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Abstract The current research presents a detailed landslide susceptibility mapping study

by binary logistic regression, analytical hierarchy process, and statistical index models and

an assessment of their performances. The study area covers the north of Tehran metro-

politan, Iran. When conducting the study, in the first stage, a landslide inventory map with

a total of 528 landslide locations was compiled from various sources such as aerial pho-

tographs, satellite images, and field surveys. Then, the landslide inventory was randomly

split into a testing dataset 70 % (370 landslide locations) for training the models, and the

remaining 30 % (158 landslides locations) was used for validation purpose. Twelve

landslide conditioning factors such as slope degree, slope aspect, altitude, plan curvature,

normalized difference vegetation index, land use, lithology, distance from rivers, distance

from roads, distance from faults, stream power index, and slope-length were considered

during the present study. Subsequently, landslide susceptibility maps were produced using

binary logistic regression (BLR), analytical hierarchy process (AHP), and statistical index

(SI) models in ArcGIS. The validation dataset, which was not used in the modeling

process, was considered to validate the landslide susceptibility maps using the receiver

operating characteristic curves and frequency ratio plot. The validation results showed that

the area under the curve (AUC) for three mentioned models vary from 0.7570 to 0.8520

ðAUCAHP ¼ 75:70 %; AUCSI ¼ 80:37 %; and AUCBLR ¼ 85:20 %Þ. Also, plot of the

frequency ratio for the four landslide susceptibility classes of the three landslide
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susceptibility models was validated our results. Hence, it is concluded that the binary

logistic regression model employed in this study showed reasonably good accuracy in

predicting the landslide susceptibility of study area. Meanwhile, the results obtained in this

study also showed that the statistical index model can be used as a simple tool in the

assessment of landslide susceptibility when a sufficient number of data are obtained.

Keywords Landslide susceptibility mapping � Binary logistic regression � AHP �
Statistical index � North of Tehran � Iran

1 Introduction

In recent years, growing population and development of settlement, infrastructures, and

life-lines have largely increased the impact of natural hazards both in industrialized and

developing countries (Guzzetti 2005). Landslides play an important role in the evolution of

landforms and represent a serious hazard in many areas of the World (Guzzetti 2005). In

many countries, landslides generate large annual losses of property than any other type of

natural hazards, including earthquakes, floods, and windstorms (Garcia-Rodriguez et al.

2008). According to Centre for Research on the Epidemiology of Disasters (CRED 2009),

landslides accounted for approximately 4.4 % of natural disasters worldwide from 1990 to

2009, with 2.3 % of reported landslides occurring in Asia. To minimize the losses of

human life and economic value, potential landslide-prone areas should be identified

(Devkota et al. 2013). For this reason, landslide susceptibility maps may be helpful for

planners, decision makers, and engineers in slope management and land use planning. A

landslide susceptibility map gives an important indication of where future landslides are

likely to occur based on the identification of areas of past landslide occurrences and areas

where similar or identical physical characteristics exist (van Westen et al. 2006). Several

different methods and techniques for landslide susceptibility mapping have been proposed

and tested. However, no general agreement exists either on the methods for or on the scope

of producing landslide susceptibility maps (Carrara et al. 1995; Soeters and van Westen

1996; van Westen et al. 1997; Aleotti and Chowdhury 1999; Guzzetti et al. 1999).

Many studies have evaluated landslide susceptibility using geographic information

system (GIS) technology, and many of these studies have used probabilistic models (Lee

and Pradhan 2006; Dahal et al. 2008; Oh et al. 2009; Ozdemir 2009; Yilmaz 2010; Oh and

Lee 2011; Demir et al. 2012; Pourghasemi et al. 2012a, b; Mohammady et al. 2012; Xu

et al. 2012c). The statistical index model is one of the bivariate models while were used by

some researchers (Van Westen 1997; Rautela and Lakhera 2000; Cevik and Topal 2003;

Tien Bui et al. 2011a; Raman and Punia 2012; Regmi et al. 2013). Also, several studies

have been applied to assess landslide susceptibility using logistic regression models in

different parts of the world (Ayalew and Yamagishi 2005; Lee and Pradhan 2007; Bai et al.

2010; Nandi and Shakoor 2010; Oh and Lee 2010; Ercanoglu and Temiz 2011; Erner and

Duzgun 2012; Devkota et al. 2013).

The analytical hierarchy process and its combinations such as multi-criteria evaluation

(MCE), multi-criteria decision analysis (MCDA), spatial multi-criteria evaluation (SMCE)

have been used by different authors in landslide susceptibility mapping (Barredo et al.

2000; Nie et al. 2001; Ayalew et al. 2005; Komac 2006; Yalcin 2008; Akgun and Turk

2010; Pourghasemi et al. 2012c; Demir et al. 2012; Hasekiogullari and Ercanoglu 2012;

Feizizadeh and Blaschke 2012a, b; Pourghasemi et al. 2012e).
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In the past decade, some new methods such as artificial neural networks (ANNs) (Lee

et al. 2004; Pradhan and Buchroithner 2010; Zare et al. 2012), fuzzy logic (Pradhan 2010a,

b; Pradhan 2011a, b; Akgun et al. 2012; Pourghasemi et al. 2012c), and adaptive neuro-

fuzzy inference system (ANFIS) (Vahidnia et al. 2010; Oh and Pradhan 2011; Sezer et al.

2011; Tien Bui et al. 2011b; Pradhan 2013) have been proposed.

Recently, new landslide susceptibility assessment methods such as support vector

machine (SVM) (Ballabio and Sterlacchini 2012; Marjanović et al. 2011; Yao et al.

2008; Yilmaz 2010; Xu et al. 2012b; Pourghasemi et al. 2013), decision tree methods

(Nefeslioglu et al. 2010; Tien Bui et al. 2012), index of entropy (Bednarik et al. 2010;

Constantin et al. 2011; Pourghasemi et al. 2012d, f; Devkota et al. 2013; Wan 2012),

Bayesian network (Song et al. 2012; Tien Bui et al. 2012), and fractal theory (Majtan

et al. 2002; Yang and Lee 2006; Li et al. 2011) were tried, and their performances were

assessed.

The main goals of the current research are to present a detailed landslide susceptibility

mapping study by binary logistic regression, analytical hierarchy process, and statistical

index models in a landslide-prone area (north of Tehran, Iran), and to assess their per-

formances. The main difference between the present study and the approaches described in

the aforementioned publications is to compare the performances of two statistical

approaches such as bivariate and multivariate with an expert knowledge-based model

(AHP) in landslide susceptibility mapping in the north of Tehran metropolitan, Iran.

2 Study area

The study area is located in the north of Tehran metropolitan, Iran, between longitudes

51�0502600E and 51�5003000E, and latitudes 35�4505000N and 35�5901600N (Fig. 1). It covers

an area of about 900 km2. Based on geological survey of Iran (GSI 1997), the lithology of

study area is very variety and 33.97 % it covers by group 5 (Table 1) including alternation

of shale and tuffaceous siltstone (E3
ss), green crystal, lithic and ash tuff, tuff breccia, and

partly with intercalations of limestone (E2
t ), alternation of shale and tuffaceous siltstone

(E2
ts), rhyolitic tuff with some intercalations of shale (E2

r ), massive green tuff, shale with

dacitic and andesitic-basaltic lava flows (E1
tsv), dark gray shale with alternation of green

tuff, and partly with sandstone, shale, conglomerate and limestone (E1
sht), alternation of

green tuff and shale (E1
tsh), andesitic-basaltic lava breccia and lava flows (E1

b), rhyolitic tuff

and lava flows (E1
r ), dacitic to andesitic lava flows and rhyodacitic pyroclastic (E1

da),

bituminous siltstone and shale, calcareous tuffite (E1
ss), tuffaceous sandstone, green tuff

(E1
st), shales and siltstone (E1

sl), and green tuffs and limestone (E1
tl). Meanwhile, based on

Geology Survey of Iran (GSI 1997), 27.54 % of lithology of study area included by group

4 (Table 1).

Landslides are very common phenomenon in the North of Tehran due to its climate

condition. Most of these landslides occur near the rivers and valleys. Velenjak region is

located in the North-West of Tehran is one of most sensitive areas. Some other of prone

regions are including Ozgol, Dar Abad, North of Saadat Abad, North of Emam Zadeh

Ghasem, Oushan-Fasham road, Meygoon, North of Lavasan, North of Kan, and Golab

Darreh. Population density and high price of lands of these areas are the main reasons for

landslide susceptibility mapping, which can be used for optimum management and also

avoidance of susceptible regions.

The most important trusts and faults of study area include of Mosha-Fasham, Purkan-

Vardij, North of Tehran trusts, Shirpala and Emamzadeh Davud faults (GSI 1997). The
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altitude of the area ranges from 1,349.5 to 3,952.9 a.m.s.l. The slope angles of the area

range from 0� to as much as 83�. The major land use of the study area consists of rangeland

and covers almost 90.5 % of the whole area.

3 Conditioning factors database

For any kind of landslide study, a correct landslide database is the pre-requisite (Varnes

1984). Besides, landslide inventory mapping is the most fundamental step in any landslide

susceptibility and hazard modeling (Ercanoglu and Gokceoglu 2004). It allows us to

Fig. 1 Landslide location map of study area
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Table 1 Lithology of the study area (GSI 1997)

Code Group Formation Lithology Geological
age

Q2 1 Sub recent
Tehran
alluvium-
unit C

Young alluvia fans and terraces Quaternary

Ql Kahrizak-unit
B

Old alluvial fans and terraces Quaternary

Qs – Young and old scree, talus deposits Quaternary

Qf – Young and old alluvial fans,
agglomerate

Quaternary

QU – Undifferentiated young and old
alluvial fans and terraces, alluvium,
residual soils

Quaternary

Qal – Loose alluvium (including recent
alluvium-unite D)

Quaternary

Q – Conglomeratic terraces and fans Quaternary

Qm – Morain Quaternary

Qsc – Scree Quaternary

Q2
t – Young terraces Quaternary

Q1
t – Old terraces Quaternary

Qtr 2 – Spongy porous travertine Quaternary

PlQsc 3 Hezardarreh-
unit A

Conglomerate, sandstone, mudstone
intercalations

Pleistocene

M Upper red Undivided Miocene deposits
including sandy marl, siltstone,
conglomerate, gypsum, Miliolidus
limestone

Miocene

Mu
2 Upper red Sandstone, silty marl, mudstone,

siltstone
Miocene

EKn Kond Sandstone, conglomerate, gypsum,
Nummuliti marly limestone

Eocene

E4
sc – Sandstone, conglomerate, green tuff Eocene

E4
st Turbiditic

sediments
Light color sandstone, greenish

tuffite, conglomerate
Eocene

E3
sc – Tuffaceous sandstone, micro-

conglomerate with intercalations of
tuffite

Eocene

E3
tc Turbiditic

sediments
Tuffite sandstone, conglomerate Eocene

E3
sh – Shale with intercalations of

tuffaceous sandstone and siltstone
Eocene

Ef
sl – Red conglomerate and sandstone

with intercalations of limestone
Eocene

Ef
c – Red conglomerate, sandstone, and

shale
Eocene

Ef
st – Shale, sandstone, and tuffite with

intercalations of limestone
Eocene

Em Mila Medium-thin-bedded limestone with
intercalations of shales

Eocene
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Table 1 continued

Code Group Formation Lithology Geological
age

Ez Zagun Red, green micaceous shales and
sandstones

Eocene

PEz Ziarat Alveolina-Nummuliti limestone,
conglomerate, gypsum

Paleocene

EK
m 4 Karaj Light green-gray laminated

calcareous mudstone, shale, tuff,
gypsum, tuffite

Eocene

EK
t Karaj Green thick-bedded tuff, tuffaceous

shale, minor lava, pyroclastic, tuff,
breccia (mainly consisting mid.
Tuff member)

Eocene

EK
sh Karaj Calcareous and siliceous dark color

shale, tuffite, pyroclastic
Eocene

Edg – Micro-dioritic-micro-gabbro as sill
and dikes

Post-lower
Eocene

E5
sh – Shale with intercalations of tuffite

and tuffaceous sandstone
Eocene

E5
tb – Green tuff, tuff breccia, tuffite with

intercalations of tuffaceous
siltstone

Eocene

E5
td – Hyalotrachyandesite, trachte-dacite,

tuff breccia
Eocene

E3
b 5 – White-green tuff breccia, ash tuff

E3
ss – Alternation of shale and tuffaceous

siltstone
Eocene

E2
t – Green crystal, lithic and ash tuff, tuff

breccia, and partly with
intercalations of limestone

Eocene

E2
ts – Alternation of shale and tuffaceous

siltstone
Eocene

E2
r – Rhyolitic tuff with some

intercalations of shale
Eocene

E1
tsv – Massive green tuff, shale with dacitic

and andesitic-basaltic lava flows
Eocene

E1
sht – Dark gray shale with alternation of

green tuff, and partly with
sandstone, shale, conglomerate and
limestone

Eocene

E1
tsh – Alternation of green tuff and shale Eocene

E1
b – Andesitic-basaltic lava breccia and

lava flows
Eocene

E1
r – Rhyolitic tuff and lava flows Eocene

E1
da – Dacitic to andesitic lava flows and

rhyodacitic pyroclastic
Eocene

E1
ss – Bituminous siltstone and shale,

calcareous tuffite
Eocene

E1
st – Tuffaceous sandstone, green tuff Eocene

E1
sl – Shales and siltstone Eocene
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Table 1 continued

Code Group Formation Lithology Geological
age

E1
tl – Green tuffs and limestone Eocene

Gy 6 – Gypsum Paleocene

PEf
m,s,c Fajan Marl, sandstone, conglomerate,

gypsum
Paleocene

PEf
c Fajan Thick-bedded to massive polygenetic

conglomerate, sandstone, locally
limestone beds

Paleocene

PEv – Andesitic-dacitic rocks, red–purple
agglomerate, pyroclastic, tuffs

Paleocene

Ku
b 7 – Thin-bedded limestone Turonian-

Early
Senonian

Jl Lar Thin-bedded to massive limestone, in
some plates may include undivided
Dalihai formation

Jurassic

Jd Dalihai Thin-bedded marly limestone, marl,
Ammonite bearing

Jurassic

TR3Js Shemshak Shale, sandstone, siltstone, clay
stone, locally limestone
intercalations, coal bearing

Triassic

TRe
d Elika Thick-bedded massive dolomites and

dolomitic limestone
Triassic

TRe
l Elika Thick-bedded to massive limestone Triassic

TRe
m,l Elika Platy marly limestone, Oolitic

limestone
Triassic

Pn Nesen Marly limestone Triassic

Pr Ruteh Medium-bedded limestone Permian

C Mobarak
limestone

Dark gray medium-bedded limestone
with intercalations of marly
limestone

Carbonifer

Cj
c Jeirud Light gray massive dolomitic

limestone
Carbonifer

Cj
b Jeirud Black limestone, clayey marl

intercalations
Carbonifer

Cj
d Jeirud Black Oolitic and intraclastic

limestone
Carbonifer

m Mobarak Black Oolitic, dolomitic limestone,
marl intercalations

Miocene

Dj
a Jeirud Sandstone, shale, limestone, marl,

phosphatic layers
Devonian

Em Mila Trilobite-bearing limestone, marl,
dolomite, and shale

Eocene

Eq 8 – White quartzite, quartzitic sandstone
(formly top quartzite)

Eocene

El Lalun Red arkosi sandstone Eocene

Ebt Barut Miaeous variegated siltstone and
shale, cherty dolomite
intercalations

Eocene
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develop knowledge about the past landslide types, failure mechanisms, and conceptual

knowledge about relations between existing landslide and conditioning and triggering

factors (Ghosh 2011). Inventories are prepared using different techniques depending on the

scope of the work, the extent of the study area, the scales of base maps, the quality and

detail of the accessible information, and the resources available to carry out the work

(Guzzetti et al. 2000). In the study area, a total of 528 landslides were mapped at 1:25,000-

scale, using aerial photograph, satellite images, and field survey. Some views of the recent

landslides identified in the study area are shown in Fig. 2. The smallest landslide that was

mapped form above source and recognized in the field had an extent of 685 m2, while the

largest was 280,804 m2. The modes of failure for the landslides identified in the study area

were determined according to the landslide classification system proposed by Varnes

(1978). Most of the landslides are shallow rotational with a few translational. However,

during the analyses performed in the present study, only rotational failure is considered and

translational slides were eliminated because its occurrence is rare. In this research, the

landslide inventory was randomly split into a testing dataset 70 % (370 landslide locations)

for training the adopted models and the remaining 30 % (158 landslides locations) was

used for validation purpose (Fig. 1). Identification of a suitable set of instability factors

bearing a relationship with slope failures requires an a priori knowledge of the main causes

of landslides (Guzzetti et al. 1999).

In order to landslide susceptibility zoning of the study area, twelve landslide condi-

tioning factors were considered. These factors are slope degree, slope aspect, altitude, plan

curvature, normalized difference vegetation index, land use, lithology, distance from riv-

ers, distance from roads, distance from faults, stream power index (SPI), and slope-length

(LS) (Table 2).

A digital elevation model (DEM) was created from 13 adjacent topographic sheets

(digitalization of contours at a 10 m interval and points) at 1:25,000-sclae. The DEM map

has a grid size of 10 m with 2,452 rows and 6,768 columns. The digital elevation model

has been subsequently used to derive the slope degree, slope aspect, altitude, and plan

curvature, which are considered as important topographic factors for stability of the terrain.

The slope map of the study area is derived from the DEM using the slope function in

ILWIS-GIS. These slope values (in degree) are divided into five different classes are (1)

flat-gentle slope \5�, (2) fair slope (5–15�), (3) moderate slope (15–30�), (4) steep slope

(30–50�), and (5) very steep slope[50� (Fig. 3a). Slope aspect strongly affects hydrologic

Table 1 continued

Code Group Formation Lithology Geological
age

Ebt
d Barut Black massive dolomite, green-black

shale intercalations
Eocene

Tb – Basic and intermediate sills Tertiary,
mostly
Oligocene

Ts – Mostly syenite and some leuosyenite
porphyry

Tertiary,
mostly
Oligocene

Ed – Dacitic dikes Lower Eocene

E6
s – Gray-brown shale, siltstone, and

sandstone
Eocene
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processes via evapo-transpiration, direction of frontal precipitation, and thus affects

weathering processes and vegetation and root development, especially in drier environ-

ments (Sidle and Ochiai 2006). Aspect layer has been categorized into nine classes

(Fig. 3b): (1) Flat, (2) north, (3) northeast, (4) east, (5) southeast, (6) south, (7) southwest,

(8) west, and (8) northwest. The altitude does not contribute directly to landslide mani-

festation, but in relation to the other parameters, like tectonics, erosion–weathering pro-

cesses, and precipitation, the altitude contributes to landslide manifestation and influences

the whole system (Rozos et al. 2008). The altitude map for study area with cell size

10 9 10 m was produced from the DEM and classified into 6 classes, that is, (1)

Fig. 2 Field photographs of some occurred landslides in study area

Table 2 Landslide database of
study area

Data layers GIS data type Scale

Landslide
inventory
map

Polygon
coverage

1:25,000

Topographic
map

Line and point
coverage

1:25,000

Geology map Polygon and
line coverage

1:100,000

Land use map Polygon
coverage

LISS-III (23.5 m 9 23.5 m) and
Pan (2.5 m 9 2.5 m)

NDVI GRID LISS-III (23.5 m 9 23.5 m) and
Pan (2.5 m 9 2.5 m)
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Fig. 3 Landslide conditioning factors of the study area; a slope degree, b slope aspect, c altitude, d plan
curvature, e NDVI, f land use; g lithology; h distance from rivers; i distance from roads; j distance from
faults; k SPI; l slope-length
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\1,500 m, (2) 1,500–2,000 m, (3) 2,000–2,500 m, (4) 2,500–3,000 m, (5) 3,000–3,500 m,

and (6)[3,500 m (Fig. 3c). The curvature represents the morphology of the topography. A

positive curvature indicates that the surface is upwardly convex at that cell, and a negative

curvature indicates that the surface is upwardly concave at that cell. A value of zero

indicates that the surface is flat (Oh and Lee 2010) (Fig. 3d). The normalized difference

vegetation index is a measure of surface reflectance and gives a quantitative estimate of the

vegetation growth and biomass (Hall et al. 1995; Yilmaz 2009). Using the satellite images

of Indian remote sensing (IRS) by sensors LISS-III and panchromatic, the NDVI was taken

into consideration as a landslide-related factor (Fig. 3e). The NDVI was calculated from

the following equation:

(70% or 370 Points)

(30% or 158 Points)

(DEM) 

Geological Map

IRS-P6 (LISS-III) and 
IRS-P5 (Pan)

Slope Aspect

Altitude

Plan Curvature

SPI

Slope-Length

Roads

NDVI

Faults

Statistical Index (SI) Models

Landslide inventory mapping by aerial photographs, satellite images, and field surveys

Data used

Identification of 528 landslide locations

Landslide Training Points 

(70% or 370 Points)

Landslide Validation Points

(30% or 158 Points)

Digital Elevation Model

(DEM) 

Topographic Map

Geological Map

IRS-P6 (LISS-III) and 
IRS-P5 (Pan)

Slope Degree

Slope Aspect

Altitude

Plan Curvature

SPI

Slope-Length

Rivers

Roads

Land Use

NDVI

Lithology

Faults

Application of Binary Logistic Regression (BLR), Analytical Hierarch Process (AHP), and 
Statistical Index (SI) Models

Landslide Susceptibility Maps in North of Tehran area

ROC curves, frequency ratio plots, Comparison of Models, and selection the best model

Fig. 4 Flowchart of methodology
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NDVI ¼ IR� Rð Þ= IRþ Rð Þf g ð1Þ

where, IR, infrared portion of the electromagnetic spectrum; R, red portion of the elec-

tromagnetic spectrum.

Land use layer was prepared using IRS-LISS-III and panchromatic remote sensing

images. The supervised classification and maximum likelihood algorithm is assigned in

order to create this map. The area is covered by eight land use types that are agri-

cultural land, cliff, forest, orchard, range land, settlement area, shrubs, and water body.

The details of land use type are shown in Fig. 3f and summarized in Table 7. The study

area is covered dominantly by range land area (90.51 %). Lithological features are

represented in the geological map of the study area (Fig. 3g), which is derived from the

two geological maps of Tehran and east of Tehran in scale of 1:100,000. The mentioned

map was prepared by geological survey of Iran (1997), digitized in ILWIS-GIS (inte-

grated land and water information system), and divided into eight groups (Table 1). The

drainage system of any area plays an important role in slope stability particularly with

respect to toe cutting and bank erosion (Miller and Sias 1998). The distance from rivers

was calculated using the vector river lines by applying the distance function available in

the ArcGIS. Six classes corresponding to distance from river were calculated at 100-m

intervals (Fig. 3h). In mountainous region, any disturbance on natural slopes, such as

road cutting, may cause the initiation of mass movements (Nefeslioglu et al. 2008).

Accordingly, these types of territories, it could be helpful to consider the proximity of

roads as a conditioning parameter in landslide occurrence. The map of distance from

roads was also constructed by buffering having the respective intervals of 100 m

(Fig. 3i). The distance from faults was extracted from the structural geology map of

study area at 1:100,000-scale. Five buffers at 200-m class interval around faults were

created. The fault buffer categories were thus defined as (1) 0–200 m, (2) 200–400 m,

(3) 400–600 m, (4) 600–800 m, and (5) [800 m (Fig. 3j). In this study, two well-known

secondary geo-morphometric factors were also evaluated. These factors are stream

power index and slope-length (Fig. 3k, l). These conditioning factors were derived

based on slope map and specific catchment area (AS) (Moore and Burch 1986; Moore

et al. 1991).

SPI ¼ tan b� ASð Þ ð2Þ

LS ¼ AS=22:13

� �0:6

� sin b=0:0896

� �1:3

ð3Þ

where b is the slope angle in degree and AS is calculated based on following equation

(Hengl et al. 2003):

AS ¼ Am � P2
.P

Li

� �
ð4Þ

In the above equation, P is the pixel size, Am is the cumulative drainage fraction from m

neighbors, and
P

Li is derived as the sum of lengths for drainage pixels.

Stream power index is a measure of the erosive power of flowing water based on the

assumption that discharge is proportional to specific catchment area. Also, the slope-length

(LS) factor in the Universal Soil Loss Equation (Eq. 3) is a measure of the sediment

transport capacity of overland flow (Moore and Wilson 1992).
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4 Methodology

As mentioned previously, the main purpose of the present study is to investigate and

comparison of the landslide susceptibility mapping using three models such as binary

logistic regression, analytical hierarchy process, and statistical index in the north of Tehran

metropolitan, Iran. Figure 4 shows the landslide susceptibility analysis and methodology

flowchart used in this study.

4.1 Binary logistic regression (BLR)

The binary logistic model, as a nonlinear regression model, is a special case of a gen-

eralized linear model (Schumacher et al. 1996). The goal of logistic regression is to find the

best model to describe the relationship between a dependent variable and multiple inde-

pendent variables (Ohlmacher and Davis 2003; Lee 2005; Ozdemir 2011). The advantage

of logistic regression is that, through the addition of an appropriate link function to the

usual linear regression model, the variables may be either continuous or discrete, or any

combination of both types and they do not necessarily have normal distributions (Lee and

Pradhan 2007). The algorithm of logistic regression applies maximum likelihood estima-

tion after transforming the dependent variable into a logic variable representing the natural

Table 3 The fundamental scale of absolute numbers (Saaty 2008)

Intensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to the
objective

2 Weak or slight

3 Moderate importance Experience and judgement slightly favor
one activity over another

4 Moderate plus

5 Strong importance Experience and judgement strongly favor
one activity over another

6 Strong plus

7 Very strong or demonstrated importance An activity is favored very strongly over
another; its dominance demonstrated in
practice

8 Very, very strong

9 Extreme importance The evidence favoring one activity over
another is of the highest possible order of
affirmation

Reciprocals of
above

If activity I has one of the above nonzero
numbers assigned to it when compared
with activity j, then j has the reciprocal
value when compared with i

A reasonable assumption

1.1–1.9 If the activities are very close May be difficult to assign the best value but
when compared with other contrasting
activities

The size of the small numbers would not be
too noticeable, yet they can still indicate
the relative importance of the activities
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logarithm of the odds of the dependent occurring or not (Atkinson and Massari 1998; Bai

et al. 2010). The mentioned model can be expressed according to following equation (Lee

and Pradhan 2007):

P ¼ 1

1þ e�Z

� �
ð5Þ

where, P is the estimated probability of landslide occurrence and varies from 0 to 1 on and

S-shaped curve, and Z is the linear combination while defined as the following Equation

(Eq. 6) and its value varies from -? to ??:

Z ¼ interceptþ b1x1þb2x2þb3x3þ. . .bnxn ð6Þ

where b1, b2, b3, and bn, are the slope coefficient of the logistic regression model and x1, x2,

x3, and xn are the independent variables.

4.2 Analytical hierarchy process (AHP)

The analytical hierarchy process is a theory of measurement for considering tangible and

intangible criteria that has been applied to numerous areas, such as decision theory and

conflict resolution (Vargas 1990; Yalcin 2008). The AHP is an eigenvalue technique to the

pair-wise comparisons approach. It is based on three principles: decomposition,

Table 4 Beta coefficients and test statistics of the variables used in the logistic regression equation

Conditioning factors B SE Wald df Significance Exp (B)

Slope degree -2.643 1.457 3.291 1 .070 .071

Aspect (Flat) 11.657 1,051.286 .000 1 .991 115,540.320

Aspect (North) 16.336 1,051.289 .000 1 .988 1.244E7

Aspect (Northeast) .470 1,569.861 .000 1 1.000 1.600

Aspect (East) 1.547 1,355.837 .000 1 .999 4.698

Aspect (Southeast) 3.448 1,248.227 .000 1 .998 31.443

Aspect (South) 17.566 1,051.299 .000 1 .987 4.252E7

Aspect (Southwest) -3.174 1,467.256 .000 1 .998 .042

Altitude -.023 .013 2.822 1 .093 .978

Plan curvature -11.197 110.365 .010 1 .919 .000

NDVI 1.930 13.996 .019 1 .890 6.888

Land use (range land) .875 3,353.479 .000 1 1.000 2.398

Lithology (Group 1) 2.473 5,128.669 .000 1 1.000 11.858

Lithology (Group 2) -8.171 976.674 .000 1 .993 .000

Lithology (Group 3) 13.738 872.773 .000 1 .987 925,652.247

Lithology (Group 4) -4.795 2,471.153 .000 1 .998 .008

Distance from rivers .042 .027 2.380 1 .123 1.043

Distance from roads .009 .006 1.974 1 .160 1.009

Distance from faults .030 .017 3.063 1 .080 1.031

SPI -.050 .031 2.629 1 .105 .951

Slope-length 1.524 .902 2.855 1 .091 4.593

Constant -.016 3,621.269 .000 1 1.000 .985
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comparative judgment, and synthesis of priorities (Saaty 1994; Chen et al. 2009). The

decomposition principle is applied to structure a complex problem into a hierarchy of

clusters, sub-clusters, and so on (Kheirkhah Zarkesh 2005). The comparative judgment

principle of AHP requires pair-wise comparison of the decomposed elements within a

given level of hierarchal structure with respect to the next higher level. The synthesis

principle of AHP takes each of the derived ratio scale local priorities in the various levels

of the hierarchy and constructs a composite set of priorities for the elements at the lowest

level of the hierarchy (Chen et al. 2009). The AHP provides a numerical fundamental

scale, which ranges from 1 to 9 to calibrate the quantitative and qualitative performances of

priorities (Table 3) (Saaty 2008). This matrix ultimately enters in expert choice (EC)

software and will calculate final weight for each conditioning factor with consistency ratio

(CR). If CR is less than 10 %, then the matrix can be considered as having an acceptable

consistency (Saaty 1977). Finally, the landslide susceptibility map using AHP model was

constructed using the following equation:

LSMAHP ¼ slope degree�WAHPð Þ þ slope aspect�WAHPð Þ þ altitude�WAHPð Þð
þ plan curvature�WAHPð Þ þ NDVI�WAHPð Þ þ land use�WAHPð Þ
þ lithology�WAHPð Þ þ distance from rivers�WAHPð Þ
þ distance from roads�WAHPð Þ
þ distance from faults�WAHPð Þ þ SPI�WAHPð Þ þ LS�WAHPð ÞÞ ð7Þ

where WAHP is the weightage for the each landslide conditioning factor.

4.3 Statistical index (SI)

The statistical index method is a bivariate statistical analysis proposed by van Westen (1997)

for landslide susceptibility mapping. A weight value for each categorical unit is defined as the

natural logarithm of the landslide density in the categorical unit divided by the landslide

Table 5 The multi-collinearity diagnosis indexes for variables

Model Unstandardized
coefficients

Standardized
coefficients

t Sig. Collinearity
statistics

B SE Beta Tolerance VIF

(Constant) .006 .009 .665 .506

Slope degree -9.460E-5 .000 -.027 -1.466 .143 .874 1.144

Slope aspect .000 .000 -.008 -.458 .647 .847 1.181

Altitude -1.834E-6 .000 -.015 -.806 .420 .829 1.207

Plan curvature -.005 .039 -.002 -.123 .902 .753 1.327

NDVI -9.889E-5 .007 .000 -.014 .989 .875 1.142

Land use .000 .001 .002 .130 .896 .928 1.078

Lithology .000 .000 .015 .835 .404 .897 1.115

Distance from rivers 4.774E-6 .000 .019 1.108 .268 .970 1.031

Distance from roads 1.707E-7 .000 .004 .209 .834 .802 1.247

Distance from faults 3.783E-6 .000 .042 2.306 .021 .850 1.177

SPI -5.861E-9 .000 -.010 -.462 .644 .601 1.663

Slope-length (LS) -2.377E-6 .000 -.006 -.249 .803 .496 2.018
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density in the entire map (van Westen 1997; Rautela and Lakhera 2000; Cevik and Topal

2003). This method is based on the following equation (van Westen 1997):

WSI ¼ ln
Eij

E

� �
¼ ln

Lij

�
LT

Pij
�
PL

 !
ð8Þ

where, WSI, weight given to a certain class i of parameter j; Eij, landslide density within class

i of parameter j; E, total landslide density within the entire map; Lij, number of landslides in a

certain class i of parameter j; Pij, number of pixels in a certain class i of parameter j; LT, total

number of landslides in the entire map; PL, total pixels of the entire map.

Yesilnacar (2005) is stated that the bivariate statistical method gives a satisfactory

combination of the (subjective) professional direct mapping and the (objective) data driven

analytical capabilities of a GIS. The main advantage of bivariate statistical procedures is

that the professional, who executes the analysis, determines the factors or combinations of

factors used in the assessment.

In the current research, every parameter map is crossed with the landslide inventory

map, and the density of the landslide in each class is calculated. The statistical index map is

created by the overlay method in ArcGIS. Positive values of WSI indicate a relevant

relationship between the presence of the factor class and landslide distribution, the stronger

the higher the score. In contrary, negative values of WSI mean that the presence of the

factor class is not relevant in landslide development.

5 Results

5.1 Binary logistic regression

The binary logistic regression analysis was performed using the statistical package for the

social sciences (SPSS). In order to process the input data layers, all the conditioning factors

and landslides were converted into grid format and then into ACSII data format (Devkota

et al. 2013). ASCII data of each map were exported to SPSS, and then the binary logistic

Table 6 The weight each conditioning factors by analytical hierarchy process

Conditioning factors (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) Weight

(1) Slope degree 1 3 3 2 2 2 1/2 3 3 3 4 4 0.15

(2) Slope aspect 1 2 1/3 1/2 1/2 1/4 2 3 2 3 3 0.07

(3) Altitude 1 1/3 1/2 1/2 1/4 3 2 3 2 2 0.06

(4) Plan curvature 1 3 2 1/2 2 2 3 4 4 0.13

(5) DVI 1 1 1/3 2 2 3 3 3 0.08

(6) Land use 1 1/2 4 3 4 5 4 0.11

(7) Lithology 1 5 4 4 6 6 0.21

(8) Distance from rivers 1 1/2 2 2 4 0.05

(9) Distance from roads 1 3 4 3 0.06

(10) Distance from faults 1 3 3 0.04

(11) SPI 1 4 0.03

(12) LS 1 0.02

Inconsistency ratio = 0.0676
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regression model was run to obtain the coefficients of the landslide conditioning factors for

numerical and categorical data. The Hosmer and Lemeshow test showed that the goodness

of fit of the equation can be accepted, because the significance of chi-square is larger than

0.05 (1.00). The value of Cox and Snell R2 (0.009) and Nagelkerke R2 (0.624) showed that

the independent variables can explain the dependent variables in a way.

The b coefficient of each conditioning factor is shown in Table 4. According to Table 4, it

is observed that normalized different vegetation index (NDVI), slope-length (LS), distance

from rivers, distance from faults, and distance from rivers have an important role in the

landslide susceptibility mapping of study area, because of positive b value. The b values of

these conditioning factors are 1.930, 1.524, 0.042, 0.030, and 0.009, respectively. On the

other hand, slope degree, altitude, and stream power index (SPI) have negative effect in

landslide occurrence with b values of -2.643, -0.023, and -0.050, respectively. In the case

of slope aspect, south (b = 17.566), north (b = 16.336), flat (b = 11.656), southeast

(b = 3.448), east (b = 1.547), and northeast (b = 0.470) facing have positive b coefficient.

In the contrary, southwest facing has value of -3.174. For land use factor, results showed that

only range land type has an effect on landslide susceptibility with value of 0.875, while the

remaining land use types does not have any role in landslide occurrence of the north of

Tehran. Based on results of logistic regression for lithology factor, we seen that lithological

formation of groups 3 and 1 (Table 1) have positive b value, whereas groups of 2 and 4 with

negative value of -8.171 and -4.795 have an inverse effect on landslide susceptibility.

5.2 Multi-collinearity in binary logistic regression

An important consideration in regression is the effect of correlation among independent

variables. There is a problem that exists when two independent variables are very highly

correlated. The problem is called multi-collinearity. Tolerance and the variance inflation

factor (VIF) are two important indexes for multi-collinearity diagnosis. In fact, tolerance is

1-R2 for the regression of that variable against all the other independents, without the

dependent variable. On the other hand, VIF is simply the reciprocal of tolerance. VIF

measures the degree to which the interrelatedness of the variable with other predictor

variables inflates the variance of the estimated regression coefficient for the variable.

Consequently, the square root of the VIF is the degree to which the collinearity has

increased the standard error for that variable. A tolerance of less than 0.20 or 0.10 and/or a

VIF of 5 or 10 and above indicates a multi-collinearity problem (O’Brien 2007). According

to Table 5, the smallest tolerance and highest variance inflation factor were 0.496 and

2.018, respectively. So, there is not any multi-collinearity between independent factors in

current research. Finally, the BLR model developed for the study area is given in Eq. 9.

Z ¼ �0:016þ slope degree��2:643ð Þ þ slope aspectð Þ þ altitude��0:023ð Þf
þ plan curvature��11:197ð Þ þ NDVI� 1:930ð Þ þ land useð Þ þ lithologyð Þ
þ distance from rivers� 0:042ð Þ þ ðdistance from roads� 0:009Þ
þ ðdistance from faults� 0:030Þ þ ðSPI��0:050Þ þ ðLS� 1:524Þg

ð9Þ

5.3 Analytical hierarchy process (AHP)

AHP is a multi-objective, multi-criteria decision-making approach, which enables the user

to arrive at a scale of preference drawn from a set of alternatives (Saaty 1980). The expert

choice software package (E.C. Inc. 1995) based on the analytic hierarchy process (AHP)
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Table 7 Spatial relationship between each landslide conditioning factors and landslide by statistical index
model

Factor Class No. of pixels in
domain Pij

No. of
landslide (Lij)

Statistical
index (SI)

Slope degree 0–5� 208,056 1 -2.15

5–15� 810,093 9 -1.31

15–30� 3,821,708 194 0.21

30�–50� 4,084,952 165 -0.02

[50� 64,615 1 -0.98

Slope aspect Flat 2,311 0 None

North 746,415 39 0.24

Northeast 925,769 72 0.64

East 1,164,311 63 0.27

Southeast 1,261,381 43 -0.19

South 1,410,918 39 -0.40

Southwest 1,488,757 46 -0.29

West 1,139,281 33 -0.35

Northwest 850,281 35 8.22E-05

Altitude (m) \1,500 28,167 1 -0.15

1,500–2,000 1,794,843 49 -0.41

2,000–2,500 3,742,774 164 0.06

2,500–3,000 2,386,544 112 0.13

3,000–3,500 878,385 40 0.10

[3,500 158,711 4 -0.49

Plan curvature (100/m) Concave 3,730,908 154 0.003

Flat 768,185 25 -0.23

Convex 4,490,331 191 0.03

NDVI \-0.001 5,104,044 234 0.11

-0.001–0.00 389,157 12 -0.29

0.0–0.05 1,579,113 62 -0.05

0.05–0.1 835,563 39 0.13

0.1–0.5 1,060,265 23 -0.64

[0.5 21,282 0 None

Land use Agriculture 12,673 0 None

Cliff 9,643 0 None

Forest 207,254 4 -0.76

Orchard 540,179 1 -3.10

Range land 8,137,410 365 0.09

Settlement 49,206 0 None

Shrub 17,666 0 None

Water body 15,393 0 None
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has been used to estimate weights of the importance of the major objectives (conditioning

factors) and their sub-objectives for landslide susceptibility mapping and to test for con-

sistency ratio (CR) between preferences within individual stakeholder groups. In order to

calculate of CR, we used of following equation:

Table 7 continued

Factor Class No. of pixels in
domain Pij

No. of
landslide (Lij)

Statistical
index (SI)

Lithology Group 1 919,687 22 -0.54

Group 2 15,945 0 None

Group 3 1,597,077 87 0.28

Group 4 2,474,738 66 -0.43

Group 5 3,055,530 150 0.18

Group 6 426,844 7 -0.92

Group 7 308,607 30 0.86

Group 8 190,996 8 0.02

Distance from rivers (m) 0–100 m 3,587,993 116 -0.24

100–200 m 2,612,101 121 0.12

200–300 m 1,623,562 91 0.31

300–400 m 819,441 30 -0.12

400–500 m 276,267 11 -0.03

[500 m 70,060 1 -1.06

Distance from roads (m) 0–100 m 1,066,777 17 -0.95

100–200 m 826,979 23 -0.39

200–300 m 689,664 30 0.06

300–400 m 622,091 30 0.16

[400 m 5,783,913 270 0.13

Distance from faults (m) 0–200 m 1,053,403 33 -0.27

200–400 m 988,251 36 -0.12

400–600 m 877,027 25 -0.37

600–800 m 785,670 40 0.21

[800 m 5,285,073 236 0.08

Stream power index (SPI) 0–300 2,108,573 56 -0.44

300–600 1,984,601 97 0.17

600–900 1,288,914 77 0.37

900–1,200 799,175 36 0.09

1,200–1,500 512,775 24 0.13

[1,500 2,295,386 80 -0.17

Slope-length (m) 0–30 1,332,777 25 -0.79

30–60 2,789,349 134 0.15

60–90 2,552,783 127 0.19

90–120 1,147,793 49 0.04

[120 1,166,722 35 -0.32

Total of pixels in domain (PT) = 8,989,424; total of landslides (LT) = 370
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Fig. 6 a Landslide susceptibility map based on binary logistic regression (BLR). b Landslide susceptibility
map based on analytical hierarchy process (AHP). c Landslide susceptibility map based on statistical index
(SI)
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CR ¼ CI=RIð Þ ð10Þ

where RI is the average of the resulting consistency index depending on the order of the

matrix given by Saaty (1980) and CI is the consistency index and can be expressed as:

CI ¼ ðkmax � nÞ=ðn� 1Þð Þ ð11Þ

where kmax is the largest or principal eigenvalue of the matrix and can be easily calculated

from the matrix, and n is the order of the matrix. A CR of 0.1 or less is a reasonable level of

consistency (Malczewski 1999). A CR above 0.1 requires revision of the judgment in the

matrix due to an inconsistent treatment of particular factor ratings.

Using of AHP method, the levels of the influence of major objectives (conditioning

factors) were calculated (Table 6). According to Table 6, it can be seen that lithology and

slope-length (LS) factors have the most and less influence on landslide occurrence with

values of 0.21 and 0.02, respectively. The other factors such as slope degree, slope aspect,

altitude, plan curvature, NDVI, land use, distance from rivers, distance from roads, dis-

tance from faults, and SPI have weight values of 0.15, 0.07, 0.06, 0.13, 0.08, 0.11, 0.05,

0.06, 0.04, and 0.03, respectively. In current study, the CR is 0.0676; the ratio indicates a

reasonable level of consistency in the pair-wise comparisons.

Also, the correlation between the landslide locations and the sub-objectives of condi-

tioning factors was presented in Fig. 5. The values are given in Fig. 5 show that all CR

values are less than 0.1, and consequently, this proves the preferences utilized to produce

the comparison matrixes are consistent. In order to landslide susceptibility mapping by

analytical hierarchy process, we were used of the following equation:

LSMAHP ¼ slope degree� 0:15ð Þ þ slope aspect� 0:07ð Þ þ altitud� 0:06ð Þf
þ plan curvature� 0:13ð Þ þ NDVI� 0:08ð Þ þ land use� 0:11ð Þ
þ lithology� 0:21ð Þ þ distance from rivers� 0:05ð Þ
þ distance from roads� 0:06ð Þ þ distance from faults� 0:04ð Þ
þ SPI� 0:03ð Þ þ ðLS� 0:02Þg

ð12Þ
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5.4 Statistical index (SI)

Spatial relationship between each landslide conditioning factor and landslide by statistical

index model is shown in Table 7. According to Table 7, in the case of slope degree, class

of 15�–30� has the highest value of SI with a positive value (0.21), and other classes have

negative value. On the other hand, our observation showed that when slope degree is

increasing, statistical index is decreasing. For slope aspect conditioning factor, north,

northeast, and east facing have a positive value of SI (0.24, 0.64, and 0.27, respectively).

This means that the landslide probability is higher in these classes. The statistical index

(SI) value for altitude clearly showed that ranges of 2,500–3,000 and 3,000–3,500 m have

the most effect on landslide occurrence. However, it is clear that the landslide suscepti-

bility increases by the increase in altitude up to a certain extent (2,500–3,000 m) and then

it decreases. In the case of plan curvature, the SI value is positive (0.003 and 0.03) both in

concave and convex slopes. The other slope shapes (flat) indicate negative value. There-

fore, there is no indication that these shapes favor instability. The NDVI factor shows that

the range between 0.05–0.1 and \-0.001 is relatively favorable (high susceptible) for

landslide occurrence. It can be said that there is a diverse effect of the presence of

vegetation to slope instability. In the case of land use, positive value of SI is seen on range

land area only. This type of land use covers almost 90.5 % of study area. When comparing

the relationship between landslides and lithology, the statistical values were positive in

groups 3, 5, 7, and 8. Meanwhile, group 7 is very susceptible to landslide occurrence with

value of 0.86; because of lithological formations are basic marl, marly limestone, siltstone,

shale, and clay. In regarding distance from rivers, distances between 100–200 and

200–300 m have a positive value of SI (0.12 and 0.31, respectively), indicating a very high

probability of landslide occurrence. Proximity from roads has little impact on landsliding.

Distances between\100 m and 100–200 from roads show a very low or non-susceptible to

landsliding compared to the other classes. On the other hand, three classes of proximity to

roads show strong favor for landsliding. These classes are 200–300 m (SI = 0.06),

300–400 m (SI = 0.16), and [400 m (SI = 0.13). Maybe this appears to go against the

visible pattern of more failures close to roads, it is likely due to a few large landslides

where no roads are present. As a result, the large slides increase the percentage of landslide

pixels occurring far from roads. In case of distance from faults, the intervals 600–200 and

[800 m have weights (SI) of 0.21 and 0.08, respectively. It can be observed that as the
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distance from faults increases, the landslide frequency generally decreases. We think this is

for hard and very susceptible lithological formations in close and faraway of faults in study

area. The drainage density \0.0018 km/km2 has a SI value of 0.20, whereas class of

0.0027–0.013 has a SI value of -0.69. It can be observed that as the drainage density

increases, the landslide frequency generally decreases. The relation between stream power

index and landslide probabilities showed that class of 600–900 has the highest value of SI

(0.37), and for compound topographic index, the class of 8–10 shows a high SI value

(0.223). Similarly, for slope-length, the highest SI value was obtained for the interval of

60–90. The mentioned results for secondary topographic attributes (SPI, CTI, and LS)

showed that these classes are very susceptible to landslide and its occurrence.

Finally, Landslide susceptibility map by statistical index (SI) model was created by

following equation:

LSMSI ¼ WSIslope degreeð Þ þ WSIslope aspectð Þ þ WSIaltitudeð Þð
þ WSIplan curvatureð Þ þ WSINDVIð Þ þ WSIland useð Þ þ WSIlithologyð Þ
þ WSIdistance from riversð Þ þ WSIdistance from faultsð Þ
þ WSIdistance from roadsð Þ þ WSISPIð Þ þ WSILSð ÞÞ

ð13Þ

In this research, three landslide susceptibility maps such as binary logistic regression,

analytical hierarchy process, and statistical index (Fig. 6a–c) were prepared in ArcGIS into

four classes and according to natural break classification method (Falaschi et al. 2009;

Bednarik et al. 2010; Erner et al. 2010; Constantin et al. 2011; Xu et al. 2012a, b, Xu and

Xu 2012; Pourghasemi et al. 2012b, c, d).

6 Verification of the landslide susceptibility maps

To determine the accuracy of three landslide susceptibility models (Binary logistic regression,

analytical hierarchy process, and statistical index) used in this study, two verification methods,

the relative operating characteristics (ROC) and frequency ratio plot, were used. ROC curve

analysis is a common method to assess the accuracy of a diagnostic test (Egan 1975). The ROC

curve is a graphical representation of the trade-off between the false-negative and false-positive

rates for every possible cutoff value. By tradition, the plot shows the false-positive rate (FPR) on

the X axis (Eq. 14) and the true-positive rate (TPR) on the Y axis (Eq. 15).

X ¼ FPR ¼ 1� TN

TNþ FP

� �
ð14Þ

Y ¼ TPR ¼ TP

TPþ FN

� �
ð15Þ

The area under the ROC curve (AUC) characterizes the quality of a forecast system by

describing the system’s ability to anticipate the correct occurrence or non-occurrence of

pre-defined ‘‘events.’’ The best method has a curve with the largest AUC; the AUC varies

from 0.5 to 1.0. If the model does not predict the occurrence of the landslide any better than

chance, the AUC would equal 0.5. A ROC curve of 1 represents perfect prediction. The

quantitative–qualitative relationship between AUC and prediction accuracy can be clas-

sified as follows: 0.9–1, excellent; 0.8–0.9, very good; 0.7–0.8, good; 0.6–0.7, average; and

0.5–0.6, poor (Yesilnacar 2005). The AUC values of the ROC curve for BLR, AHP, and SI

models were found to be 0.8520, 0.8037, and 0.7570, respectively (Fig. 7). Hence, it is
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concluded that the binary logistic regression model employed in this study showed rea-

sonably very good accuracy in predicting the landslide susceptibility of study area.

Also, the landslide susceptibility analyses were validated using frequency ratio plot.

Due to, all of the landslide grid cells were overlaid on landslide susceptibility zones (low,

moderate, high, and very high) in GIS, and frequency ratio was calculated for each of the

susceptibility zones (Pourghasemi et al. 2012d). In an ideal landslide susceptibility map,

the frequency ratio value is increasing from a low to a very high susceptibility zones

(Pradhan and Lee 2010a, b; Pourghasemi et al. 2012c). A plot of the frequency ratio for the

four landslide susceptibility classes of the three landslide susceptibility models is shown in

Fig. 8. The results showed that the frequency ratio is gradually increased from the low to

the very high susceptibility zone in the study area.

7 Discussion and conclusion

Landslide susceptibility maps provide fundamental knowledge of the causes and effective

factors on landslide occurrence and can be effective in hazard management and its miti-

gation measures. In present research, we attempt to compare the results of landslide sus-

ceptibility mapping using of three different models namely: BLR, ST, and AHP in the

north of Tehran metropolitan, Iran. Of total 528 identified landslide locations in the study

area, 370 (70 %) were used as training data and the remaining 158 (30 %) were used for

validation goals. In order to landslide susceptibility zonation, twelve conditioning factors

such as slope degree, slope aspect, altitude, plan curvature, normalized difference vege-

tation index, land use, lithology, distance from rivers, distance from roads, distance from

faults, stream power index, and slope-length were considered. For validation of generated

landslide susceptibility maps in ArcGIS, the receiver operating characteristic (ROC) curves

and frequency ratio plot were used.

According to obtained area under the curve (AUC), the binary logistic regression model

has higher prediction performance (85.20 %) than statistical index (80.37 %) and analyt-

ical hierarchy process (75.70 %) models. Also the results of frequency ratio plot showed

that the frequency ratio value is gradually increased from the low to the very high sus-

ceptibility zone in the study area, while this was validated our results.

Meanwhile, several investigators found overall accuracy rate relatively similar in some

models such as FR, AHP, LR, and ANN (Jin et al. 2010; Park et al. 2012); conditional

probability (CP), LR, ANN, and SVM (Yilmaz 2010); MCDA, SVM, and LR (Kavzoglu

et al. 2013); heuristic and bivariate statistical models (Bijukchhen et al. 2012); probabi-

listic, bivariate and multivariate models (Pradhan and Youssef 2010; Tien Bui et al. 2011a;

Kevin et al. 2011; Ozdemir and Altural 2012; Shahabi et al. 2012). On the other words,

Ayalew et al. (2005), Esmali Ouri and Amirian (2009) stated that AHP model was better

that the logistic regression in Sado Island, Japan and Iran, respectively. Yalcin (2008)

reported AHP method gave a more realistic landslide susceptibility map than the bivariate

statistical models (Wi and Wf). In another research, Yalcin et al. (2011) in order to

landslide susceptibility mapping used of frequency ratio, AHP, bivariate statistics, and

logistic regression in Trabzon, NE Turkey. They found that the weighting factor (Wf)

method is better in prediction than the frequency ratio model, AHP, the statistical index

(Wi), and logistic regression model.

Vahidnia et al. (2009) due to landslide hazard calculation in Mazandaran Province, Iran,

used of four models namely: weights of evidence (WoE), AHP, ANN, and generalized

linear regression (GLM). The estimated accuracy ranges from 80 to 88 %. It is then
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inferred that the application of WoE in rating maps’ categories and ANN to weight

effective factors results in the maximum accuracy.

The main advantage of logistic regression over simple multiple regressions is that LR

allows the use of binary dependent variable types in landslide susceptibility mapping.

Although logistic regression is a commonly applied quantitative susceptibility mapping

method, it has a major limitation of yielding average parameters for the study area

(Fotheringham et al. 2001; Erner et al. 2010), which may differ locally in different parts of

the study area.

van Westen et al. (2003) stated that the bivariate statistical method gives a satisfactory

combination of the (subjective) professional direct mapping and the (objective) data driven

analytical capabilities of a GIS. The main advantage of bivariate statistical procedures is

that the professional, who executes the analysis, determines the factors or combinations of

factors used in the assessment. This enables the introduction of expert opinion into the

process. Bivariate statistics are a useful tool in the assessment of landslide susceptibility,

but can best be used as a supporting tool to make quantitative estimations of the impor-

tance of the various factors involved.

The general purpose of the AHP is to support the decision makers in selecting the best

alternative from the various possible choice alternatives under the presence of multiple

priorities (Jankowski 1995). On the other hand, AHP model is conventionally based on a

rating system provided by expert opinion. In fact, expert opinion is very useful in solving

complex problems like landslides. However, to some extent, opinions may change for

every individual expert and thus may be subjected to cognitive limitations with uncertainty

and subjectivity. Another aspect is that data driven methods are also powerful in landslide

susceptibility mapping and contain less subjectivity. Therefore, it is important to analyze

the spatial relationship between the landslide conditioning factors and landslide locations.

The statistical-based models (Bivariate and multivariate) allow users to order parametric

importance before the landslide susceptibility analyses application.

As a final conclusion, these maps can provide very useful information for planners,

decision makers, and engineers in slope management and land use planning in landslide

areas, and we believe that the results obtained from our study provide a considerable

contribution to the landslide literature.
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