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Abstract Drought is accounted as one of the most natural hazards. Studying on drought

is important for designing and managing of water resources systems. This research is

carried out to evaluate the ability of Wavelet-ANN and adaptive neuro-fuzzy inference

system (ANFIS) techniques for meteorological drought forecasting in southeastern part of

East Azerbaijan province, Iran. The Wavelet-ANN and ANFIS models were first trained

using the observed data recorded from 1952 to 1992 and then used to predict meteoro-

logical drought over the test period extending from 1992 to 2011. The performances of the

different models were evaluated by comparing the corresponding values of root mean

squared error coefficient of determination (R2) and Nash–Sutcliffe model efficiency

coefficient. In this study, more than 1,000 model structures including artificial neural

network (ANN), adaptive neural-fuzzy inference system (ANFIS) and Wavelet-ANN

models were tested in order to assess their ability to forecast the meteorological drought for

one, two, and three time steps (6 months) ahead. It was demonstrated that wavelet

transform can improve meteorological drought modeling. It was also shown that ANFIS

models provided more accurate predictions than ANN models. This study confirmed that

the optimum number of neurons in the hidden layer could not be always determined using

specific formulas; hence, it should be determined using a trial-and-error method. Also,

decomposition level in wavelet transform should be delineated according to the periodicity
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and seasonality of data series. The order of models with regard to their accuracy is as

following: Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively. To the best of

our knowledge, no research has been published that explores coupling wavelet analysis

with ANFIS for meteorological drought and no research has tested the efficiency of these

models to forecast the meteorological drought in different time scales as of yet.

Keywords Natural hazards � Drought � Forecasting � Wavelet-ANN model �
East Azerbaijan province

1 Introduction

Drought is a major natural hazard having severe consequences in regions all over the

world. The range of drought impacts is related to drought occurring in different stages of

the hydrologic cycle, and usually, different types of droughts are distinguished. The origin

is a meteorological drought, which is defined as a deficit in precipitation. A meteorological

drought can develop into a soil moisture drought, which may reduce agricultural pro-

duction and increase the probability of forest fires. It can further develop into a hydrologic

drought defined as a deficit in surface water and groundwater, for example, reducing water

supply for drinking water, irrigation, industrial needs, and hydropower production, causing

death of fish and hampering navigation in some countries (Yahiaoui et al. 2009). Tem-

peratures, high winds, low relative humidity, timing and characteristics of rains, including

distribution of rainy days during crop growing seasons, intensity and duration of rain, and

onset and termination play a significant role in the occurrence of droughts (Mishra and

Singh 2010). Natural hazards, such as drought, tsunami, hurricane, flood, wildfire, and

earthquake, are likely to become ever more costly in human lives and economic devel-

opment (World Bank Independent Evaluation Group 2006). The lessons learned from the

2004 Tsunami in the Indian Ocean and 2005 Hurricane Katrina in the southern United

States indicate an urgent need to develop new means for early warning and response

systems to enhance human collaborative capabilities in coping with large-scale natural

hazards (UNDP 2005; The White House 2006). While modern remote sensing, spatial

modeling, and geographic information technologies help users to detect, simulate, and

forecast environmental changes, such technology is not yet well integrated with multilevel

social cooperative responses. The new techniques such as artificial neural networks (ANN),

fuzzy logic (FL), and ANFIS have been recently accepted as an efficient alternative tool for

modeling of complex hydrologic systems and widely used for forecasting. For instance,

some special applications of ANN in hydrology including modeling rainfall-runoff process

(Jeong and Kim 2005; Kumar et al. 2005), hydrologic time series modeling (Jain and

Kumar 2007), sediment concentration estimation (Nagy et al. 2002), estimation of heter-

ogeneous aquifer parameters (Mantoglou 2003), runoff, and sediment yield modeling

(Agarwal et al. 2006). Morid et al. (2007) examined the effectiveness of ANN approach for

medium and long-term forecasting of both the probability of drought events and their

severity.

The standardized precipitation index (SPI) is a tool which was developed principally for

defining and monitoring drought. It allows a researcher to determine a drought at a given

time scale (temporal resolution) of interest for any rainfall station with historic data. The

SPI is not a drought prediction tool. McKee et al. (1993) developed the SPI to calculate the

390 Nat Hazards (2013) 69:389–402

123



precipitation shortage for multiple time scales, reflecting the impact of precipitation

deficiency on the accessibility of different water supplies. The SPI provides a quick and

useful approach to drought analysis. Other advantages of this approach are its relative ease

and minimal data requirements. Mishra and Desai (2006) applied the feed-forward

recursive neural network and ARIMA models for drought forecasting using SPI series as a

drought index. The results have demonstrated that neural network method can be suc-

cessfully applied for drought forecasting. Wu et al. (2008) applied the neural network

method to establish a risk evaluation model of heavy snow disaster using back-propagation

artificial neural network (BP-ANN). On the other hand, several studies have also been

carried out using FL in hydrology and water resources planning (Nayak et al. 2005;

Altunkaynak et al. 2005). In recent years, adaptive neuro-fuzzy inference system (ANFIS),

which is integration of ANN and FL methods, has been used in the modeling of nonlinear

engineering and water resources problems (Sen and Altunkaynak 2006; Firat and Gungor

2007, 2008). Moreover, Chou and Chen (2007) have used the neuro-fuzzy computing

technique for the development of drought early warning index. For this aim, an approach

has been proposed to develop drought early warning index (DEWI) for Southern Taiwan to

detect the drought in advance for setting up proper plans to mitigate the water shortage

impacts. Hana et al. (2010) developed the AR (1) model for VTCI series in order to

drought forecasting in the Guanzhong Plain. Several other studies were performed on

drought indices, especially SPI such as Moreira et al. (2006, 2008), Canon et al. (2007),

Mishra et al. (2007), Duggins et al. (2010), Kao and Govindaraju (2010), and Dupuis

(2010). The main objective of this research is to develop Wavelet-ANFIS and Wavelet-

ANN models to forecast 6-month SPI for different prediction periods. In this research,

Wavelet-ANFIS and Wavelet-ANN models were developed and compared with ANFIS

and ANN models in the Ajabshir Plain, Iran.

2 The adaptive neuro-fuzzy inference system (ANFIS)

The ANFIS is a universal estimator and is able to approximate any real continuous function

on a compact set to any degree of accuracy (Jang et al. 1997). The basic structure of the

type of fuzzy inference system could be seen as a model that maps input characteristics to

input membership functions. Then, it maps input membership function to rules and rules to

a set of output characteristics. Finally, it maps output characteristics to output membership

functions and the output membership function to a single-valued output or a decision

associated with the output (Jang et al. 1997). Each fuzzy system contains three main parts

including fuzzifier, fuzzy database, and defuzzifier. Also, Fuzzy database consists of two

main parts containing fuzzy rule base, and inference engine.

Figure 1 represents a typical ANFIS architecture. In layer one, every node is an adaptive

node with a node function such as a generalized bell membership function or a Gaussian

membership function. In layer two, every node is a fixed node representing the firing

strength of each rule and is calculated by the fuzzy and connective of the ‘product’ of the

incoming signals. In layer three, every node is a fixed node showing the normalized firing

strength of each rule. The ith node calculates the ratio of the ith rule’s firing strength to the

summation of two rules firing strengths. In layer four, every node is an adaptive node with

a node function indicating the contribution of ith rule toward the overall output. In layer

five, the single node is a fixed node indicating the overall output as the summation of all

incoming signals (Jang and Sun 1995).
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3 Artificial neural network (ANN)

ANNs are powerful nonlinear modeling approaches based on the function of the human

brain. They can identify and learn correlated patterns between input data sets and target

values. Neural networks can be described as a network of simple processing nodes or

neurons, interconnected to each other in a specific order, performing simple numerical

manipulations (See and Openshaw 1999). A common three-layered neural network is

composed of several elements namely nodes. These networks are made up of an input layer

consisting of nodes representing different input variables, the hidden layer consisting of

many hidden nodes, and an output layer consisting of output variables (Haykin 1999).

Feed-forward neural networks are successfully applied in many different problems. This

network architecture and the corresponding learning algorithm can be viewed as a gen-

eralization of the popular least-mean-square (LMS) algorithm (Haykin 1999). Fully

recurrent networks, introduced by Elman (1988), feed the outputs of the hidden layer back

to itself. Partially recurrent networks start with a fully recurrent net and add a feed-forward

connection that bypasses the recurrence, effectively treating the recurrent part as a state

memory. Recurrent networks are the state of the art in nonlinear time series prediction,

system identification, and temporal pattern classification.

4 Wavelet transform

Wavelet transform is a time-dependent spectral analysis that decomposes time series in the

time–frequency space and provides a time-scale illustration of processes and their rela-

tionships (Daubechies 1990). In this method, the data series are broken down by the

transformation into its ‘wavelets’, a scaled and shifted version of the mother wavelet

(Grossman and Morlet 1984). Wavelet analysis allows the use of long-time intervals for

low-frequency information and shorter intervals for high-frequency information and is

capable of revealing aspects of data like trends, breakdown points, and discontinuities that

other signal analysis techniques might miss.

The discrete wavelet transform (DWT) is used to decompose the time series. The

classical continuous wavelet transform (CWT) requires a significant amount of computa-

tion time and data (Partal 2009; Adamowski 2007). So, in this study, the discrete wavelet

transform is preferred because it requires less computation time and data (Christopoulou

et al. 2002). The DWT operates two sets of functions: high-pass and low-pass filters. The

original time series is passed through high-pass and low-pass filters, and detailed

Fig. 1 A typical ANFIS architecture (Jang 1993). Here, x and y are the inputs and z is the final output; A1,
A2, B1, and B2 are the linguistic label (small, large, etc.) associated with this node function, and wi is the
normalized firing strength that is the ratio of the ith rule’s firing strength (Wi) to the summation of the first
and second rules’ firing strengths (W1 and W2) and P is the node label
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coefficients and approximation series are obtained. In fact, it decomposes the signal into a

group of functions (Cohen and Kovacevic 1996):

wj;kðxÞ ¼ 2j=2wj;kð2 jx� kÞ ð1Þ

where wj,k(x) is produced from a mother wavelet w(x) which is expanded by j and trans-

lated by k. The discrete wavelet function of a signal f(x) can be calculated as follows:

cj;k ¼
Z1

�1

f ðxÞw�j;kðxÞdx

f ðxÞ ¼
X

j;k

cj;kwj;kðxÞ
ð2Þ

where cj,k is the approximate coefficient of a signal. The mother wavelet is formulated from

the scaling function u(x) as:

uðxÞ ¼
ffiffiffi
2
p X

h0ðnÞuð2x� nÞ

wðxÞ ¼
ffiffiffi
2
p X

h1ðnÞuð2x� nÞ
h1ðnÞ ¼ ð�1Þnh0ð1� nÞ

ð3Þ

Different sets of coefficients h0 (n) can be found corresponding to wavelet bases with

various characteristics. In the DWT, coefficients h0 (n) play a critical role (Rajaee 2011). In

summary, although, several studies have been conducted on application of ANN and FL

techniques to find out how accurately they can predict weather and climate processes, few

researches have integrated ANN and FL as a new method so-called ANFIS so that previous

studies have shown that ANFIS model has more advantages and less weaknesses than other

computational intelligence techniques. So, the present study is programmed to evaluate the

capability of this method for meteorological drought forecasting in the part of East

Azerbaijan Province, Iran.

5 Materials and methods

5.1 Study area

The study site located in Tabriz, East Azerbaijan province, Iran, lies from 45 300 to 46 300 E
longitude and from 37 to 38 N latitude (Fig. 2). The average of yearly precipitation and

temperature of Ajabshir plain is 272.3 mm and 13.3 �C, respectively. In recent years, several

drought events have caused many agricultural and social loses on account of most of people

here are strongly dependent on agricultural productions. The climate of the study area is

Mediterranean and most of rainfall occurs in half of year, and there are two wet and dry

periods in each year. This is the reason that the 6-month SPI is used in this study.

5.2 SPI

The time series data from 1952 to 2011 were used in this study (the first 40 years for

training and the last 20 years for verification). The SPI index was calculated using the
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precipitation data with the DIP (Drought Indices Package) software based on the following

equation:

In most cases, the distribution that best models observational precipitation data is the

Gamma distribution. The density probability function for the gamma distribution is given

by the expression:

gðxÞ ¼ 1

baCðaÞ x
a�1e

�x
b for x [ 0 ð4Þ

where a[ 0 is the shape parameter, b [ 0 is the scale parameter, and x [ 0 is the amount

of precipitation. CðaÞ is the value taken by the standard mathematical function known as

the Gamma function defined by the integral:

C að Þ ¼ lim
n!1

Yn�1

t¼0

n!ny�1

yþ t
¼
Z1

0

ya�1e�ydy ð5Þ

In general, the gamma function is evaluated either numerically or using the values

tabulated depending on the value taken by parameter a. In order to model the data observed

with a gamma distributed density function, it is necessary to estimate appropriately

parameters a and b. Different methods have been suggested in the literature for the esti-

mate of these parameters, for example, in Edwards and McKee (1997), the Thom (1958)

approximation is used for the maximum probability.

ba ¼ 1

4A
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4A

3

r
4A

 !
ð6Þ

bb ¼ x

ba ð7Þ

where for n observations

A ¼ ln xð Þ �
P

lnðxÞ
n

ð8Þ

The estimate of the parameters can be further improved by using the interactive

approach suggested in Wilks (1995). After estimating coefficients a and b, the density of

Fig. 2 Location of the study area in East Azerbaijan province, Iran
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probability function g(x) is integrated with respect to x and we obtain an expression for

cumulative probability G(x) that a certain amount of rain has been observed for a given

month and for a specific time scale.

G xð Þ ¼
Z1

0

g xð Þdx ¼ 1

b̂âCðâÞ

Zx

0

xâ�1e�x=b̂dx ð9Þ

Taking t ¼ x=b̂, this equation becomes the incomplete gamma function

G xð Þ ¼ 1

CðâÞ

Zx

0

tâ�1e�tdt ð10Þ

The gamma function is not defined by x = 0, and since there may be no precipitation,

the cumulative probability becomes:

H xð Þ ¼ qþ 1� qð ÞGðxÞ ð11Þ

where q is the probability of no precipitation. The cumulative probability is then trans-

formed into a normal standardized distribution with null average and unit variance from

which we obtain the SPI index. For the details, see Edwards and McKee (1997) or Lloyd-

Hughes and Saunders (2002). The above approach, however, is neither practical nor

numerically simple to use if there are many grid points or many stations on which to

calculate the SPI index. In this case, an alternative method was described in Edwards and

McKee (1997) using the technique of approximate conversion developed in Abramowitz

and Stegun (1965) that converts the cumulative probability into a standard variable Z.

The SPI index is then defined as:

Z ¼ SPI ¼ � t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
for 0\H xð Þ\0:5 ð12Þ

Z ¼ SPI ¼ þ t � c0 þ c1t þ c2t2

1þ d1t þ d2t2 þ d3t3

� �
for 0:5\H xð Þ\1 ð13Þ

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

H xð Þð Þ2

" #vuut for 0\H xð Þ\0:5 ð14Þ

t ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln

1

1� H xð Þð Þ2

" #vuut for 0:5\H xð Þ\1 ð15Þ

where x is precipitation, H(x) is the cumulative probability of precipitation observed, and

c0, c1, c2, d0, d1, d2 are constants with the following values:

c0 ¼ 2:515517; c1 ¼ 0:802853; c3 ¼ 0:010328

d0 ¼ 1:432788; d1 ¼ 0:189269; d3 ¼ 0:001308

5.3 ANN models

The ANN models for meteorological drought forecasting were developed using MATLAB

R2010 software. In this paper, two networks were constructed including feed-forward
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neural network (FNN) and Elman or recurrent neural network (RNN). Also, 2, 3, 4, 5, 6, 7,

8, 9, and 10 nodes were tested as the number of nodes in the hidden layer. The numbers of

nodes were selected using a common trial-and-error approach. There are several training

algorithms for ANNs such as gradient descent with momentum and adaptive learning rate

back-propagation (GDX), Levenberg–Marquardt (LM), and Bayesian regularization (BR)

(as were used in this research). GDX uses back-propagation to calculate derivatives of

performance cost function with respect to the weight and bias variables of the network.

Each variable is adjusted according to the gradient descent with momentum. For each step

of the optimization, if performance decreases the learning rate is increased. This is

probably the simplest and most common way to train a network (Haykin 1999). Similarly,

the LM method is a modification of the classic Newton algorithm for finding an optimum

solution to a minimization problem. The BR is an algorithm that automatically sets opti-

mum values for the parameters of the objective function. In the approach used, the weights

and biases of the network are assumed to be random variables with specified distributions.

In order to estimate regularization parameters, which are related to the unknown variances,

statistical techniques are being used. The advantage of this algorithm is that whatever the

size of the network, the function will not be over-fitted (Maier and Dandy 1998). The SPI

data for the current time were imported as inputs, and the SPI for one, two, and three time

steps (6 months) ahead were considered as target.

5.4 ANFIS models

This model was trained and tested using the data set same as those were used in ANN

models. Four different membership functions (MFs) were tested for ANFIS models in this

work, that is, Gaussian (MFgauss), bell-shaped (MFgbell), triangular (MFtri), and spline-

based (MFpi), or Piduetoits shape. ANFIS models with different types of MF were run with

2, 3, 4, and 5 MFs and with 50, 100, 150, 200, 250, 300, and 400 iterations for each node of

input data (Rajaee 2011). Training characteristics of the ANFIS model are presented in

Table 1. The SPI data for the current time were imported as inputs, and the SPI for on, tow,

and three time steps (12 months) ahead were considered as target.

5.5 Wavelet-ANN and Wavelet-ANFIS

In order to build hybrid Wavelet-ANN and Wavelet-ANFIS model, sub-series elements

which are derived from the use of the discrete wavelet transform on the original time series

data were used as inputs for neural network models. Each sub-series element plays a

unique role in the original time series, and the performance of each sub-series is distinct. In

the first step, the original SPI data were decomposed into a series of details using discrete

wavelet transform. The decomposition process was iterated with successive approximation

signals being decomposed in turn, so that the original time series was broken down into

Table 1 Training parameters of
the ANFIS models

Parameters Type

AND method Prod

Or method Maximum

Imp. method Prod

Aggr. method Maximum

Defuzzification method Wtaver
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many lower resolution components (Adamowski and Fung Chan 2011). All of the men-

tioned variables were decomposed to 1, 2, 3, and 4 levels by seven different kinds of

wavelets, that is, db4, bior1.1, bior1.5, rboi1.1, rboi1.5, coif2, and coif4 wavelets.

5.6 Performance comparison of models

Coefficient of determination (R2) and root mean squared error (RMSE) were used to

compare the performance of models and select the best one.

R2 ¼ 1�
PN

i¼1 ðyo � yeÞ2PN
i¼1 ðyo � �yoÞ2

ð16Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 ðyo � yeÞ2

N

s
ð17Þ

E ¼ 1�
Pn

i¼1 ðyo � yeÞ2Pn
i¼1 ðyo � �yoÞ2

ð18Þ

where yo, ye, and N are observed and estimated SPI, and number of data, respectively. In

the Nash–Sutcliffe model efficiency coefficient, an efficiency of one corresponds to a

perfect match of forecasted data to the observed data. An efficiency of zero indicates that

the model predictions are as accurate as the mean of the observed data (Pulido-Calvo and

Gutierrez-Estrada 2009).

6 Results and discussion

6.1 ANN models

In this study, several different networks were tested. Table 2 shows the R2 and RMSE for

different ANN models. The best number of neurons in the hidden layer, that is, was

determined 4 neurons and for the different time step predictions. As shown in this table,

FNN-BR (1 4 1) was the best network. This result is in contrast to the suggestion that was

expressed by Kavzoglu and Mather (2003). They suggest that the number of neurons in

hidden layer should be set as twice as the input nodes plus one. It confirms that the number

of neurons in hidden layer should be determined using a trial-and-error method. All models

forecasted the meteorological drought for one and two time steps ahead appropriately, but

for 3 and 4 months ahead, the R2 and Nash–Sutcliffe model efficiency coefficient

decreased and RMSE increased meaningfully. In other words, more time step duration less

accuracy is expected (Table 2).

6.2 ANFIS models

There is not any basic rule to delineate the number of membership functions (MFs) of ANFIS

models, and they usually determined by trial-and-error approach. To select the number of

MFs, a modeler should avoid using a large number of membership functions or parameters to

save time and calculation effort (Keskin et al. 2004). Four different types of membership

function (MF) were tested in this study including Gaussian (MFgauss), Bell-shaped (MFg-

bell), Triangular (MFtri), and Spline-based (MFpi), or Piduetoits shape (Jang 1993). ANFIS

Nat Hazards (2013) 69:389–402 397

123



models with different types of MF were run with 2, 3, 4, and 5 MFs and with 50, 100, 150, 200,

250, 300, and 400 iterations for each node of input data (Table 3).

In general, ANFIS performs more efficiently than ANN models on account of the effect

of fuzzification of the input through membership functions.

6.3 Wavelet-ANN and Wavelet-ANFIS models

In this part, Wavelet-ANN and Wavelet-ANFIS models were tested. The best ANN model

was selected to make hybrid Wavelet-ANN models. The data were grouped into 1, 2, 3,

Table 2 R2 and RMSE for different ANN models with the best number of neurons in the hidden layer
(4 neurons) and for the different predicted time steps (verification data set)

Training
algorithm

Transfer function in
the hidden layer

Predicted time steps

SPIt ? 1 SPIt ? 2 SPIt ? 3

RMSE R2 E RMSE R2 E RMSE R2 E

TRAINLM Tansig 1.81 0.89 0.80 1.91 0.85 0.80 3.02 0.78 0.71

TRAINSCG Logsig 2.2 0.83 0.79 2.41 0.81 0.77 3.59 0.76 0.65

TRAINRP Tansig 2.1 0.81 0.76 2.2 0.80 0.75 3.34 0.76 0.67

TRAINGDX Logsig 2.17 0.84 0.78 2.29 0.83 0.76 3.46 0.77 0.66

Table 3 Results of ANFIS models with the best number of membership functions (2 MF), the best iteration
(150), and different predicted time steps (verification data set)

Membership function Time step prediction

SPIt ? 1 SPIt ? 2 SPIt ? 3

RMSE R2 E RMSE R2 E RMSE R2 E

Gauss 0.089 0.90 0.79 0.092 0.89 0.77 0.094 0.89 0.69

Gbell 0.090 0.89 0.77 0.091 0.88 0.76 0.093 0.88 0.67

pi 0.089 0.91 0.83 0.091 0.89 0.82 0.092 0.90 0.73

Triangular 0.091 0.89 0.75 0.092 0.88 0.75 0.092 0.88 0.68

Table 4 Results of Wavelet-ANN models for the different predicted time steps (verification data set)

Network Time step prediction

Lt ? 1 Lt ? 2 Lt ? 3

R2 RMSE E R2 RMSE E R2 RMSE E

db 4 0.94 0.303 0.86 0.95 0.373 0.84 0.94 1.027 0.74

Bior 1.1 0.92 0.32 0.83 0.91 0.36 0.83 0.9 0.923 0.75

Bior 1.5 0.93 0.303 0.84 0.89 0.343 0.86 0.87 1.087 0.75

Rboi 1.1 0.94 0.347 0.84 0.91 0.363 0.83 0.90 0.953 0.74

Rboi 1.5 0.95 0.227 0.89 0.93 0.233 0.88 0.92 0.657 0.76

Coif 2 0.93 0.363 0.86 0.93 0.393 0.80 0.91 0.837 0.74

Coif 4 0.92 0.383 0.84 0.94 0.383 0.83 0.92 0.880 0.75
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and 4 levels. The best Wavelet-ANN models were found to forecast SPI more accurately

than both chosen ANN and ANFIS models.

Table 4 shows the results of Wavelet-ANN models with the best network (i.e. FNN-BR)

and for different predicted time steps. Moreover, Table 5 shows the results of Wavelet-

ANFIS models with the best number and type of MF (i.e. 4 membership function and bell-

shape membership function) and for different predicted time steps.

According to the monthly time-scale resolution, in the subgroup level 2, there are 2

subsets (21 month mode which is nearly yearly mode and 22 month). In fact, the duration

and time interval of data series should be considered in order to determine the appropriate

number of decomposition levels. This result is in accordance with Nourani et al. (2011)

who evaluated some artificial intelligence methods to model rainfall-runoff process.

Generally, Wavelet-ANFIS and Wavelet-ANN models were found to provide more

accurately predicted meteorological drought than ANN and ANFIS models. Also, it was

reached that Wavelet-ANFIS hybrid model is able to forecast SPI more accurately than

Wavelet-ANN. Since Wavelet-ANFIS models consisted of ANN, FL, and wavelet trans-

form, they could model SPI more accurately. Figure 3 shows the best ANN, ANFIS,

Wavelet-ANN, and Wavelet-ANFIS models that could predict SPI in a good agreement

with observed ones for both subbasins. As graphically illustrated by this figure, all models

often underestimated SPI. The order of models according to their accuracy is as following:

Wavelet-ANFIS, Wavelet-ANN, ANFIS, and ANN, respectively.

Table 5 Results of Wavelet-ANFIS models for the different predicted time steps (verification data set)

Network Predicted time steps

Lt ? 1 Lt ? 2 Lt ? 3

R2 RMSE E R2 RMSE E R2 RMSE E

db 4 0.96 0.10 0.88 0.94 0.173 0.87 0.92 0.23 0.78

Bior 1.1 0.94 0.12 0.87 0.92 0.16 0.85 0.90 0.22 0.79

Bior 1.5 0.95 0.10 0.87 0.93 0.143 0.87 0.91 1.24 0.79

Rboi 1.1 0.97 0.14 0.90 0.95 0.163 0.88 0.92 0.25 0.80

Rboi 1.5 0.98 0.097 0.93 0.96 0.10 0.91 0.95 0.19 0.86

Coif 2 0.95 0.16 0.89 0.94 0.19 0.88 0.92 0.26 0.78

Coif 4 0.94 0.13 0.90 0.93 0.18 0.89 0.92 0.27 0.79

Fig. 3 Observed and simulated SPI using selected models
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7 Conclusions

The capability of coupled Wavelet-ANFIS models in comparison with ANN, ANFIS, and

Wavelet-ANN models for one, two and three months ahead of forecasted SPI was assessed

in this study. Wholly, mentioned time series are characterized by high nonlinearity, non-

stationary, and seasonality behavior. In this study, the wavelet transform, ANN, and

ANFIS approaches were combined in order to develop two hybrid models to forecast SPI

for different time steps. At first, ANN and ANFIS models were used without any pre-

processing. Results showed that these models may be unable to cope with the nonlinearity

and seasonality behavior of data. In the second step, wavelet transform was performed on

the data and then, the pre-processed data were used as input for ANN and ANFIS models.

This research demonstrated that pre-processed data can improve SPI forecasting. Also,

results showed that Wavelet-ANFIS hybrid model had the best performance. Additionally,

it was concluded that all modeling approaches are capable nearly of forecasting SPI

accurately.
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