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Abstract In order to overcome the shortage that point-based data acquisition techniques

cannot retrieve the whole basin subsidence caused by underground mining, and to avoid

complex splicing of terrestrial 3D laser scanner (TLS) point cloud data and the errors

caused by such splicing, GPS/TLS combined technology is employed for mining subsi-

dence monitoring. The basic idea of the monitoring technology is put forward. In this

article, an application of the method to a coal mining area in China is presented. Support

vector machine (SVM) model for GPS level conversion in the mining area is established,

and a comparative analysis of SVM, BP neural network and polynomial established local

quasi-geoid in the mining area is conducted. Ground surface digital elevation model

(DEM) of the mining area is established by using TLS point cloud data, and the ground

surface dynamic subsidence basin is obtained through a subtraction of two DEMs. The

results indicate that the quasi-geoid established by using SVM model features a relatively

high level of stability and accuracy and that the established mining surface DEM and

subsidence basin can provide the fundamental data for the reconstruction of ecological

environment in the mining area. GPS/TLS combined monitoring technology is a new

monitoring technology, which entangles the advantages of both GPS and TLS and could

offset their disadvantages, thus obtaining complementary advantages. According to ana-

lysis on its application in the mining area, we conclude that the technology is feasible and

has a great application prospect for the mining area purposes.
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1 Introduction

The subsidence induced by coal mining is a complex spatio-temporal process. Obtaining data

through monitoring mining subsidence provides a basis for studying the complex process. With

the development of the surveying and mapping technology, the mining subsidence monitoring

technology has developed from traditional separated leveling and plane coordinate observa-

tions (He et al. 1991) to the total station and GPS (Liu et al. 2012; Wang et al. 2011; Xu et al.

2006), and then to terrestrial 3D laser scanner (TLS) observation. Measurement taken with the

traditional observation technology uses the ‘‘point-based’’ method, which features a low

efficiency and heavy workload. This article puts forward the combined technology of GPS/

TLS for the purposes of monitoring the surface subsidence originated by underground mining.

Satellite positioning system (GPS) is a technology conducting point measurement using

artificial earth satellites (Xu et al. 2006). With its advantages including all-weather,

automatic, no visibility needed between stations and simultaneous measurement of three-

dimensional coordinates of points, it has been widely used in various fields and has

achieved satisfactory results in mining subsidence monitoring (Liu et al. 2012; Wang et al.

2011; Zheng et al. 2003; Han et al. 2002b; Han et al. 2002a; Zhang et al. 2000; Gao and Yu

1999). Still, there are some ongoing problems: data obtained by GPS are point-based, and

information of the whole subsidence basin in the mining area cannot be measured, which

would make it difficult to play an important role in analyzing surface movement and

deformation of the whole mining subsidence basin.

TLS technology is a new measurement technique developed in recent years, and the

technology can quickly obtain ‘‘plane’’ information and becomes one of the important

means to obtain the spatial data (Zhang 2008). Specifically, it can achieve the whole basin

monitoring of a surface subsidence due to coal mining and overcome the defects of the

point-based observation mode. However, TLS has a defect that the point cloud data

between stations need to be spliced to a unified coordinate system; though by using current

registration method (Sheng et al. 2010; Shi et al. 2009; Zheng et al. 2008; Shi et al. 2008;

Zheng 2005), problems in stations matching have been solved to some extent, yet again

such problems arises: (1) registration algorithm is complex and difficult to calculate; (2) no

matter how good the registration method is, it will cause errors; and (3) in the deformation

monitoring field, the matching error may affect the result seriously. Based on the above

problems and complementarities of GPS and TLS, we propose the combined usage of GPS

and TLS for mining subsidence monitoring.

2 SVM model for GPS level conversion

Elevation measured by GPS is the geodetic high, and normal height is commonly used in

China (Xu et al. 2006). Hence, GPS level conversion is needed, and the key of conversion

is determined by abnormal elevation. The commonly used methods nowadays are the direct

method and the fitting method, the former needs gravity data and terrain data, its appli-

cation is limited, while the latter is relatively simple, its procedures are carried out as

following: firstly, measure geodetic height of control points by using GPS and obtain the

normal height using leveling, then fit the local quasi-geoid, and then calculate the height

anomaly of these points to be measured through interpolation, finally calculate the normal

height. Commonly used fitting methods include polynomial fitting (Gao and Xu 2004; Hu

et al. 2002) and BP neural network simulation (Wang et al. 2009; Yang et al. 1999). This

paper uses support vector machine (SVM) (Wu et al. 2004) in the local quasi-geoid fitting.
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The SVM, which possesses good model generalization ability, is a new machine

learning algorithm and can conduct the function fitting very well. Application the SVM

model for GPS height conversion is to determine the functional relationship between the

height anomaly n of the observation points and their plane coordinate X, n ¼ f ðXÞ:
In the function approximation, for data sets {xi, yi}, i = 1,2,…,n, xi[Rd, yi[R, if a linear

function of f xð Þ ¼ wxþ bis used to conduct fitting, the fitting precision is e, and then use

slack factor ni� 0and f�i � 0; according to the structural risk minimization (SRM) criterion,

the fitting function f(x) should minimize the optimization goal, i.e., Eq. (2) while at the

same time meeting the constraint Eq. (1).

yi � w � xi � b� eþ fi

w � xi þ b� yi� eþ f�i

�
i ¼ 1; 2; . . .; n ð1Þ

Min
1

2
jwj2 þ C

Xn

i¼1

ðfi þ f�i Þ ð2Þ

where C [ 0 is the penalty factors on cross-border sample points, reflecting the complexity

of the algorithm and compromise degree of prediction accuracy.

By using the Lagrange optimization method, the dual problem of the optimization goals

can be presented as Lagrange optimization problem, under the condition ofPn
i¼1

a�i þ ai

� �
¼ 0; 0� ai; a�i �C; i ¼ 1; 2; . . .; n, maximizes the objective function for the

Lagrange factor ai, a�i .

W a; a�ð Þ ¼ �e
Xn

i¼1

a�i þ ai

� �
þ
Xn

i¼1

yi a�i � ai

� �
� 1

2

Xn

i;j¼1

a�i � ai

� �
a�j � aj

� �
ðxi � xjÞ ð3Þ

An optimal a�i ; ai(i = 1,2,…,n)is gotten, b* is obtained by using the given sample and

based on f(x) = wx ? b, and obtain the regression function:

f xð Þ ¼ w � xð Þ þ b ¼
Xn

i¼1

a�i � ai

� �
ðxi � xÞ þ b� ð4Þ

For a nonlinear function fitting, linear approximation after a nonlinear transformation

/ xð Þcan be achieved by using an appropriate kernel function k(xi, xj), and then the fitting

function becomes:

f xð Þ ¼ w � xð Þ þ b ¼
Xn

i¼1

a�i � ai

� �
kðxi � xÞ þ b� ð5Þ

where k x; xið Þ ¼ /TðxiÞ � /ðxÞ, referred to as an inner product kernel; kernel functions

commonly used in SVM mainly include polynomial kernel functions, the radial basis

function (RBF), and Sigmoid kernel function.

3 Methods of TLS for mining subsidence and observation stations

3.1 Methods of TLS for mining subsidence

Figure 1 is a schematic diagram of TLS used for monitoring subsidence in mining process.

When coal seam is excavated toward position 1, observe the ground surface above the coal
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face using TLS, and then establish digital elevation model (DEM) in the mining subsidence

area through scanning data (hereinafter referred to as DEM1). When coal seam is exca-

vated toward position 2, scans the same surface with TLS again, so as to renew and obtain

DEM (hereinafter referred to as DME2). By deducting DEM2 from DEM1, we can get the

ground surface subsidence during period between two mining processes (position 1 and

position 2), i.e., the measured dynamic subsidence basin.

3.2 Laying out of observation stations

Procedures for laying out GPS/TLS observation station mainly include (1) determining the

subsidence basin boundary; (2) number, density and distribution of monitoring positions.

(1) Determination method for subsidence basin range: Taking a position subsiding by

10 mm as a boundary, we determine the outer boundary of the mobile basin according to

angle of critical deformation, for further details please see Fig. 2. Also, range of mining

subsidence can be predicted by using an integral probability method (He et al. 1991).

(2) Number, density and distribution of monitoring positions: Monitoring position is gen-

erally distributed in the basin, as shown in Fig. 2a ABCD, the internal grid points comprehend

design scanning and monitoring positions, and the distances between positions are shown in

Fig. 2d. Number of monitoring positions N can be calculated with the following equation:

N ¼ ABffiffiffi
2
p

r
� CDffiffiffi

2
p

r
ð6Þ

where r is a scanning radius on each scan position (Fig. 2d), which can be determined

according to the scanner model, unit: m. AB and CD are, respectively, strike and dip length

of monitoring positions (see Fig. 2a), unit: m.

3.3 Steps for observation

The steps for monitoring observation stations using GPS/TLS include

(1) Firstly, we measure WGS84 3D coordinate of monitoring points by using GPS and

convert them to a three-dimensional coordinate system of mining area through leveling and

plane coordinates system transformation.

(2) Taking the monitoring points as instrument coordinates, we scan the mining area

surface with TLS; point cloud data obtained are related to the instrument coordinates; when

instrument coordinates (i.e., the coordinates of monitoring points) are known, the point

cloud data shall be in the same coordinate system, so as to avoid splicing later.

1 2

1 2

The first scanning The second scanning

Ground surface Ground surface

Coal face Coal face

Dynamic subsidence 
basin produced between 

two scanning

Coal face

Fig. 1 Sketch of basic
philosophy for TLS used in
subsidence monitoring
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4 Technical flow of monitoring mining subsidence with GPS/TLS

Figure 3 shows technical flow of monitoring mining subsidence with GSP/TLS combined

technology. Firstly, the quasi-geoid in mining subsidence area is determined by using GPS

and the conventional leveling and obtains a high-precision normal height of positions to be

measured; through the plane coordinate transformation model, the GPS plane coordinates

are transformed to a plane coordinates suitable for the mining area, so as to obtain high-

precision 3D coordinates of the monitoring points. When scanning monitoring positions,

input the data into TLS system based on the obtained 3D coordinate, that is, set the point

cloud data into a unified coordinate system, so as to avoid problem in later matching of

point cloud data. Based on the rich ground point cloud data obtained by TLS, a DEM in

subsidence area during mining could be established; according to the multi-period scanned

data, DEM of the subsidence area can be regularly updated and subsidence basin can be

obtained by subtracting one DEM with another DEM, which can provide the reliable basic

data for the land reclamation recovery, environment reconstruction and ecological

recovery. Moreover, the normal height transformed by GPS and subsidence data obtained

from interpolated point cloud data (DEM data) can be used for calculating subsidence

parameters (due to space constraints, parameters of this part are not given in this paper),

which can be used for disaster forecast services for the mining subsidence.

5 Engineering application analysis

The monitoring technology is tested in the coal face of a mining area in Hebei Province of

China; the basic specification of such working face is as follows: length of working face

700 m; width of working face 139 m; average mining depth 540 m; average elevation of

ground surface above working face 147 m; average mining thickness 5 m; average mining

speed 1.3 m/d; seam dip 12�. Monitor with Trimble GX200 type TLS is used, and scanning

Fig. 2 Determination of subsidence basin range and distribution of monitoring positions
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radius of a single station is set as 40 m; according to the formula (6), 28 monitoring points

are set in ground surface above the coal face, which are evenly distributed on the surface

above the coal face. Totally 15 control points are collected in the mining area (as shown in

Fig. 4), and the 3D coordinate of such control points are known as Beijing 54 Gauss

coordinate system, Yellow Sea height system, and national third-order level data. During

the first comprehensive observation, the WGS84 coordinates of all 43 monitoring points

(15 control points ? 28 monitoring points) are observed by using the GPS–RTK tech-

nology, carried out monitoring monthly from November 2009 to March 2010 in accor-

dance with the observation, totally 4 times, and gained rich ground point cloud data.

5.1 Establishment of a local quasi-geoid in mining area

Ten control points in the mining area that were uniformly distributed (see control points

with five-point star in Fig. 4) were selected as a learning set for training purposes. Other 5

control points (see control points with triangle in Fig. 4) were selected as the detection test

set. For comparison analysis, local quasi-geoid fitting was performed in the mining area by

using 3 kinds of models, namely SVM, polynomial, and BP neural network.

Based on the SVM model converted from GPS level in mining area, RBF (Gaussian

radial basis function)is chosen as the kernel function, with kernel function factor r2 = 9,

the penalty factor C = 1000, and insensitive loss function parameter e = 0.0001.

Three-layer BP neural network models including input layer, hidden layer, and output

layer are adopted, wherein there are two nodes on the input layer, i.e., the plane coordinate

Unified
coordinate 

system

leveling GPS measurement

Terrestrial 3D laser scanner

SVM model for GPS level transformation coordinate transformation 
model

local quasigeoid in mining area

normal height of each 
monitoring position

High-precision 3D coordinate

Plane coordinate of mining 
area coordinate system

Multi-period scanned data

Establishment or update of 
DEM in subsidence area

Dynamic model for 
obtaining parameters

subtract DEMs from one 
another

Acquiring subsidence 
parameters

Fig. 3 Technical flow of monitoring mining subsidence with GSP/TLS combined technology
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(x, y) of a point; there are 5 neurons on the hidden layer; and one node on the output layer,

namely the height anomaly n. Calculations are performed using the MATLAB software.

Before the data fitting, both SVM and BP neural network need to be normalized by

inputting and outputting data to the interval [0, 1], so that learning and training can be carried

out by using the foresaid algorithm. Normalized processing functions are as follows:

X� ¼ X � Xminð Þ= Xmax � Xminð Þ

where in X stands for the input or output value; Xmax, Xmin stands for maximum, minimum

value of the input or output data; X�is the normalized value.

With the polynomial curve fitting (Xu et al. 2006), elevation anomaly n and plane

coordinate (x, y) have the following relationship: n ¼ f x; yð Þ þ e, where

f x; yð Þ ¼ a0 þ a1xþ a2yþ a3x2 þ a4y2 þ a5xyis the trend of n and e stands for error. It is

written in matrix form: n ¼ XBþ e, when
P

e2 ¼ min, aican be obtained, and it is

substituted into the formula to compute nand obtain the normal height.

village road
village road

village

m
in

in
g 

di
re

ct
io

n

N

the mining location
of the first scanning

the mining location
of  the last scanning

C01

C02

C03

C04

C05

C06
C07

C08

C09

C10

C11

C12

C13

C14

C15

A coal mining area in 
Hebei Province, China

Coa
l f

ac
e

region of scanning

Control points as 
training purposes

Control points as 
testing purposes

Fig. 4 Schematic diagram of distribution of control points in the mining area
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Evaluation index adopts the internal and external accord accuracy, and the calculation

formula is as follows: l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VV½ 	=ðn� 1Þ

p
, wherein V ¼ ni � n�i height anomaly fitting

residuals.

Figure 5 shows the fitting residuals of different models, and fluctuations amplitude of

SVM is the smallest where the maximum fitting error is 1.43 cm; the second one is the BP

neural network with the maximum fitting error of 1.44 cm; and the biggest one is the poly-

nomial with the maximum fitting error of 1.54 cm. Figure 6 shows the predicted error of

different models, the fluctuation amplitude of SVM is the most stable, followed by the BP

neural network, and the polynomial. From fitting precision given in Table 1, both internal and

external accord accuracy values are higher than the polynomial and BP neural network ones.

Therefore, it is the GPS level conversion model, which is relatively stable and accurate.

Geodetic height data of 43 scanned stations calculated by means of the SVM model are

selected in this article.

5.2 Transformation of plane coordinates

The plane coordinate transformation model in the mining area can be obtained by referring

to the reference Xu et al. (2006) and Gao and Yu (1999). Using GPS coordinates and BJ54

coordinates of 15 control points for benchmark, we can transform from a WGS84 system to

a BJ54 system coordinate, where transformation can be realized according to the plane

coordinate transformation model. Then, the BJ54 coordinates of the remaining 28 moni-

toring points can be obtained.

With the normal height of points calculated as such, high-precision 3D coordinates of

each scanning and monitoring points can be obtained. When scanning, coordinates of

monitoring points are input to TLS as the instrument coordinates; then, each scanning

positions is integrated into a unified BJ54 coordinate system, and the relationship between

the scanning positions and monitoring points is established, so that complex splicing

Fig. 5 Comparison of fitting residue of different models

Fig. 6 Comparison of predicted residue of different models
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process and stitching error in a later phase can be avoided. The point cloud data obtained

by scanning can be used to update the existing DEM or establish DEM in the mining area,

as well as to provide fundamental data for land reclamation and ecological environment

recovery.

Table 1 Comparison of fitting precision of different models/cm

Polynomial BP neural network SVM

Internal accord accuracy 1.03 1.00 0.77

External accord accuracy 1.43 1.29 1.01

(a) (b) (c)
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Fig. 7 Establishment of DEM and dynamic subsidence basin. a November 8, 2009 ground surface DEM1/
unit: m; b March 10, 2010 ground surface DEM2/unit m; c Dynamic subsidence basin between two scanning
periods (2009.11.08–2010.03.10)/unit mm

Fig. 8 Point cloud data and cloud superposition of scanning in Yanzhou mining area. a Point cloud of first
scanning on January 31, 2008; b Point cloud of second scanning on February 13, 2008; c Cloud
superposition of twice scanning
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5.3 DEM establishment

From November 2009 to March 2010, a total of four scanning sessions have been carried

out on ground surface above the working face; before scanning, GPS–RTK observation

was performed for 28 monitoring points, so as to obtain high-precision 3D coordinates

Fig. 9 Dynamic subsidence basin in Yanzhou coal mining area between two scanning periods (January 31,
2008–February 13, 2008)/unit m
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through conversion, which can be regarded as connection data among monitoring points.

No original DEM data were provided in the ore mining area, so DEM1 of the ground

surface in the mining area was obtained based on the point cloud scanned first time

(November 8, 2009) as shown in Fig. 7a, and then DEM2 of the ground surface in the

mining area was established by using a point cloud data obtained the last time (March 3,

2010) as shown in Fig. 7b; by subtracting DEMs (DEM2-DEM1), dynamic subsidence

basin can be obtained from November 2009 to March 2010 as shown in Fig. 7c.

6 Illustrations

Above mentioned are core elements and technical flows of GPS/TLS combined monitoring

technology for coal mining subsidence with a mining area of Hebei Province in China as an

example; however, the technology was also tested in Yanzhou mining area of Shandong

Province in China. Figure 8 shows point cloud data of twice scanning in Yanzhou mining

area. Figure 9 is dynamic subsidence basin between the two scanning periods (January 31,

2008–February 13, 2008). The result shows that the technology is feasible.

7 Conclusions

The GPS/TLS combined monitoring technology for mining subsidence presents a new

monitoring technology, integrating the advantages of both GPS and TLS. GPS provides

coordinate system connection for TLS scanning measurement, which can overcome the

problem of the point cloud data registration; TLS can access to subsidence basin data in the

mining area, which offsets shortcoming of ‘‘point’’-shaped observation of GPS and forms

some complementary advantages, so that its application in the mining area is feasible and

has great application prospects.

Through a comparative analysis of the existing engineering examples in Hebei Province

in China by using SVM, BP neural network and polynomial, local quasi-geoid can be

established in the mining area, and the established SVM model is relatively stable and of

high precision.

By using the point cloud data, ground surface DEM in the mining area can be estab-

lished and the surface subsidence basin can be obtained during the two scanning periods by

subtracting DEMs from one another; therefore, the fundamental data for the reconstruction

of ecological environment in the mining area can be provided.
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