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Abstract Extreme risks associated with natural and man-made disasters involve dis-

ruptions to the production of goods or provision of services in interdependent systems. The

reduced supply of goods and services will degrade ‘‘as-planned’’ production and create

ripple effects. Hence, maintaining above-minimum levels of inventory is a resilience

strategy that could effectively reduce the onset of disruption. This research integrates the

uncertainty in inventory levels to assess the economic impacts of moderate and extreme

disastrous events on interdependent systems. The unique contribution of this research is the

formulation of a stochastic inventory-based risk assessment model using a multi-objective

optimization framework for minimizing (1) extreme economic losses and (2) sector ino-

perability. Empirical distributions are derived from inventory-to-sales ratio (ISR) of the

manufacturing and trade sectors from the Bureau of Economic Analysis database. Simu-

lations of inventory enable the initialization of inoperability functions of a dynamic ino-

perability input–output model (DIIM). The stochastic inventory-based DIIM-computed

values of economic loss and inoperability are simultaneously minimized to identify

inventory-enhancement opportunities for critically disrupted systems. A lean production

case for a moderate-intensity hurricane in Virginia reveals an overestimation of regional

economic loss relative to the expected inventory levels from the ISR data. The conditional

expected value of regional economic loss for an extreme event is found to be $12 M higher

than a moderate-intensity case. Identification of resilience-enhancement opportunities

using the proposed multi-objective optimization framework could reduce expected eco-

nomic loss by $24 M for an extreme-event and $17 M for a moderate-intensity case.
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1 Introduction

Natural disasters, such as hurricanes, evidently bring varying degrees of disruption to the

functions of economic and infrastructure systems that provide essential goods and services

to a society. A disrupted sector becomes incapable of fulfilling the production output

demanded by the other sectors of an economic region. A cascading effect of disruption

results from the reduction in the flow of expected output from one disrupted sector to

another. Hence, the inherent physical, economic, and logical interdependencies in most

large and complex infrastructure and economic systems can accelerate the propagation of

disaster consequences across the various sectors of the society (Perrow 1999; Barker and

Santos 2010). To wit, supply chain disruptions and lean production schedules have been

found to have adverse effects on both regional profitability and sector recovery from

extreme events (Heal et al. 2006; Hendricks and Singhal 2005; Little 2005). As a result, the

entire region is brought to a higher level of disruption with greater associated economic

losses. From a survey of Webb, Tierney and Dahlhamer, such economic losses incurred by

directly and indirectly disrupted sectors were found to be as significant as the equivalent

monetary worth of property damages from disastrous events (Webb et al. 2000). La Porte

associates the failure to prepare for such disruptions with ‘‘widespread uncertainty in

service restoration, lack of viable economic and social networks, serious loss of public

confidence, and even social collapse (La Porte 2006).’’

To suppress the propagation of disaster consequences, the formulation of disaster pre-

paredness plans must address the need for a holistic and immediate recovery management for

disrupted critical economic and infrastructure systems. Recent paradigm shifts of risk

management and decision-making for disastrous events have refocused from prevention and

protection to recovery and response (Barker and Santos 2010). Loss estimation that previ-

ously accounted only for immediate damages has evolved into a time-dependent analysis of

the impact on the flow of goods and services among intricately disrupted interdependent

systems (Rose and Liao 2005). These have been influenced by the growing concern on the

relationship between preparedness and resilience (Haimes 2006; Haimes and Jiang 2001).

Resilience is defined as the ability to ‘‘mute the potential losses’’ (Rose and Liao 2005).

Preparedness activities and proper positioning of limited resources were observed to promote

higher sector resilience and inhibit the impact of disastrous events. These allow for shorter

recovery times and minimal economic losses between critical infrastructure and economic

systems (Resurreccion and Santos 2011, 2012a). Specifically, resilience adjustment measures

such as inventories, input substitution, conservation, and production rescheduling can tem-

porarily satisfy a sector’s input production requirement and can serve as strategies to mitigate

the disaster consequences (Rose and Liao 2005). Hence, planning for above-minimum levels

of inventory is a risk management strategy to delay the onset of inoperability brought about by

disasters (Barker and Santos 2010; Resurreccion and Santos 2012a).

This research is motivated by an emerging concept that maintaining flexibility in

achieving higher levels of inventory could strengthen a region’s resilience. The authors

recognize the additional costs associated with holding inventory. Nevertheless, flexible

inventory readjustments particularly in times of disasters can lead to significant economic
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savings that markedly outweigh the costs associated with inventory (Barker and Santos

2010). In particular, this paper explores the extent to which inventory strategies could

impact the way sectors transition from their disrupted states toward recovery from a

disastrous event. Utilizing input–output (I–O) accounting information published by the

Bureau of Economic Analysis (BEA), the paper implements a dynamic inoperability input–

output model (DIIM) to monitor the propagation of direct and indirect impacts of dis-

ruption over time with respect to a macroeconomic perspective of the US economy.

Previous applications of the DIIM have incorporated uncertainty inventory modeling

(Barker and Santos 2010; Resurreccion and Santos 2012a). However, these applications

only used discrete-point estimates for the individual inventory-level parameter. Hence, the

research develops an integration of a stochastic model of inventory with the DIIM to relax

the limitations of the deterministic inventory model. There are multiple sources of

uncertainty for modeling disrupted interdependent systems, but the focus of this research is

to characterize the associated economic risks from a hurricane-based disruption with

respect to inventory uncertainty. Probability density functions are derived from monthly

inventory-to-sales ratio data from BEA (US Economic Accounts 2009) for each of the 21

manufacturing and retail and trade sectors classified in the North American Industry

Classification System (NAICS). The proposed stochastic inventory-based DIIM (SIDIIM)

will provide more reliable estimates for risk analysis metrics, namely economic losses and

sector inoperability (a measure of the sector’s degree of disruption). Using Monte Carlo

simulations, the SIDIIM generates effective and sector-based distributions of these metrics.

Effective distributions of regional economic loss and individual sector inoperability dis-

tributions allow for the computation of statistics such as the expected value (or mean) and

conditional expected value for analyzing average and extreme events (Santos 2008a). The

research adapts the dynamic cross-prioritization plot (DCPP) technique developed by

Resurreccion and Santos (2012a) to prioritize critical sectors for resilience-enhancement

planning. The proposed SIDIIM is capable of evaluating these resilience-enhancement

plans with respect to average and conditional expected values of the risk. Thereby, the

application of SIDIIM develops an extension of the application and analysis of the DCPP

for investigating extreme-event scenarios. In particular, the contributions of the current

paper are as follows:

• Incorporating inventory-level probabilistic distributions that define the initial sector

inoperability parameter relaxes the current limitations of the DIIM. In previous

applications, inventory models that were integrated to the DIIM utilized discrete user-

defined inventory-level inputs (Barker and Santos 2010; Resurreccion and Santos

2012a). The extension of the DIIM using probability distributions obtains more

generalizable estimates of the associated impacts of various disaster risk scenarios. Its

predecessor model, the inoperability input–output model (IIM), has been integrated

with probability distributions derived from expert-elicited values (Santos 2008b).

However, the probability distribution analysis was previously applied only to the

demand perturbation using a static version of the input–output model. In addition, the

IIM is not yet capable of analyzing the temporal evolution of disruption levels to

represent sector recovery behavior.

• The proposed SIDIIM builds on the large database of monthly sector-specific inventory

values that are regularly updated on the BEA Web site. This will be the first-ever

application of the comprehensive inventory-to-sales (ISR) database for economic risk

modeling of disasters. Further analysis on these data could provide more reliable

projections of the performance metrics of future specific resilience-enhancement plans.
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• The dynamic cross-prioritization plot (DCPP) is a multi-objective decision support tool

that was developed to prioritize critical sectors and identify areas for broader

preparedness applications including opportunities for resilience enhancement (Resur-

reccion and Santos 2012a). The framework for treating expected and conditional

expected values has been introduced in recent input–output applications (Lian et al.

2007; Santos 2008a). With the framework built into the SIDIIM, the integration of

expected and extreme-event scenario analysis significantly supports the resilience-

enhancement opportunities as identified by the DCPP in reducing the risks associated

with disasters.

The remainder of the paper is organized as follows. Section 2 presents a methodological

background that includes an overview for modeling interdependent systems using risk

analysis (2.1) and discussions on input–output modeling (2.2), deterministic inventory

DIIM (2.3), and multi-objective decisionmaking (2.4). Section 3 presents the development

of the SIDIIM components, namely data sources, inventory cumulative distribution

functions, Monte Carlo simulation code and integration of stochastic inventory and DIIM

models, the DCPP generated list of the risk and inventory-enhancement scenarios for the

Commonwealth of Virginia as an ex post case study of Hurricane Isabel, and the imple-

mentation of expected and conditional expectations for extreme-event analysis. Section 4

includes the results and discussion of the case study. Finally, Sect. 5 presents the summary

of findings of the research as well as areas for further study.

2 Methodological background

2.1 Risk analysis and modeling of disrupted interdependent systems

Due to their adverse consequences, disasters such as hurricanes are well documented in the

literature (Blake 2005). Hurricane Katrina in 2005 brought $96 billion worth of damages to

the Gulf Coast region (Garber 2006). Hurricane Isabel of 2003 brought massive flooding

and destruction to the Hampton Roads region with $625 million worth of damages and a

death toll of 36 people to the Commonwealth of Virginia (Virginia Department of

Emergency Management 2007; Smith and Graffeo 2005). More recently, hurricane Irene

that was classified as a category 1 hurricane was still considered to be one of the 10

disasters of 2011 with an order of magnitude of losses amounting to billions of dollars

(National Oceanic and Atmospheric Administration 2011). Recognizing the risks involved

in such high-impact, low-probability disasters, the US Department of Homeland Security

(DHS) policy makers have explicitly included hurricane events in its fifteen planning

scenarios (Homeland Security Council 2004). The DHS further emphasized the importance

of risk management strategies through the implementation of preparedness and resilience

plans for the nation’s critical infrastructure and key resources in times of extreme events.

Risk is associated with an unwanted deviation from a predefined normal state as it

exposes a system to adverse consequences. Risk measures the likelihood of such deviation

and the corresponding severity of the consequences (Lowrance 1976). Risk assessment and

risk management have been applied to minimize the risks identified with natural and man-

caused disasters. Risk assessment is a process of answering the questions (Kaplan and

Garrick, 1981): (1) What can go wrong? (2) What is the likelihood? and (3) What are the

consequences? In addition, risk management aims to answer the following set of questions

(Haimes, 2009): (1) What can be done and what options are available? (2) What are the
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tradeoffs in terms of all costs, benefits, and risks? and (3) What are the impacts of current

decision on future options?

Recent research for infrastructure renewal has highlighted the impact of system inter-

dependency in risk analysis (Chandana and Leung 2010; Arboleda et al. 2009; Chang et al.

2007; Bagheri and Ghorbani 2007; Brown et al. 2004). Furthermore, econometric models

(Ellson et al. 1984) and extensions of Leontief’s economic input–output (I–O) model

(Miller and Blair 1985; Isard 1960) offer a more holistic and quantitative framework for

analyzing the economic impacts of disasters and system interdependencies (MacKenzie

et al. 2012; Resurreccion and Santos 2011). I–O models are capable of evaluating the

propagation of disaster consequences in terms of the flow of goods and services for multi-

sectoral economic regions. Hence, inventory models that can reflect the minimum level of

goods upon the impact of a disastrous event integrate well with I–O analysis (Barker and

Santos 2010). The I–O model and proposed extensions focusing on inventory enhance-

ments are pursued in subsequent sections.

2.2 Input–output (I–O) modeling

A depiction of the American economic structure, the I–O model was awarded a Nobel

Prize in 1973 (Leontief 1936; MacKenzie et al. 2012). Wassily Leontief presented the I–O

model for an economic system as a set of interrelated sectors assuming producer and

consumer roles in the production process (Leontief 1936). The original input–output model

is a representation of the interindustry flow of goods and services through economic

transactions (Santos and Haimes 2004). The total production output (supply) of a sector is

distributed for intermediate consumption among interdependent sectors and for satisfying

the demand of final consumers.

The availability of high-resolution economic data and social accounting matrices col-

lected by many countries worldwide (Dietzenbacher and Lahr 2004) has motivated many

recent publications on I–O modeling. Literature on I–O foundations and extensions can be

found in Miller and Blair (1985) and Dietzenbacher and Lahr (2004). I–O data along with

social accounting matrices have also been used in disaster-related applications that

implement computable general equilibrium (Rose and Liao 2005). In recent years, an

extension of the I–O model incorporated the concept of inoperability or the proportional

extent to which a system is unable to satisfy its as-planned level of output. The resulting

model—the inoperability input–output model (IIM)—has been deployed in applications

ranging from infrastructure interdependencies and risks of terrorism (Santos 2006, 2008),

regional electric power blackouts (Anderson et al. 2007), inventory management (Barker

and Santos 2010), sequential decisions with multiple objectives (Santos et al. 2008), multi-

regional disaster preparedness policies (Crowther et al. 2007), and agent-based simulation

(Santos et al. 2007).

The IIM investigated losses resulting from the cascading effects of disruptive events

among interdependent sectors by introducing the now widely used risk analysis metrics,

namely economic loss and inoperability (Haimes and Jiang 2001; Santos and Haimes

2004). With the technical requirements assumed invariant to changes in output and con-

sumption levels in the event of a disaster, the IIM defines economic loss as the unfulfilled

proportion of the required production output in terms of its associated monetary value (in

thousands of dollars). Intuitively, the total economic risk is the sum of economic losses of

all the n sectors of a region directly and indirectly affected by the disaster. The sectors

experiencing the highest economic losses are critical to the region’s economic recovery

following the disastrous event. On the other hand, inoperability, q, is defined as a sector’s
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failure to function at its ‘‘as-planned’’ performance level due to internal or external dis-

ruptions (Resurreccion and Santos 2011, 2012b). It is the normalized economic loss with

respect to its required total output. A completely disrupted sector has an inoperability of 1,

while a totally unaffected sector has an inoperability of zero.

To model how the inoperability metric evolves within the recovery period, Lian and

Haimes incorporated a time-varying component of inoperability to the IIM (Lian and

Haimes 2006) that expands the IIM into the dynamic IIM (DIIM) in Eq. (1). Further

extensions of the DIIM to analyze extreme events are presented in Lian et al. (2007) and

Santos (2008b) including an uncertainty index developed by Barker and Haimes (2009) to

perform sensitivity analysis on the interdependency parameters. Shortcomings raised by

Kujawski (2006) with respect to the use of I–O data have been addressed with recent DIIM

extensions (Santos et al. 2007; Barker and Haimes 2009; Santos et al. 2009). For the

derivations of the inoperability in Eq. (1), the reader is referred to the works of Santos and

Haimes (2004) and Lian and Haimes (2006). The DIIM formulation of the variability of q
over time is

q t þ 1ð Þ ¼ q tð Þ þK½A�q tð Þ þ c� tð Þ � q tð Þ� ð1Þ

where q(t ? 1) and q(t) = inoperability vectors at discrete points in time, K = resilience

matrix, A = interdependency matrix, c*(t) = demand perturbation vector at time t.

Note that each element, a*ij, of the interdependency matrix A* in (1) represents the

contribution of sector i to the inoperability of sector j. The resilience matrix, K, is a

diagonal matrix that reflects the collection of resilience coefficients, ki, which represent the

recovery capability of a sector i from a disruptive event.

2.3 Deterministic inventory DIIM

An adaptive response discussed by Rose and Liao (2005) along with Chopra and Sodhi

(2004) and Barker and Santos (2010) to reduce system losses is the improvement of

individual sector resilience through the use of inventory. Such strategy has recently gained

recognition in inventory management to improve disaster preparedness of interdependent

systems (Barker and Santos 2010; Okuyama et al. 2004). A balance has to be made

between allocating some resources to keep a level of inventory against the possible costs of

disruption. Hence, a paradigm shift of steering away from implementing the just-in-time

(JIT) inventory minimization strategy is more practical in the context of disaster man-

agement (Resurreccion and Santos 2012a).

Barker and Santos (2010) measured the efficacy of inventory policies in absorbing the

negative impacts of disruption by extending the DIIM into an inventory DIIM. It presented

an updating of inoperability in (1) to model the depletion of as-planned inventory as it is

utilized to compensate for production inoperability (Resurreccion and Santos 2012a).

Initial sector inoperability in (2) was classified into different cases (Barker and Santos

2010):

qið0Þ ¼
0 if Xið0Þ� pið0Þxið0Þ
1� Xið0Þ

pið0Þxið0Þ if 0�Xið0Þ� pið0Þxið0Þ
pið0Þ if Xið0Þ ¼ 0

8
<

:
ð2Þ

Initial inoperability is zero when the finished goods inventory, Xið0Þ, available to

cushion physical inoperability is greater than the production demand pið0Þxið0Þ that cannot

be produced. When there is no available inventory (Xið0Þ ¼ 0), the initial inoperability is
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equivalent to the production inoperability. When inventory is less than the production

demand pið0Þxið0Þ, initial inoperability becomes the remaining fraction of production

demand that cannot be covered by Xið0Þ. As formulated by Barker and Santos (2010), the

levels of inventory for a succeeding period, t ?1, are obtained by reducing inventory levels

at t by the amount of inventory consumed for the production demand until time t as given

in (3).

Xi t þ 1ð Þ ¼ max fXi tð Þ � pi tð Þxi tð Þ; 0g ð3Þ
The relationship in (2) is adapted and repeated over other time periods, t, with Eq. (3)

updated before implementing Eq. (1) for every t. Barker and Santos (2010) provide the

detailed discussion of the deterministic inventory DIIM.

2.4 Multi-objective decisionmaking: the dynamic cross-prioritization plot (DCPP)

framework

Disaster preparedness policy-making involves multiple objectives that are often noncom-

mensurate and in competition. Visualization tools have proven effective in addressing the

inherent multi-objective nature of decisionmaking. A case in point, to aid decision-makers

from the Virginia Department of Transportation, Gokey et al. (2009) developed a visu-

alization technique for selecting different portfolios of critical bridges for maintenance.

The technique comprised of three primary objectives: (1) bridge structural reliability, (2)

rehabilitation cost, and (3) maintenance budget. A bridge is evaluated on its relative

criticality based on objectives (1) and (2)—representing the coordinates of a two-dimen-

sional graph. On the other hand, objective (3) is represented as circular arcs that can vary in

radius depending on budget-level assumptions. The circular arc assumption limits the

capability of this visualization technique because it inherently assumes equal preference

assignments with respect to two objectives (see Fig. 1). Hence, Resurreccion and Santos

(2011, 2012b) developed the analytical formulations of the dynamic cross-prioritization

plot (DCPP), allowing the flexibility of using generalizable curves to accommodate user-

specified preferences on the objective functions. User-specified preferences may arise from

having various stakeholders, experts, and policy makers and may consequently influence

the decision-making process. Packaged as a decision support system, the DCPP features a

front-end graphical user interface (GUI) capable of identifying different portfolios of

critical sectors for inventory enhancement, given various combinations of preference levels

across inoperability and economic loss minimization objectives, and various levels of

resources.

Resurreccion and Santos (2012b) adapted and extended the visualization technique in

the context of prioritizing critical economic and infrastructure sectors for disaster pre-

paredness plans. As depicted in Fig. 1, the first two objectives representing the x and

y coordinates are now based on the economic loss and inoperability ranks associated with a

specific sector, respectively, as utilized within the DIIM. Depending on whether higher

preference is given to economic loss or inoperability, the elliptical regions capture more

critical sectors that are closer to the resulting major axis as defined by the user inputs.

3 Methodology

Recent catastrophic disasters have underscored the urgency of coordinated strategic

disaster preparedness across interdependent systems. Earlier applications of
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interdependency analysis using input–output models utilized point estimates representing

discrete input such as calculating the reduction in demand due to sector disruption (Barker

and Santos 2010; Santos 2008a). This use of single-point estimates as risk assessment

parameters can significantly alter and misrepresent the risk assessment outcomes for cer-

tainty (Hattis and Burnmaster 1994; Rose 2004; Santos 2008a). Risk is the measure of the

degree of impact as well as the probability of occurrence with respect to such events

(Lowrance 1976). Lian and Haimes discussed how understanding uncertainty influences

the analysis of the impact of disastrous events (Lian and Haimes 2006). To address the

shortcomings of implementing discrete technical coefficients for analyzing risk, Gerking

(1976) developed an estimation technique for dealing with temporal and statistical vari-

ations. Most of these developments concentrated on the vector c* of Eqs, (3) and (4) that

represent demand changes or perturbations. The proposed SIDIIM focuses on the initial

inoperability component, qi(0) from Eqs. (1) and (2).

3.1 Data sources

The data requirements to perform an economic interindustry or I–O analysis must reflect

the assumed mutual relationships existing among the various elements comprising an

economic region (Miller and Blair 1985). These relationships are encapsulated in the

economic transactions that transpire among the various manufacturing and service sectors

forming the economic region (Leontief 1936). In 1947, the Bureau of Labor Statistics

started the aggregation of these transactions based on industry consumption and presented

them as a collection of industry consumer tables in terms of the billions of dollars’ worth of

goods and services exchanged within the U.S. economy (Leontief 1936; Miller and Blair

1985). To date, the Bureau of Economic Analysis (BEA) Web site publishes data on the

industry-by-industry total requirements between 65 infrastructure and economic sectors for

the United States. I–O model extensions have since heavily relied on these data to populate

the input–output matrices of supply and demand (i.e., interdependency matrix, A).

The subsequent sections of this paper discuss hurricane scenarios that necessitate

regionally specific data sources. The Commonwealth of Virginia, where the case study will

be implemented, is home to the largest naval base and one of the largest maritime ports in

the United States. However, its location has also brought an increased susceptibility of the

Fig. 1 Prioritization arcs for
different preferences to
inoperability and economic loss
objectives
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region to disastrous events. The region belongs to one of the ten states with the highest

number of hurricane landfalls in the country, with 8 being within the last decade (Blake

et al. 2005). Therefore, the research implements the SIDIIM through a case study on the

Commonwealth of Virginia to investigate further the susceptibility of the economic and

service sectors of this region against the impacts of disruption. State data from the

Regional Economic Information System are combined with the industry-by-industry total

requirements of the United States for 2009 to obtain Virginia’s interdependency matrix

(Bureau of Economic Analysis, 2009). The 65 sectors are as identified by the North

American Industry Classification System (NAICS) and coded in an alphanumeric format to

facilitate in the analysis of this research (Resurreccion and Santos 2011, 2012b). The set of

sector names and codes have been provided as an ‘‘Appendix’’ (e.g., S1 pertains to Sector

1, which encompasses the ‘‘Farms’’ sector). The BEA also provides the gross domestic

product by state. This represents the consumption of the end users in the SIDIIM (i.e.,

consumption vector c in Eq. 1). The SIDIIM also utilizes the large database of monthly

sector-specific ISR values that can be found in the BEA Web site. The inventory model to

be integrated with the DIIM constitutes of a time series of 168 data points spanning

14 years of monthly documented ISR information for each of the 21 manufacturing and

retail and trade sectors.

3.2 Cumulative inventory distribution functions

The sector-specific empirical cumulative distribution functions (CDF) representing

inventory uncertainty have been generated from the ISR data for Virginia. The ISR CDFs

of six out of 21 sectors are shown in Fig. 2. The ISR value of a sector is the level of

inventory of the finished goods as a proportion of expected sales (i.e., consumption) within

a time period. Though expected sales are defined for a given month, the actual con-

sumption level or sales may vary with respect to the day of month. Hence, the investigated

perturbations are assumed to occur either at the beginning or at the end of a month when

consumption levels (and ISR values) are known. For consistency, the simulation has been

designed for initial direct disaster perturbations to occur at the beginning of a month. This

corresponds to a period of sector disruption starting at the beginning of that month. Cor-

respondingly, the level of inventory available for the purpose of augmenting the production

demand of the disrupted sector is based on what remains from the inventory of the previous

month. The simulation algorithm is discussed in Sect. 3.3.

3.3 Monte Carlo simulation: stochastic inventory and DIIM integration

Instead of predetermined or discrete inventory levels, this research derives Xið0Þ for Eq. (3)

through a simulation in Matlab of inventory values from the generated empirical cumu-

lative distribution functions (CDFs) of ISR of each of the 21 manufacturing and retail and

trade sectors as coded according to the North American Industry Classification System

(NAICS). The ISR values forming the CDFs assume inventory levels that are capable of

satisfying the demands of a sector at the beginning of a current period. The quantity ISR—1

reflects the portion of inventory of sector i that is capable of satisfying the demand should a

disaster occurs at the beginning of the succeeding period. The initial inoperability in

Eq. (3) in terms of ISR value is modified by the relationship in Eq. (4). Further, Eq. (5)

illustrates how the ISR value for a sector i, ISRi, is simulated from its corresponding CDF.
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ISRi � 1 ¼ Xið0Þ
pi 0ð Þxið0Þ

ð4Þ

ISRi ¼
randi � F Yi;j

� �� �
� Yi;jþ1 þ F Yi;jþ1

� �
� randi

� �
� Yi;jÞ

F Yi;jþ1

� �
� F Yi;j

� � ð5Þ

where i = sector code, ISRi = inventory-to-sales ratio for sector i, Yi,j, Yi,j?1 = actual ISR

values, F(Yi,j) = Pr(Y \ Yi,j), F(Yi,j) \ randi B F(Yi,j?1), (1 B i B 65), n = 168 observa-

tions (1 B j B n).

The SIDIIM computer code was ran in Matlab and adapted built-in random number

generator for the simulation of inventory levels. A simulation run is a 20-level, 10 replications

per level design to specifically store the maximum economic loss incurred for every repli-

cation. This is to capture upper 10 percentile for an extreme-event analysis. The program was

run to account for 5,000 replications for every defined stochastic inventory scenario.

3.4 Generating risk and inventory-enhancement scenarios: the consequence

distribution functions for the SIDIIM

3.4.1 Expected and conditional expectations for extreme-event analysis

Extreme events are associated with periods of abrupt change, ambiguous likelihood, and

large and unpredictable losses where usual assumptions for existing systems are violated

(Lantsman et al. 2010; Basili 2006). Such is the case when disruption is intense and

widespread among the economic and infrastructure systems forming an economic region.

In the context of disasters, recent natural and man-caused extreme events include hurri-

canes Katrina (category 4 at landfall) and Irene (category 1), the earthquakes in Haiti on

2010 (magnitude M = 7.0 on the Richter scale) and Japan on 2011(M = 9.0), and the

9–11 terrorist attacks. These extreme events are considered rare, but not improbable

(Haimes 2009; Ismail-Zadeh and Takeuchi 2007). Santos (2008a) and Santos et al. (2008)

have provided analysis on the impact of these extreme events on disrupted interdependent

systems.

Fig. 2 Cumulative distribution functions of ISR per sector
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Analysis of extreme events involves capturing the tail (often the upper tail) of the resulting

probability density function of consequences that represent the low likelihood of high-impact

events (Asbeck and Haimes 1984; Santos et al. 2008). Each sector has a random variable

corresponding to each realization of a consequence. In the case of the SIDIIM, two types of

consequences are being generated for each sector, economic loss and inoperability. The total

economic loss of the region is the sum of the realizations drawn from the economic loss

distribution of each the n sectors. Due to the convolution, the analytical form for the resulting

distribution for total economic loss is difficult to derive (Santos et al. 2008). Alternatively,

using Monte Carlo simulation with initial disruption values for the SIDIIM results into the

distributions of economic loss and inoperability per sector.

The expected value (or mean, typically denoted by l) is perhaps the most commonly

used metric to describe a random variable. Denoting the probability density function of a

random variable X by f(x), the expected value is defined as follows:

l ¼ E X½ � ¼
Zþ1

�1

xf xð Þdx ð6Þ

In discrete form, Eq. (6) can be alternatively written by replacing the integral with a

summation operator as shown in Eq. (7). Further, the probability of the observation xi is

denoted by p(xi).

l ¼ E X½ � ¼
X

i

xipðxiÞ ð7Þ

When each of n given observations is equally likely to occur, the probability for each

observation becomes 1/n; hence, Eq. (7) simplifies to a simple arithmetic average shown in

Eq. (8).

l ¼ E X½ � ¼ 1

n

X

i

xi ð8Þ

The expected value of economic loss can be calculated by taking the sum of all

observations and dividing this sum by n (i.e., n is the number of Monte Carlo simulation

iterations performed in the case study).

Although the expected value is a common metric for representing risk, it is not com-

plete. Since it is a measure of the central tendency of a distribution, it commensurates high

likelihood, low consequence realizations (business-as-usual scenarios) with low likelihood,

high consequence realizations (i.e., extreme-case scenarios). A nation’s infrastructure and

economic systems are normally designed to cope only with the average living necessities

of its population and may view disaster consequences with respect to averages as well.

Hence, a region may fall into the fallacy of treating ‘‘business-as-usual’’ events and

extreme events in the same category of risk. While some events may have relatively low

frequency of occurrence, the consequences can be dire and irreversible. To remedy the

limitations of the expected value, the analysis can be supplemented with other risk metrics.

In particular, the partitioned multi-objective risk method (PMRM) has the capability to

provide extreme-risk metrics in addition to the traditional expected value of risk through

the use of various conditional expectations (Asbeck and Haimes 1984; Haimes 2004).

Placing more importance on the tail of the distribution of consequences will provide a

stronger justification for risk management and prevent the mischaracterization of extreme

events for computed expected values (Haimes 2009; Santos 2008b).
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Conditional expectations are widely used in conducting reliability and survival analysis.

Specifically, the construction of hazard functions makes use of conditional expectations at

the upper tail region of a distribution. In their analysis of extreme events, Asbeck and

Haimes (1984), Santos et al. (2008), and Frohwein et al. (1999) have included the con-

ditional expected value as a measure of risk. In general, a conditional expectation is

defined as the expected value of a random variable x within a prespecified interval

x 2 ½bL; bU �. Equation (9) shows the location of a conditional expectation for a given

partition of a hypothetical probability distribution function. The subscript k in the notation

fk �ð Þ distinguishes one type of conditional expectation from another. A specific type of

conditional expectation, which this paper denotes as f4 �ð Þ (or f4 for simplicity), is a par-

tition corresponding to a high consequence/low-probability region of a distribution. For a

continuous random variable, the conditional expectation can be calculated using Eq. (9).

fk �ð Þ ¼ E XjbL\x\bU½ � ¼
R bU

bL
xf xð Þdx

R bU

bL
f xð Þdx

ð9Þ

When the interval covers all the feasible values of x, fk �ð Þ becomes the expected value of

x expressed as l in Eqs. 6–8. This expected value will later be denoted by f5 �ð Þ (or f5 for

simplicity) in the case study to make it harmonious with the notation for conditional

expectations.

In the analysis of hazard functions and as presented by Asbeck and Haimes (1984) in

their discussion of the PMRM, the conditional expectation, f4, corresponding to high

consequence/low-probability scenarios is typically associated with either a lower or an

upper tail of a distribution. For the analysis of extreme economic risks in this research, the

desired measures of interest are that of a higher value of economic loss and worse (i.e.,

high value of) inoperability. Hence, an upper-tail partitioning is appropriate to use in these

cases where the higher the values of the conditional expected value of risk correspond to

the more dire consequences.

Figure 3 shows a distribution of a random variable x with the upper tail region defined

by x [b such that Pr(x [b) = 1–a. The conditional expected value, f4, is shown in

Eq. (10).

f4 ¼ E Xjb\x\þ1½ � ¼
Rþ1

b xf xð Þdx
Rþ1

b f xð Þdx
ð10Þ

)(xf

α−1

x

β )(4 ⋅f

)(1 xF−

α−1

x
β )(4 ⋅f

1

(a) (b)

)(xf

α−1

x

β )(4 ⋅f

)(1 xF−

α−1

x
β )(4 ⋅f

1

(a) (b)

Upper-tail region of:
(a) probability distribution function f(x); and 
(b) exceedance function 1-F(x)

Fig. 3 Conditional expected value for upper-tail partitioning
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3.4.2 Distribution functions of simulated disaster consequences

I–O models including the SIDIIM quantify disaster consequences on an individual sector

level typically over a predetermined recovery period. As a result of the stochastic nature of

inventory, let the random variables xi and yi represent the economic loss and inoperability

of each sector i, respectively. The DIIM provides realizations of the economic loss variable

as an accumulated value over the predetermined recovery period. Therefore, xi represents

the total of daily economic losses incurred by sector i over the research simulation period

(i.e., referred to as the economic loss of sector i). Further, the 65 economic and service

sectors will each have its xi variable and distribution function of economic loss (see Fig. 4).

The expected value of economic loss for each xi is given by Eq. (8) based on 5000

replications. In the same manner, the expected value of inoperability for each sector i can

also be obtained. The DCPP utilizes the expected values of the variables xi and yi to rank

the relative performance of the sectors with respect to the economic loss and inoperability

metrics.

To analyze the impact of inherent system interdependency and different inventory-

enhanced scenarios, the holistic approach involves determining the disaster consequence to

the entire economic region. This entails finding the total regional economic loss (i.e.,

referred to as the total economic loss, z) which is equal to the sum of all of the sector

variables, xi. The sum, z, of n individual random variables, xi, is shown in Eq. (11), and the

expected value of z expressed in terms of the expected values of xi’ is presented in Eq. (12).

z ¼ a1x1 þ a2x2 þ � � � þ anxn ¼
Xn

i¼1

aixi ð11Þ

Fig. 4 Relationship of distributional inventory input, initial sector inoperability, and resulting sector
distributional economic loss and inoperability
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E½z� ¼
Xn

i¼1

aiE½xi� ð12Þ

The expected value of regional economic loss can be interpreted as the economic impact

after factoring all categories of risk. To focus the analysis for the direct consequences, con-

ditional expectations of z must be obtained. In particular, the upper tail of the distribution of

z will be appropriate in representing higher-risk categories. The calculations required for the

conditional expected value is analogous to the traditional expected value (or mean). To

demonstrate how the f4 can be calculated for z, first identify a desired significant value (a)

corresponding to the upper-tail partition. Suppose that the a value of 0.1 (or 10 %) is chosen,

this would translate to the highest 500 out of the original 5,000 observations conducted in the

simulation experiment of this paper. After extracting the highest 500 values, take the ‘‘arith-

metic average’’ of this reduced set to obtain the conditional expected value pertaining to the

highest 10 % of the distribution. Figure 4 shows the f4 and f5 values for the resulting regional

economic loss distribution as well as for the individual sector consequences. The conditional

expected value of extreme risk (which, in this case, pertains to the realization of the 10 % worst

possible values of regional economic loss, z) complements the expected value. The use of

conditional expected value is analogous to the analyses of ‘‘worst-case scenarios’’ or ‘‘pessi-

mistic states of nature’’ that are used in tools such as decision trees and payoff matrices.

Combined with business-as-usual analysis (as represented by the expected value), the con-

ditional expected value of extreme risk provides additional insights into how an organization

can increase its preparedness and resilience to manage the possibility of extreme events.

3.4.3 Inventory-enhanced scenarios

To compare any inventory-enhanced scenario or strategy proposed for the critical sectors

captured by the DCPP, a baseline case scenario 1 assumes that the region functions with

stochastic inventory levels as derived from the ISR database when a simulated disaster occurs.

A scenario 0 is also provided to compare the case of applying the DCPP to a deterministic

inventory model. Generated inventory-enhanced scenarios 2–4 are anchored on scenario 1 and

not on scenario 0 to be able to reflect the uncertainty in inventory modeling. Scenario 1 has

been calibrated for the set of disruptions that match the resulting regional economic loss

incurred by the Commonwealth of Virginia from hurricane Isabel in 2003. Moreover, the

composition of critical sectors may vary depending on the decision-maker’s objective pref-

erences (Resurreccion and Santos 2012a). Table 1 provides a summary of the investigated

preference levels for scenarios 2–4. An ELPreference of 0.5 represents an equal preference

between the minimization of economic loss and the minimization of inoperability. An EL-

Preference lower than 0.5 (i.e., 0.2 for scenario 2) corresponds to a higher importance in

achieving the minimization of inoperability over economic loss. Consequently, an ELPre-

ference above 0.5 provides higher preference in minimizing economic loss over inoperability.

4 Results and discussion

4.1 Stochastic inventory model: baseline

Results depicted in Fig. 5 show that scenarios 0 and 1 differ in the sets of the 10 most

critical sectors for each objective. There is evidence that shows the significance of

incorporating uncertainty in inventory as it affects economic losses and sector
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inoperability. Consistent with the findings of Resurreccion and Santos (2012a), more

manufacturing sectors experience the highest inoperability values than service and infra-

structure systems. However, by incorporating the stochastic behavior of inventory, even at

the current level data, the capacity of inventories to increase disaster preparedness is

supported by the drastic reduction in the number of critical manufacturing sector from

scenario 0 (e.g., 90 % in the top ten are from manufacturing sectors) into only 3 after

considering current inventory levels. Also, there is a significant reduction from $760 M to

$623 M in total regional economic loss between the two scenarios. The cushioning effect

of inventory is evident from the inoperability curve for S8 for scenario 1 (Fig. 5). It had the

second highest initial inoperability of almost 13 % in scenario 0 but was not inoperable at

the time that the simulated disaster struck from scenario 1. Sector S8 experienced an

inoperability level of no more than 8 % throughout the recovery period. Finally, the

expected regional economic loss, f5, increases from $623 M to an f4 of $635 M for an

extreme-event case under the current levels of inventory.

4.2 Enhanced inventory scenarios

Applying the DCPP to the rankings resulting from scenario 1, Table 2 summarizes the

critical manufacturing and retail and trade sectors identified for the chosen enhanced

inventory scenarios.

4.2.1 Scenario 2: enhanced inventory at ELPreference = 0.2

Among the enhanced inventory scenarios considered, scenario 2 exhibited the least

reduction in expected economic losses (f5) as well as having the highest extreme-event

expectations of f4 for economic loss. A probable cause would be the lower ELPreference

specification set for this scenario compared to scenarios 3 and 4. However, no similar

pattern follows with respect to sector inoperability. This implies that there is evident

improvement in the individual inoperability behavior of the critical manufacturing sectors

and an average improvement of 2 % functionality (e.g., a drop of 0.02 inoperability to the

individual sectors as a result of interdependence as shown in Fig. 6).

4.2.2 Scenario 3: enhanced inventory at ELPreference = 0.5

Similar to scenario 2, there were also three critical manufacturing sectors found for sce-

nario 3, but enhancing the inventory level of sector S19 instead of S23 has reduced

expected economic losses by at least $16 M more than the result of scenario 2 (Figs. 6, 7).

The variability of individual sector inoperability, yi, has been reduced, but, in general, the

scenario did not have the same effect on its mean.

Table 1 SIDIIM disruption
scenarios

Scenario no. Scenario description ELPreference

0 Deterministic inventory N/A

1 Current stochastic inventory N/A

2 Inoperability reduction preference 0.2

3 Equal preference 0.5

4 Economic loss reduction preference 0.8
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4.2.3 Scenario 4: enhanced inventory at ELPreference = 0.8

The proposed enhanced inventory for sectors S27 and S28 did not result into drastic

reduction in sector inoperability (Fig. 8). On the other hand, enhanced inventory for sectors

S19 and S25 has kept these sectors undisrupted within the first few days of the disruption

period for the region. This is evidently reflected in the lower inoperability curves from

Fig. 8. Despite the varying performance in bringing down sector inoperability, interde-

pendency has managed to propagate the benefits of the enhancement scenario by reducing

the expected regional economic loss by $14 M and the expected cost of extreme risk by

$24 M.

Table 3 integrates and summarizes the results across the different scenarios. Scenario 1

is used as the reference strategy (i.e., baseline) for the computations of savings in various

inventory-enhancement scenarios (i.e., scenarios 2, 3, and 4). We can clearly see from the

table that inventory reduces the baseline economic losses in both moderate (f5) and

extreme-event (f4) cases. Several important observations can be made about preference

allocations between economic loss and inoperability objectives. Ignoring the inoperability

objective, or equivalently, putting a larger weight to economic loss minimization (i.e.,

higher ELPreference value) does not necessarily lead to optimal savings. In the moderate

case (f5), the savings from scenario 4 (larger weight for economic loss) are inferior to both

scenario 2 (larger weight for inoperability) and scenario 3 (equal weights). In the extreme-

Deterministic DIIM Inventory Model (Scenario 0) SIDIIM at Existing Inventory Levels (Scenario 1) 

Total economic loss = $760M Regional economic loss: f5 = $623M,   f4 = $635M 

Fig. 5 Inoperability and economic loss behavior without and with stochastic inventory model

Table 2 Inventory-enhanced
scenario description

ELPreference value Critical manufacturing
sectors

Scenario 2 0.2 S8, S15, S23

Scenario 3 0.5 S8, S15, S19

Scenario 4 0.8 S19, S25, S27, S28
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event case, scenario 4 is found to be inferior to scenario 3. In the moderate case, the equal

preference scenario (scenario 3) led to the largest savings of $21 M or 3.4 % savings

relative to the baseline. In the extreme-event case, scenario 3 also produced the largest

Scenario 1: Stochastic Inventory DIIM at Existing 
Inventory Levels 

Scenario 2: ELpreference=0.2 w/ Inventory 
Enhancement 

Regional economic loss: f5 = $623M,   f4 = $635M  Regional economic loss: f5 = $607M,   f4 = $618M  

Fig. 6 Inoperability and economic loss behavior with stochastic inventory model (ELPreference = 0.2)

ELpreference=0.5 w/out Inventory Enhancement ELpreference=0.5 w/ Inventory Enhancement 

Regional economic loss: f5 = $623M,   f4 = $635M Regional economic loss: f5 = $602M,   f4 = $605M

Fig. 7 Inoperability and economic loss behavior with stochastic inventory model (ELPreference = 0.5)
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savings of $30 M or 4.7 % savings relative to the baseline. These results indicate that

sector prioritization and inventory management in times of disasters must go beyond the

myopic strategy of only minimizing economic losses. In this case study, we have shown

that economic loss when coupled with inoperability minimization could further improve

the rate of recovery, leading to larger savings.

5 Conclusions and areas for future research

In this research, we integrated a stochastic inventory model to interdependency analysis

and critical sector prioritization. In particular, we derived empirical cumulative distribution

functions to model the inventory levels of manufacturing and retail and trade sectors. We

investigated how inventory serves as resiliency adjustment medium that can delay the

propagation of disaster consequences while certain sectors of an economic region remain

inoperable. We generated and evaluated inventory-enhancement policies by revisiting the

ELpreference=0.8 w/out Inventory Enhancement ELpreference=0.8 w/ Inventory Enhancement 

Regional economic loss: f5 = $623M,   f4 = $635M Regional economic loss: f5 = $609M,   f4 = $611M

Fig. 8 Inoperability and economic loss behavior with stochastic inventory model (ELPreference = 0.8

Table 3 Comparisons of economic losses across various inventory scenarios

Scenario Scenario description Economic loss Savings

f5 f4 f5 f4

1 Current stochastic inventory (Baseline) $623 M $635 M - -

2 Inoperability reduction preference $607 M $618 M $16 M $17 M

3 Equal preference $602 M $605 M $21 M $30 M

4 Economic loss reduction preference $609 M $611 M $14 M $24 M

Relative to scenario 1 (baseline case)
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DIIM and the DCPP. With the inclusion of published inventory levels for estimating

disaster scenario parameters and user-elicited preference structure pertaining to the DIIM

objectives (i.e., inoperability and economic loss), we obtained a closer replica of actual

regional sector relationships.

In anticipation of disasters, such as hurricanes, results from the scenarios reveal that

maintaining enhanced levels of inventories can significantly reduce associated losses and

expedite recovery. Although inventory minimization in the context of JIT has proven to be

cost-effective for ‘‘as-planned’’ scenarios, prudence in its implementation must be exer-

cised particularly in times of disasters (despite their seemingly low likelihoods). More so,

caution must be taken as extreme-event conditions prove to be more costly even with

enhanced levels of inventory.

The hurricane-based scenarios performed in this research have exposed a host of other

potential contributions in the area of disaster preparedness and recovery. Although the

focus of the current application is on enhancing inventory levels in Virginia’s manufac-

turing sectors, a complementary analysis is needed to manage the resilience of workforce

sectors—particularly those involved in the provision of essential services to further

expedite recovery. Sensitivity analysis of inoperability and loss reduction objectives with

respect to recovery assumptions can be performed to generate robust resource allocation

policies. Finally, the flexibility and scalability of the current methodology and resulting

decision support system can also be extended to accommodate analysis of other regions

and other disaster scenarios.
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Appendix

See Table 4.

Table 4 Sector classification codes used in the case studies

Sector Description Sector Description

S1 Farms S34 Pipeline transportation

S2 Forestry, fishing, and related activities S35 Other transportation and support activities

S3 Oil and gas extraction S36 Warehousing and storage

S4 Mining, except oil and gas S37 Publishing industries (includes software)

S5 Support activities for mining S38 Motion picture and sound recording
industries

S6 Utilities S39 Broadcasting and telecommunications

S7 Construction S40 Information and data processing services

S8 Food and beverage and tobacco products S41 Federal Reserve banks and credit
intermediation

S9 Textile mills and textile product mills S42 Securities, commodity contracts, and
investments

S10 Apparel and leather and allied products S43 Insurance carriers and related activities
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