurred (since 1846) in the study region (after Yadav et al.
2010)

S. No. Date Location Focal depth
(km)

Magnitude

Year Month Day Hour Min Sec Latitude
(N)

Longitude
(E)

1 1846 12 10 26.00 93.00 7.5

2 1868 6 30 24.50 91.50 7.5

3 1885 1 1 25.40 90.00 7.3

4 1897 6 12 11 5 25.90 91.90 60 8.7

5 1908 12 12 26.50 97.00 7.5

6 1912 5 23 2 24 21.00 97.00 25 7.9

7 1918 7 8 10 22 24.50 91.00 60 7.6

8 1923 9 9 22 3 42.00 25.25 91.00 7.1

9 1931 1 27 20 9 25.60 96.80 60 7.6

10 1943 10 23 21.50 93.50 7.2

11 1946 9 12 15 20 23.50 96.00 60 7.5

12 1947 7 29 13 43 28.50 94.00 60 7.9

13 1950 8 15 14 9 28.50 96.70 8.6

14 1951 11 18 9 35 45.00 30.50 91.00 8.0

15 1954 3 21 23 42 24.40 95.20 180 7.5

16 1961 2 4 8 51 24.90 93.34 141 7.6

17 1976 5 29 14 0 18.50 24.53 98.71 10 7.0

18 1988 8 6 0 36 24.60 25.15 95.13 91 7.2

19 1991 1 5 14 57 11.50 23.61 95.90 20 7.1

20 1995 7 11 21 46 39.78 21.97 99.20 12 7.1
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a future occurrence), respectively. Knowing the elapsed time, the residual time is a random

variable. Let P(s|te) be the conditional probability of earthquake occurrence, i.e., the

probability of an earthquake to occur during time interval te and te ? s given that no

earthquake has been triggered during last te year(s).

2.1 Three-parameter generalized exponential (GE) distribution

The three-parameter generalized (exponentiated) exponential distribution (Gupta and Kundu

1999) uses two-parameter exponential distribution FExp (t; a, c) as the base distribution.

Thus, the distribution function (FGE) of T �GE a; b; cð Þ can be defined (Gupta et al. 1998) as

FGE t; a; b; cð Þ ¼ FExp t; a; cð Þ
� �b¼ 1� e�

t�c
a

� �b
t [ c; a [ 0; b [ 0ð Þ ð1Þ

The GE distribution is controlled by three parameters—the scale parameter a([ 0) that

restricts the spread of t, the shape parameter b([ 0) that determines the appearance of the

distribution, and the location parameter c(\ t) that controls the range of the distribution.

Fig. 2 Epicentral locations of M C 7.0 earthquakes (as listed in Table 1) that occurred in northeast India
and its surrounding regions (after Yadav et al. 2009, 2010)
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The shape parameter b, among all three parameters, plays the most important role in GE

model description. It is easy to note that if b = 1, GE distribution exactly coincides with its

base distribution, i.e., the two-parameter exponential distribution. Therefore, the GE dis-

tribution, like the gamma and Weibull distributions, is an extension (generalization) of

classical exponential distribution. The density function fGE(t) and the hazard function

hGE(t) of T �GE a; b; cð Þ are given below.

fGE t; a; b; cð Þ ¼ b
a

1� e�
t�c
a

� �b�1

e�
t�c
a t [ c [ 0; a[ 0; b [ 0ð Þ ð2Þ

hGE t; a; b; cð Þ ¼ b
a

1� e�
t�c
a

� �b�1

e�
t�c
a

1� 1� e�
t�c
a

� �b t [ c [ 0; a [ 0; b [ 0ð Þ ð3Þ

The expression for the corresponding conditional probability PGE(s|te) for GE a; b; cð Þ is

given as

PGE sjteð Þ ¼ P T � te þ sjT [ teð Þ ¼
1� e�

te�cþs
a

� �b
� 1� e�

te�c
a

� �b

1� 1� e�
te�c

a

� �b

t [ c [ 0; a[ 0; b [ 0ð Þ ð4Þ

Since the present study also aims to compare GE distribution with gamma and Weibull

distributions, we mention the gamma and Weibull density functions below. The associated

distribution functions and hazard functions can be easily calculated from the respective

density functions.

fWeibull t; a; bð Þ ¼ b
ab

tb�1e�
t
að Þ

b

t [ 0; a [ 0; b [ 0ð Þ ð5Þ

fGamma t; a; bð Þ ¼ 1

C bð Þ
tb�1

ab
e�

t
a t [ 0; a [ 0; b [ 0ð Þ

where

C zð Þ ¼
Z1

0

e�ttz�1dt z [ 0ð Þ ð6Þ

2.2 Model properties

The GE a; b; cð Þ density function assumes a variety of shapes depending on the shape

parameter b (Fig. 3). It is monotonically decreasing for b B 1, and for b[ 1, it is uni-

modal, skewed, and right-tailed, similar to Weibull or gamma density functions.

The hazard functions of the GE distribution, like gamma and Weibull hazard functions,

assume various shapes depending on the shape parameterb. Specifically, for fixed (a, c), the GE

hazard function is increasing for b[ 1 and decreasing for b\ 1 (Gupta and Kundu 1999). For

b = 1, the hazard function becomes constant, and the distribution follows the memoryless

property. The different shapes of hazard function provide salient information about the

instantaneous rate of failure of an earthquake reliability system and thus are of specific interest

to the scientists who study and try to predict earthquakes (Matthews et al. 2002). The plots of the

GE hazard function corresponding to different values of b are shown in Fig. 4.
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The moment generating function of T �GE a; b; cð Þ is given (see Appendix 1) as

MTðxÞ ¼ E exT
� �

¼ cexc C bþ 1ð ÞC 1� axð Þ
C bþ 1� axð Þ ax\1ð Þ ð7Þ

We use E Tnð Þ ¼ dnMT ðxÞ
dxn 0ð Þ to obtain respective moments (about origin) of

T �GE a; b; cð Þ. The mean and variance of the GE distribution are calculated as

c ? a[w(b ? 1) - w(1)] and a2[w0(1) - w0(b ? 1)], respectively; w(x) and w0(x) denote

the digamma function and its first derivate. It is observed (Gupta and Kundu 1999) that the

mean and variance of the GE a; b; cð Þ are increasing functions of b (for fixed a). More

specifically, the variance of the GE distribution increases to p2a
6

, unlike the variance of

gamma distribution, which tends to infinity (as b increases), and the variance of Weibull

distribution, which approximately equals p2a
6b2 (for large values of b). We also observe that

the GE 1; b; 0ð Þ is unimodal with mode at log b if b[ 1 and at 0 if b B 1. In addition,

GE 1; b; 0ð Þ has its median at � ln 1� 0:5ð Þ
1
b

� �
. For large values of b, each of mean,

median, and mode of GE 1; b; 0ð Þ approximately equals log b (Gupta and Kundu 1999,

2007). A comprehensive representation of mean, mode, median, variance, and coefficient

of variation (CV) is illustrated in Fig. 5.

It can be noted that the GE moment generating function MT(x) is not very convenient to

handle; thus, the sum of i.i.d. GE random variables is difficult to obtain. As a result, the GE

distribution, like the Weibull distribution, does not support the reproductive property

(Gupta and Kundu 2007).

3 Inference from the modified maximum likelihood estimation (MMLE)

We apply the modified maximum likelihood estimation (MMLE) method to estimate GE

model parameters. The MMLE method is entirely based on the classical maximum

Fig. 3 Different shapes of the GE 1;b; 0ð Þ density function for different values of shape parameter b
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likelihood estimation (MLE) method proposed by Fisher in 1912 (Aldrich 1997). If

{t1, t2, …, tn} is a random sample from GE(a, b, c) distribution, then the log-likelihood

function (ln LGE) is

ln LGE a; b; c; t1; t2; . . .; tnð Þ ¼ n ln b� n ln a�
Xn

i¼1

ti � c
a

� �
þ b� 1ð Þ

Xn

i¼1

ln 1� e�
ti�c

a

� �

ð8Þ
The associated log-likelihood equations are

naþ b� 1ð Þ
Xn

i¼1

ti � cð Þe�
ti�c

a

1� e�
ti�c

a

 !

�
Xn

i¼1

ti � cð Þ ¼ 0 ð9Þ

n

b
þ
Xn

i¼1

ln 1� e�
ti�c

a

� �
¼ 0 ð10Þ

Fig. 4 Different shapes of the
hazard function for different
values of 1, b, 0 hazard function
for different values of b

Fig. 5 Shapes of mean, mode,
median, variance, and coefficient
of variation (CV) for the
GE 1;b; 0ð Þ distribution for
different values of shape
parameter b
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na� a b� 1ð Þ
Xn

i¼1

e�
ti�c

a

1� e�
ti�c

a

 !

¼ 0 ð11Þ

The estimated parameters are the solution of Eqs. (9–11) satisfying the constraint that

c\ tiV i. However, the regularity conditions, existence, and uniqueness of the solution of

Eqs.(9–11) require extensive investigation (Gupta and Kundu 1999, 2007; Raqab and

Ahsanullah 2001). Therefore, in practice, we first estimate the location parameter c as

ĉ ¼ min
i

ti ¼ t 1ð Þ ð12Þ

and then the other parameters are estimated. It is observed that for fixed (a, b), the

likelihood function (LGE) is a monotonically increasing function of c. Further, c can only

assume values between 0 and t(1). Thus, the best possible estimate for c is ĉ ¼ t 1ð Þ.

However, by doing so, the concept of searching the parameter values that maximize the

likelihood function (LGE) or log-likelihood function (ln LGE) is violated. This is precisely

the reason for the adopted method to be called the local or the modified MLE (MMLE).

Once ĉ is obtained, all data points {t1, t2, …, tn} are shifted right or left to the abscissa

on the basis of ĉ and the minimum shifted point (which is 0) is discarded from the set of

shifted points. This is essential because for b\ 1, the functional value of likelihood

function (LGE) does not exist [LGE goes to infinity when the value of the location parameter

approaches t(1)]; hence, the underlying parameter estimation technique becomes ques-

tionable. The shape and scale parameters are estimated from the remaining (n - 1) shifted

data points {t(2) - t(1), t(3) - t(1), …, t(n) - t(1)}.

The modified log-likelihood function (ln L0GE) is now obtained as

ln L0GE a; b; 0; t02; t
0
3; . . .; t0n

� �
¼ n� 1ð Þ ln b� n� 1ð Þ ln a�

Xn

i¼2

t0i
a

þ b� 1ð Þ
Xn

i¼2

ln 1� e�
t0
i
a

� 	
ð13Þ

In the above expression, ti
0 denotes the shifted data point, i.e., ti

0 = t(i) - t(1). The

corresponding log-likelihood equations are given below.

n� 1ð Þaþ b� 1ð Þ
Xn

i¼2

t0ie
�

t0
i
a

1� e�
t0
i
a

0

@

1

A�
Xn

i¼2

t0i ¼ 0 ð14Þ

n� 1

b
þ
Xn

i¼2

ln 1� e�
t0
i
a

� 	
¼ 0 ð15Þ

A simple manipulation of the above equations gives rise to the following Eq. (16) in

terms of a single variable a, which can be easily solved numerically or using any standard

software packages such as MAPLE, MATLAB, and R.

n� 1ð Þa� n� 1

Pn

i¼2

ln 1� e�
t0
i
a

� 	þ 1

0

BB@

1

CCA
Xn

i¼2

t0ie
�

t0
i
a

1� e�
t0
i
a

0

@

1

A�
Xn

i¼2

t0i ¼ 0 ð16Þ

Alternatively, we can estimate a directly from Eq. (13) by maximizing
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g að Þ ¼ lnL0GE a;b að Þ;0; t02; t
0
3; . . .t

0
n

� �

¼ K� n� 1ð Þ ln �
Xn

i¼2

ln 1� e�
t0
i
a

� 	 !

� n� 1ð Þ ln a�
Xn

i¼2

ln 1� e�
t0
i
a

� 	
�
Xn

i¼2

t0i
a

K � constant term

ð17Þ
Two approaches to solve (17) are provided in Appendix 2.

Table 2 provides the estimated model parameter values of the GE, gamma, and Weibull

distributions. The maximum likelihood estimation methods of the gamma and Weibull

models can be found in Johnson et al. (1995).

From Table 2, we see that the estimated shape parameter b of the GE model is greater

than 1, meaning the GE density function for the present earthquake catalog is unimodal,

right-tailed, and log-concave, and the estimated GE hazard function is monotonically

increasing.

4 Model selection

We use three well-established model selection criteria, namely the maximum likelihood

criterion and its modification, known as the Akaike information criterion (AIC), the

Kolmogorov-Smirnov (K-S) minimum distance criterion, and the chi-square criterion to

appraise the suitability of GE distribution in comparison to gamma and Weibull distri-

butions (Pasari and Dikshit 2013).

The maximum likelihood criterion uses the maximum log-likelihood value (ln L) to

determine the best suitable model. This criterion, however, assumes that the number of

parameters (k) in each competitive model is the same. To overcome this limitation,

several modifications have been proposed. Among these, the Akaike information crite-

rion (Akaike 1974) defined by AIC = 2 k - 2 ln L has been widely accepted. The AIC

involves a penalty function to account for model complexity due to the unequal number

of parameters. The model with the minimum AIC value is tagged as the most suitable

model. The log-likelihood values and AIC values of each distribution are listed in

Table 4.

The Kolmogorov-Smirnov (K-S) minimum distance criterion uses K-S distances

between empirical distribution function and probability distribution function to choose the

most appropriate model. The K-S test belongs to the family of non-parametric and dis-

tribution-free goodness-of-fit tests (Johnson et al. 1995). A step-by-step procedure to

obtain the K-S value is described in Appendix 3, and the calculated K-S distances are listed

in Table 4. The associated K-S test plot is given in Fig. 6.

The minimum chi-square criterion is one of the oldest conventional techniques for

model selection. This criterion uses the observed and expected frequencies of class

intervals to calculate the chi-square value (see Appendix 4). However, in the chi-square

test, there is no specified rule to choose the number and width of class intervals (Johnson

et al. 1995). For this reason, we choose a uniform interval size of 3 years (6 classes: \3,

3–6, 6–9, 9–12, 12–15, and [15) to calculate the chi-square value. According to the chi-

square test, the model with the minimum chi-square value is considered the best model.

The different chi-square values along with their observed and expected frequencies are

summarized in Table 3.
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Table 4 shows that the GE distribution, among three competitive distributions, has the

minimum AIC value. This strongly suggests that the GE distribution is more economical as

compared to gamma or Weibull distribution. In addition, we observe that the GE distri-

bution has the minimum K-S distance value. This implies that the nonparametric K-S

criterion also suggests GE distribution as the most appropriate distribution to represent the

present earthquake catalog. The chi-square criterion, on the other hand, suggests the

gamma distribution to be the best fitted model for the present data set.

A close look at the K-S curve (Fig. 6) substantiates that all three distributions cross each

other, and all of them are quite close to the empirical distribution function. Therefore, at

this stage, it is difficult to decide which one of these three competitive distributions

performs better in a global sense. As a matter of fact, we avoid claiming that the GE is the

most appropriate distribution for recurrence modeling. Rather, we argue that the GE dis-

tribution can be effectively used as a practical alternative to the gamma and Weibull

distributions in earthquake recurrence modeling and associated problems. In the following

section, we apply the GE model to generate a number of estimated conditional probability

curves to measure earthquake hazards in the study region.

Table 2 Parameter estimation
from the (modified) maximum
likelihood estimation technique

Probability model Parameter MLE/MMLE

GE a 6.038483

b 1.374836

c 0.876712

Gamma a 5.218260

b 1.499642

Weibull a 8.559719

b 1.356785

Fig. 6 The K-S test plot as a difference between the estimated cumulative distribution function for each test
model with the empirical distribution function
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5 Earthquake hazard assessment

Following Utsu (1984), we assess earthquake hazards in terms of the estimated recurrence

interval and conditional probability values. Subsequently, we generate a number of con-

ditional probability curves (hazard curves) for different combination of elapsed time (te)

and residual time (s). These estimated hazard curves play a significant role in seismic

zonation and microzonation, evaluation of existing building codes, city planning and

Table 3 The chi-square crite-
rion for different models

Model Interval Observed
frequency

Expected
frequency

vvalue
2

GE \3 5 3.57 4.12

3–6 4 5.24

6–9 3 3.74

9–12 1 2.44

12–15 3 1.54

[15 3 2.47

Gamma \3 5 4.47 3.33

3–6 4 4.80

6–9 3 3.52

9–12 1 2.35

12–15 3 1.50

[15 3 2.36

Weibull \3 5 4.07 2.76

3–6 4 4.68

6–9 3 3.73

9–12 1 2.61

12–15 3 1.67

[15 3 2.23

Table 4 Model comparison
using three criteria: the maximum
log-likelihood criterion (ln L),
AIC, minimum K-S distance cri-
terion, and minimum chi-square
(vvalue

2 ) criterion

a Number in parentheses is the
abscissa value (approximately)
where the K-S distance is
achieved

Model Criteria Statistical
methods
Values

GE ln L -53.4086

AIC 112.8172

vvalue
2 3.3562

K-S valuea 0.1400 (11.5095)

Gamma ln L -56.9075

AIC 117.8149

vvalue
2 2.7116

K-S valuea 0.1482 (11.5095)

Weibull ln L -56.8651

AIC 117.7303

vvalue
2 2.7594

K-S valuea 0.1440 (11.5095)
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infrastructure development, designing of highway/railway bridges, location choice of

nuclear power plants, schools, and hospitals, and many other engineering applications

(Baker 2008; Yadav et al. 2009, 2010).

The expected mean recurrence interval of an earthquake (M C 7.0) from the GE model

is 8.23 ± 6.40 years in comparison to 7.83 ± 6.39 years from the gamma model and

7.84 ± 5.84 years from the Weibull model. The estimated cumulative probability (from

the GE model) of a large M C 7.0 magnitude earthquake by 2015 is 0.94, which is

Table 5 Conditional probabilities of an earthquake of magnitude M C 7.0 to occur in the next s year(s),
given that no earthquake has occurred in the last te year(s) since the last occurrence of 1995

s te elapsed time

5 (2000) 10 (2005) 15 (2010) 18 (2013) 20 (2015) 25 (2020) 30 (2025) 35 (2030)

3 0.360 0.380 0.387 0.389 0.390 0.391 0.391 0.391

6 0.600 0.619 0.625 0.627 0.628 0.629 0.629 0.630

9 0.753 0.767 0.771 0.773 0.773 0.774 0.775 0.775

12 0.848 0.858 0.861 0.862 0.862 0.863 0.863 0.863

15 0.907 0.913 0.915 0.916 0.916 0.916 0.917 0.917

18 0.943 0.947 0.948 0.949 0.949 0.949 0.949 0.950

21 0.966 0.968 0.969 0.969 0.969 0.969 0.969 0.969

24 0.979 0.980 0.981 0.981 0.981 0.981 0.981 0.981

27 0.987 0.988 0.988 0.988 0.989 0.989 0.989 0.990

30 0.992 0.993 0.993 0.993 0.993 0.993 0.993 0.993

Fig. 7 The estimated conditional probability curves (hazard curves) for elapsed time te = 5, 10, ���, 35 years
using the GE distribution for earthquake events M C 7.0 in the study region. The dotted line corresponds to an
elapsed time of 18 years, i.e., 2013
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critically high. The same is found to be 0.95 and 0.96 from the gamma and Weibull

models, respectively. On the other hand, the conditional probability (from the GE model)

reaches 0.80–0.90 after about 10–14 years (2023–2027) and 0.90–0.95 after about

14–18 years (2027–2031) for an elapsed time of 18 years (i.e., 2013). A comprehensive list

of estimated conditional probabilities using the GE model is presented in Table 5, and the

corresponding conditional probability curves (hazard curves) are schematically shown in

Fig. 7.

6 Summary and Conclusions

This article has presented a study on the three-parameter generalized (exponentiated)

exponential distribution (Gupta and Kundu 1999) and has investigated its scope in seismic

recurrence studies. The purpose was to increase the choices of potential models to estimate

earthquake interevent times. A detailed description of the GE model, its parameter esti-

mation, and model selection techniques was provided. It was observed that the GE dis-

tribution, unlike the gamma distribution, has a tractable distribution function or survival

function, which makes the GE distribution computationally much easier to handle than the

gamma distribution. The GE distribution, like the gamma or Weibull distribution, offers

both monotonically increasing and decreasing hazard functions, which play a significant

role in seismic reliability analysis. This facility, however, was not previously available

from an exponential (Poisson) distribution that only provides a constant failure rate. The

moment generating function of the GE distribution is quite intractable. As a consequence,

the GE distribution, unlike the gamma distribution and like the Weibull distribution, does

not preserve the hereditary (reproductive) property.

For illustrative purposes, we used a real, homogeneous, and complete earthquake

catalog of 20 events (M C 7.0) from northeast India and its adjoining regions. The

estimated (MMLE) shape parameter (b̂ ¼ 1:374836) reveals that the underlying GE

distribution is unimodal and right-tailed, and the corresponding hazard function

increases monotonically. In order to compare the GE distribution with the gamma and

Weibull distributions, we applied three model selection criteria, namely, the maximum

likelihood criterion and its extension (AIC), the K-S minimum distance criterion, and

the chi-square criterion. It was observed that two criteria, namely the maximum like-

lihood test (AIC) and the K-S test, suggest that the GE model has comparatively better

fitting for the present data set. This shows the efficacy of the GE model as a practical

alternative to other popular probability models for analysis by seismologists and

earthquake professionals. We have also presented a few conditional probability curves

(hazard curves) for elapsed time te = 5, 10, …, 35 years. These curves indicate very

high chances of future earthquakes in the study region. The conditional probability of a

large magnitude event by 2023–2027 and by 2027–2040 reaches to 0.80–0.90 and

0.90–0.99, respectively.

The present study has demonstrated the use of GE distribution in probabilistic earth-

quake recurrence modeling of northeast India and its adjoining regions. However, more

work is needed to confirm the suitability of GE distribution for a broad spectrum of the

earthquake catalog from different parts of the globe.
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Appendix 1

We put a = 1, c = 0 in (3) for the sake of simplicity. Also, we replace the random variable

T by U. Then, the corresponding density function becomes

fGE u; 1; b; 0ð Þ ¼ be�u 1� e�uð Þb�1
u [ 0; b [ 0ð Þ ð18Þ

Let MU(x) denote the moment generating function (mgf). So, by definition

MUðxÞ ¼ E exU
� �

¼ b
Z1

0

e x�1ð Þu 1� e�uð Þb�1
du ¼ b

C bð ÞC 1� xð Þ
C bþ 1� xð Þ x\1ð Þ ð19Þ

Therefore, the moment generating function MT(x) of T(= aU ? c) * GE(a, b, c) is

obtained as

MTðxÞ ¼ E exT
� �

¼ cexc C bþ 1ð ÞC 1� axð Þ
C bþ 1� axð Þ ax\1ð Þ ð20Þ

Appendix 2

It is observed in Gupta and Kundu (1999) that g(a) in Eq. (17) is unimodal. Thus, in order

to find its maximum value, we differentiate g(a) with respect to a and equate the resultant

expression to zero. This yields the following equation in a.

g0 að Þ ¼ � n� 1ð Þ

Pn
i¼2

tie
�

t0
i
a

1�e�
t0
i
a

 !

Pn
i¼2 ln 1� e�

t0
i
a

� 	þ n� 1ð Þa�
Xn

i¼2

tie
�

t0
i
a

1� e�
t0
i
a

0

@

1

A�
Xn

i¼2

t0i ¼ 0 ð21Þ

Equation (21) can be solved in various ways, such as numerical techniques (e.g., fixed

point iteration and the Newton-Raphson method) or by using any standard one-dimensional

non-linear equation solver package. For completeness, we have provided schemes of the

fixed point iteration and the Newton-Raphson methods below.

(a) Fixed point iteration

We first write g0 að Þ ¼ 0 as h að Þ ¼ a where,

h að Þ ¼

Pn
i¼2

tie
�

t0
i
a

1�e�
t0
i
a

 !

Pn
i¼2 ln 1� e�

t0
i
a

� 	þ 1

n� 1

Xn

i¼2

t0ie
�

t0
i
a

1� e
�

t0
i
a

0

B@

1

CAþ
1

n� 1

Xn

i¼2

t0i

2

66664

3

77775
ð22Þ

Then, we apply the scheme of fixed point iteration as

ajþ1 ¼ h aj

� �
; j ¼ 1; 2; . . . ð23Þ
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(b) Newton-Raphson method

Equation (21) can also be solved by the Newton-Raphson scheme for non-linear

equation. The scheme is given as

ajþ1 ¼ aj �
g0 aj

� �

g00 aj

� � ; j ¼ 1; 2; . . . ð24Þ

Appendix 3

In the K-S test, we first construct the empirical distribution function Hn for n i.i.d. random

variables T1, T2, ���, Tn as

Hn tð Þ ¼ 1

n

Xn

i¼1

ITi � t ð25Þ

Here, ITi � t is the indicator function, equals 1 if Ti B t, and otherwise equals to 0. This

makes Hn(t) a step function. Suppose we have two competitive models F and G. Then, the

corresponding K-S distances are calculated as

D1 ¼ sup
�1\t\1

Hn tð Þ � F tð Þj j

D2 ¼ sup
�1\t\1

Hn tð Þ � G tð Þj j
ð26Þ

In the above expression, supt denotes the supremum of the set of distances. If D1 \ D2,

we choose model F; otherwise, we choose model G.

Appendix 4

For simplicity, we assume two competitive models F and G to describe the chi-square

criterion. We further assume that f t; ~h
� �

and g t; ~uð Þ are the corresponding fitted models

of F and G. In the chi-square test, we first divide the range of sample observations into k

equal parts and record its observed frequencies. We then compute expected frequencies

for all k parts using fitted models. Suppose the observed frequencies are n1, n2, …, nk

and expected frequencies are f1; f2; . . .; fk and g1; g2; . . .; gk respectively, then we compute

the chi-square distances between and {t1, t2, …, tn}, f t; ~h
� �

and {t1, t2, …, tn}, g t; ~uð Þ
as

v2
f;data ¼

Xk

i¼1

ni � fið Þ2

fi

v2
g;data ¼

Xk

i¼1

ni � gið Þ2

gi

ð27Þ

If vf,data
2 \ vg,data

2 then we choose model F; otherwise, we choose model G. The

same approach can now be extended and used to prioritize a number of competitive

models.
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