
ORI GIN AL PA PER

Rainfall event-based landslide susceptibility zonation
mapping

Netra Prakash Bhandary • Ranjan Kumar Dahal • Manita Timilsina •

Ryuichi Yatabe

Received: 30 July 2012 / Accepted: 7 May 2013 / Published online: 18 May 2013
� Springer Science+Business Media Dordrecht 2013

Abstract Landslide susceptibility assessment is a major research topic in geo-disaster

management. In recent days, various landslide susceptibility and landslide hazard assess-

ment methodologies have been introduced with diverse thoughts of assessment and vali-

dation method. Fundamentally, in landslide susceptibility zonation mapping, the

susceptibility predictions are generally made in terms of likelihoods and probabilities. An

overview of landslide susceptibility zoning practices in the last few years reveals that

susceptibility maps have been prepared to have different accuracies and reliabilities. To

address this issue, the work in this paper focuses on extreme event-based landslide sus-

ceptibility zonation mapping and its evaluation. An ideal terrain of northern Shikoku,

Japan, was selected in this study for modeling and event-based landslide susceptibility

mapping. Both bivariate and multivariate approaches were considered for the zonation

mapping. Two event-based landslide databases were used for the susceptibility analysis,

while a relatively new third event landslide database was used in validation. Different

event-based susceptibility zonation maps were merged and rectified to prepare a final

susceptibility zonation map, which was found to have an accuracy of more than 77 %. The

multivariate approach was ascertained to yield a better prediction rate. From this study, it is

understood that rectification of susceptibility zonation map is appropriate and reliable

when multiple event-based landslide database is available for the same area. The analytical
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results lead to a significant understanding of improvement in bivariate and multivariate

approaches as well as the success rate and prediction rate of the susceptibility maps.

Keywords Landslide susceptibility � Event-based landslide � Susceptibility zonation

1 Introduction

Landslides triggered by rainfall are common problems in tropical and subtropical regions

of the world. Repeatedly occurred landslides year after year and month after month have

led to heavy damages to property and lives throughout the world. To reduce and manage

landslide-related disasters, it is important to assess areas susceptible to landslides during

extreme rainfall events. Hence, in recent years, the assessment of landslide susceptibility,

landslide hazard, and related disaster risk has become one of the major topics of research.

In the last few decades, various landslide susceptibility and landslide hazard assessment

methodologies have been introduced with versatile thoughts of analysis. In the growing

research efforts, basically, intrinsic (e.g., geology, geomorphology, soil depth, soil type,

slope gradient, slope aspect, slope curvature, elevation, land use pattern, drainage patterns,

and so on) and extrinsic variables (heavy rainfall, earthquakes, and volcanoes) are used to

describe landslide susceptibility and hazard assessment (Siddle et al. 1991; Wu and Siddle

1995; Atkitson and Massari 1998; Dai et al. 2001; Cevik and Topal 2003; van Westen et al.

2003; Regmi et al. 2010; Ghimire 2011; Dahal et al. 2008a, b, 2012; Bednarik et al. 2012;

Kayastha et al. 2012; Pourghasemi et al. 2012). In landslide hazard assessment practice, the

term ‘‘landslide susceptibility mapping’’ is addressed without considering the extrinsic

variables in determining the probability of occurrence of a landslide event (Dai et al. 2001;

Dahal et al. 2008a, b; Ghosh et al. 2012). In 2008, JTC-1 (Joint International Society of

Soil Mechanics and Geotechnical Engineering (ISSMGE), International Society of Rock

Mechanics (ISRM), and International Association of Engineering Geology (IAEG)

Technical Committee on Landslides and Engineered Slopes) prepared the guidelines and

defined landslide susceptibility and hazard in the prospect of interaction between intrinsic

and extrinsic variables as well as frequency of occurrence of the events (Fell et al. 2008).

According to JTC-1 definition, landslide susceptibility is a quantitative or qualitative

assessment of the classification, volume (or area), and spatial distribution of landslides

which exist or may potentially occur in an area. Landslide susceptibility zoning requires an

inventory map of landslides occurred in the past together with the assessment of the areas

with the potential of landslide occurrence in future but with no assessment of frequency

(annual probability) of occurrence (Cascini 2008). Landslide susceptibility map includes

landslides which have their source in the area or may have their source outside the area but

may travel through the area or return into the area (Fell et al. 2008; Cascini 2008; Frattini

et al. 2010).

Landslide susceptibility is often defined as the propensity of an area to generate landslides

(Guzzetti et al. 2006) with susceptibility represented by a relative value in a given area. In

general, landslide susceptibility can be depicted as the physical potential of the process to

produce landslides and associated damage. Fundamentally, landslide susceptibility can be

characterized by statements beginning with ‘‘what,’’ ‘‘where,’’ and ‘‘when.’’ Unfortunately,

the ability to predict landslide susceptibility precisely is always limited; as a consequence,

the susceptibility predictions are generally made in terms of likelihoods and probabilities. In

many landslide susceptibility zonation techniques, probabilities of failure are classified as

per the distribution of susceptibility index for preparing landslide susceptibility zonation
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maps. In general, however, a landslide susceptibility zonation technique should be able to

demonstrate spatial (i.e., what will occur? and where will it occur?) and temporal occurrence

(i.e., when will it occur?) of future landslides in terms of probability.

In landslide susceptibility assessment, landslide inventory is always necessary, but most

previous studies have considered only a single-event landslide database to assess landslide

susceptibility as well as to evaluate the accuracy of the susceptibility zonation map. With

wide development of GIS and statistical data processing techniques, many different sta-

tistical or quantitative methods have been applied so far in various studies of landslide

susceptibility zonation. Such studies can be identified on the basis of the technique used,

such as probabilistic methods (Lee and Choi 2004; Guzzetti 2005, Dahal et al. 2008a, b;

Regmi et al. 2010; Ozdemir 2011), logistic regression methods (Atkitson and Massari

1998; Dai et al. 2001; Nefeslioglu and Gokceoglu 2011; Dahal et al. 2012), and artificial

neural network methods (Ermini et al. 2005; Lee et al. 2003; Gómez and Kavzoglu 2005;

Melchiorre et al. 2008; Poudyal et al. 2010).

The available literature highlights an extensive development in the landslide suscepti-

bility and hazard zoning techniques. The JTC1 has also well described the methodology for

landslide susceptibility and hazard (Cascini 2008). However, it still lacks information

about standardization of landslide susceptibility map for all regions. Following the JTC1

definition of landslide hazard, it is difficult to prepare an extreme weather-based landslide

hazard zonation map, particularly because annual probability cannot be interpreted in

terms of extreme events such as typhoon, hurricane, or cyclone. The same problem arises

in case of landslide susceptibility zonation for extreme monsoon events.

Most available scientific works have evaluated landslide susceptibility in terms of good

accuracy of landslide prediction in their study area. However, even in the same region and

similar geological and geomorphological settings, there is remarkable lack of uniformity in

methodology and accuracy of the landslide susceptibility zonation maps. An overview of

landslide susceptibility zoning practices in the last few years reveals that susceptibility

maps have been prepared to have different accuracies and reliabilities. To address this

issue, the work in this paper focuses on extreme event-based landslide susceptibility

zonation mapping and its evaluation.

The main objective of this study is to prepare a validated landslide susceptibility map of the

study area by rectifying landslide susceptibility zonation maps developed out of multiple

landslide events. Unlike other statistical methods and validation procedures, this study incor-

porates two separate event-based landslide data for the zonation mapping and validates the

obtained results using new landslide information. This work also attempts to represent a good

compromise between comprehensibility, accuracy, and efficiency of landslide susceptibility

zonation maps. The study specifically focuses at: (1) preparing InfoVal and logistic regression

models and apply them in the study area for the assessment of landslide hazard index (LHI), (2)

verifying the accuracy of bivariate and multivariate approaches for event-based landslide

susceptibility analysis, (3) evaluating the rectification procedure of landslide susceptibility

mapping, and (4) preparing a validated landslide susceptibility zonation map of the area.

2 Study area

2.1 General features

The study area, as shown in Fig. 1, lies in central north part of Shikoku Island of Japan. It

covers a little more than 30 km2 forested hilly area of Niihama city in the eastern part of
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Ehime prefecture, which is the second populous city in the prefecture with more than

125,000 residents.

The geographical location of the study area is 33�55048.5700N to 34�00037.0600N in

latitude and 133�17055.1600E to 133�25023.1500E in longitude. Surrounded by mountains

and hills on the south and east and facing Seto Inland Sea on the north, Niihama city is well

known for its Besshi copper mine in the southern mountainous region. The copper deposits

were discovered in 1690, and the mining began in the following year and was closed in

1973. As the hills of the study area are mainly composed of sedimentary rocks, base areas

of the hills are composed of debris flow deposits. Before World War II (1939–1945), the

study area was sparsely populated, and traces of old terraced farming and a few abandoned

houses are still found in the hill slopes. At present, there are no settlements on the slopes,

but hillbases are highly populated. The elevation of the study area varies from 3 to 285 m

from mean sea level, and it is surrounded by river flood plains in all directions except for

the northeast corner, where the hills have coastal cliffs facing the Seto Inland Sea.

The Niihama plain is characterized by the alluvial fan of two rivers, Kawahigashi river

and Kawanishi river, while the study area consists of well-forested hills on the eastern part

of the plain. As shown in Fig. 1, the hills are divided into two regions: Kita-yama and

Nishi-no-yama. The forest vegetation mainly consists of evergreen broad leaf and decid-

uous broad leaf types of plants. For example, Japanese red pine (Pinus deniflora), camphor

(Cinanamomum camphora), and Japanese oak (Quercus serrata and Quercus variabilis) can

be found as well-grown species, while Baby rosa (Rosa multiflora) and China root (Smilax

china) can be found as shrubs in the study area.

2.2 Geological setting

Geologically, the study area is composed of Miocene sandstone, shale, conglomerate, and

tuff deposits, which belong to the Izumi Group of Ryoke Belt (Fig. 1). The Ryoke Belt is a

well-known paired-metamorphic belt of high temperature-low pressure type and exhibits a

sharp contrast to the high pressure-low temperature type Sambagawa metamorphic belt on

the south separated by the Median Tectonic Line (MTL). It is composed of metamorphic

rocks (e.g., pelitic, psammitic and siliceous schists, and gneisses), sedimentary rocks, and a

series of granitic plutons called the Ryoke granites. The metamorphic rocks in the Ryoke

Belt occupy only 20–30 % of the belt area. This belt occupies an important area of the

outermost part of inner zone of southwest Japan, and in Shikoku Island, it is represented by

three rock units, namely late Cretaceous granitic rocks, late Cretaceous sedimentary rocks

(Izumi Group), and Miocene volcanic rocks (Sanuki Group). Particularly, the Cretaceous

granite is widely distributed in the north of Seto Inland Sea (Fig. 1).

On the northern side of the MTL, mainly in Shikoku region, a narrow belt of thick piles

of intercalated sandstone and shale together with a few thin beds of acidic tuff runs east–

west. These sediment piles are of late Cretaceous age and are collectively known as the

Izumi Group. The sediment strata generally dip at 30�–50� toward the east and form a

synclinal structure. The northern wing of the Izumi Group lies unconformably over rocks

of the Ryoke Belt, and the southern wing is in fault contact with the Sambagawa Belt. A

large part of the Izumi Group is marine, yielding fossil shells. The basal conglomerate of

the northern wing contains pebbles of granite, quartz porphyry, and mica schist, which

Fig. 1 a Location map of the study area and b simplified geological map of Shikoku, Japan (MTL—
Median Tectonic Line and BTL—Butsuzo Tectonic Line, the geological map is modified after Geological
Survey of Japan (2002)

c
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were all derived from the Ryoke Belt on the north. The geological unit of the study area

consists of 84 % alternating bands of sandstone and shale of the Izumi Group.

2.3 Rainfall and weather

Japan has a very diverse climate. In global climatic environment, Japan belongs to a

temperate environment with cold winter and hot summer. This may be partially accounted

for by the presence of a cold current, which extends farther south in winter than in summer

on both sides of the Japan islands, and by their position in the path of the monsoon winds.

Within the Japan islands, differences in latitude produce marked differences in climate and

the great variation in altitude produces much local diversity irrespective of latitude.

Shikoku region has a mild climate but it comparatively receives heavy precipitation.

The mean annual precipitations in different parts of Shikoku range from 1,000 and

3,500 mm, which are nearly 20 % greater than the mean precipitation of whole Japan,

where a maximum mean precipitation of around 1,950 mm in Hokuriku (northern) region

and a minimum mean precipitation of around 950 mm in Hokkaido region have been

recorded. Shikoku Island usually receives extensive typhoon rainfalls in southern part

rather than in northern part; as a result, rainfall-related slope failure phenomena are

common in central and southern Shikoku.

A lower value of mean annual precipitation in Shikoku is represented by northeast area

while in contrast, the southern Shikoku Mountain Range is usually hit by an annual rainfall

of 3,500 mm, which is significantly high in the whole country. Orographic effect of the

Shikoku Mountain Range is the main cause of extreme rainfall in the southern part of

Shikoku (Fig. 2). The prevailing winds (moisture-laden vapor) from the Pacific Ocean get

intercepted by the mountains and cause extreme rainfall on the south of the mountains. The

northern part of Shikoku including the study area, however, has Mediterranean type of

climate and is in the rain shadow zone if the Pacific Ocean side moisture-laden vapors are

supposed to cause rainfall in Shikoku. Although nearly 30 % days in a year are rainy, the

period of comparatively heavy precipitation in Shikoku is June–September. The causes of

rainfall, in an order of importance, are typhoons, low atmospheric pressures, seasonal rain

fronts, and thunderstorms. In particular, the heavy precipitations exceeding an hourly value

of as high as 100 mm are caused by typhoons in July to September.

3 Methodology

Both bivariate and multivariate statistical approaches have been considered for assessing

the landslide susceptibility indexes. In the bivariate approach, the InfoVal model was used,

while in the multivariate approach, the logistic regression model was used. Both these are

well-established models and have been used in different parts of the world (such as

Guzzetti et al. 1999; Dai and Lee 2002; Ohlmacher and Davis 2003; Zhu and Huang 2006;

Chen and Wang 2007; Akgün and Bulut 2007; Chauhan et al. 2010; Dahal et al. 2012). The

models and the data preparation details are described in the following subsections.

3.1 InfoVal model

Proposed by van Westen (1997), the Information Value (InfoVal) method for landslide

susceptibility analysis only considers probability of landslide occurrence within a certain

area of each class of a landslide causative factor. This method is also regarded as a
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simplified version of the method applied in Yin and Yan (1988), which determines the

weight of a particular class in a causative factor using the following equation.

Wi ¼ loge

Dclas

Dmap

� �
ð1Þ

where Wi is the weight given to all classes of a particular landslide causative factor layer,

Dclas is the landslide density within the landslide causative factor class, and Dmap is the sum

of the landslide density within the entire landslide causative factor class layer. InfoVal

method is one of the very familiar statistical methods of landslide susceptibility study, well

practiced in different parts of the world (e.g., Yin and Yan 1988; Jade and Sarkar 1993; van

Westen 1997; Cevik and Topal 2003; Oztekin and Topal 2005; Pantha et al. 2008; Saha

et al. 2005; Dahal et al. 2010).

3.2 Logistic regression model

Logistic regression model is used to determine the relationship between landslide occur-

rence and related factors (Guzzetti et al. 1999; Dai and Lee 2002; Ohlmacher and Davis

2003; Ayalew and Yamagishi 2005; Lee 2005; Zhu and Huang 2006; Chen and Wang

2007; Akgün and Bulut 2007; Chauhan et al. 2010; Bui et al. 2011; Dahal et al. 2012). This

model is useful when the outcome variable or dependent variable is binary or dichotomous.

The dependent variable in this analysis is the absence or presence of a landslide.

Fig. 2 Geomorphological map and isohyets of the Shikoku Island. The isohyets of the study area show that
the mean annual precipitation of the study area is about 1,500 mm
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Considering n number of independent variables, x1, x2, x3, …, xn, that affect landslide

occurrences, the vector X = (x1, x2, x3, ……, xn) is defined. In logistic regression analysis,

the logit y is assumed as a linear combination of independent variables and is given as

follows.

y ¼ b0 þ b1x1 þ b2x2 þ b3x3 þ � � � þ bnxn ð2Þ

where b0 is a constant of the equation, and b1, b2, …, bn are the coefficients of independent

variables, x1, x2, x3, …, xn. For landslide hazard assessment, the dependent variable is a

binary variable, with values of 1 or 0, representing the presence or absence of landslides.

Quantitatively, the relationship between the occurrence and its dependency on several

variables can be expressed as follows (Hosmer and Lemeshow 2000).

P ¼ 1=1þ e�y ð3Þ

where P is the estimated conditional probability of landslide occurrence. From Eqs. 2 and

3, the natural logarithm of the odds, log{P/(1 - P)}, is obtained to have a linear rela-

tionship with the independent variables as in Eq. 4.

log P=1� P

� �
¼ b0 þ b1x1 þ b2x2 þ b3x3 þ � � � þ bnxn ð4Þ

The goodness of fit of the model was evaluated by Hosmer–Lemeshow test (Hosmer

and Lemeshow 2000). The sign of estimated coefficient of a dependent variable determines

the effect of that variable on the probability of landslide occurrence. So, these values were

utilized to decide the final landslide susceptibility indexes (LSI) of the study area.

There are three main types of sampling practices in logistic regression modeling. First,

use of all data from the whole study area, which undoubtedly creates a situation that the

comparison is not the same for landslide and non-landslide pixels (Guzzetti et al. 1999;

Ohlmacher and Davis 2003). Second, all landslide pixels and an equal number of non-

landslide pixels are selected for regression analysis to obtain a regression equation. This

method minimizes the bias in the data (Zhu and Huang 2006; Das et al. 2010; Ramani et al.

2011). Non-landslide pixels from landslide-free area can be obtained by random sampling

(Chang et al. 2007; Das et al. 2010) or buffering landslide boundary at some distance

(Ramani et al. 2011). The third practice involves dividing the data as training and vali-

dating according to variation in datasets. There are two cases in this method: unequal

pixels (Atkitson and Massari 1998; Van Den Eeckhaut et al. 2006) and equal proportion of

landslide and non-landslide pixels (Dai and Lee 2002; Bai et al. 2010). In this study, we

have used all landslide pixels and an equal number of non-landslide pixels to obtain

logistic regression equations based on the two landslide events. Finally, the regression

equations were used to obtain landslide susceptibility indexes for the first and second

landslide events separately.

3.3 Data collection

Data collection and preparation of a spatial database are an essential first step for the

landslide susceptibility zonation, which help extract relevant causative parameters. This is

followed by the assessment of landslide susceptibility using the relationship between

landslides and causative factors in bivariate and multivariate models, and the subsequent

validation of the results. For modeling in InfoVal and logistic regression, a number of

thematic data of the causative factors were considered. They include (1) slope, (2) slope
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aspect, (3) distance to drainage, (4) sediment transport index, (6) relief, (7) drainage

density, (8) geology, and (9) soil type. Field surveys were also conducted for data col-

lection and preparation of data layers of various factors. These data sources were then used

to generate various thematic layers using GIS. Methodological descriptions of preparing

the data layers are given in the subsequent subheadings and the prepared data layers are

presented in Fig. 3.

3.3.1 Landslide characteristics and inventory maps

A landslide inventory is the simplest map of observable landslides in a target area. For this

study, depending on the landslide events, three landslide inventory maps were prepared.

The study area was hit by one extreme seasonal rain front in 2000 and by two typhoon

events in 2004. In September 2000, the seasonal rain front-related extreme rainfall trig-

gered a total of 53 landslides in the study area with greater failure concentration in

Kitayama area than Nishi-no-yama area. In 2004, the whole Japanese archipelago was hit

by a total of 10 typhoons, while the Shikoku Island suffered extensive damage in nine of

Fig. 3 Various data layers used in the susceptibility assessment
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them. Typhoon 0423 and Typhoon 0421 mostly affected Ehime, Kochi, and Kagawa

prefectures while Typhoons 0404, 0406, 0410, 0411, 0415, 0416, and 0418 caused an

extensive damage including fatal loss in Kochi, Tokushima, and Ehime prefectures (Hiura

et al. 2005; Dahal et al. 2008b, c, 2011).

Niihama area was also badly affected by the typhoon rainfalls of September–October

2004, which triggered a large number of landslides and caused a great loss of life and

property. Rather, Niihama was the most affected area in Ehime Prefecture in 2004

typhoons. It was later understood that hourly rainfalls exceeding 50 mm and total 24-h

rainfalls exceeding 300 mm were the main causes of slope failures at the selected hilly area

(Dahal et al. 2006). It was interesting to note that more landslides occurred in October than

September. A total of 424 landslides were identified in September, while this number was

1,396 in October. In this paper, for an easy reference, the September 2000 landslides are

referred to as first event landslides, the September 2004 landslides are referred to as second

event landslides, and the October 2004 landslides are referred to as third event landslides.

The event rainfall of each landslide event and rainfall pattern of the study area are illus-

trated in Fig. 4. Rainfall data of last 38 years suggested that maximum value of annual

rainfall, one-day rainfall, and 1-h rainfall achieved in 2004.
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Fig. 4 Rainfall in the study area, a event rainfall in September 2000, b event rainfall in September 2004,
c event rainfall in October 2004, d annual rainfall pattern of Niihama area, (SD standard deviation),
e maximum 1-h rainfall of Niihama area in the period of 1976–2012, f maximum one-day rainfall of
Niihama area in the period of 1976–2012
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In the inventory map, only primary failures were considered in delineating the land-

slides. Aerial survey data availed by Ehime Prefecture Sabo Division were the primary

source of landslide delineation for all three events. However, the landslide scars mapped in

the field as well as referred from the database of Ehime Prefecture Sabo Division were

revised over Google Earth images before the final landslide inventory maps for all three

events were prepared.

The first and second event landslides were used to assess landslide susceptibility index

(LSI) of the study area through both InfoVal and logistic regression modeling and to

prepare the zonation maps. A total of four zonation maps were prepared (two through

InfoVal model and two through logistic regression model). Each LSI map was then divided

into 100 classes of susceptibility levels, and two classified LSI maps were rectified by

merging the same susceptibility level. Finally, predictability of the rectified susceptibility

zonation maps of each model was evaluated by prediction rate and success rate (Chung and

Fabbri 2003) estimated from area under the ROC (receiver operating characteristic) curve

method.

3.3.2 DEM-based causative parameter

A digital elevation model (DEM) of the terrain is a key to generate various geomorpho-

logical parameters that control landslide activities in an area. For the study area, a 10-m

DEM is available, which was used to derive geomorphology-related thematic data layers

such as slope, aspect, relative relief, distance to drainage, drainage density, and sediment

transport index.

Field measurements revealed that most landslides occurred on slopes of 20� to 30�. So, in

this particular study, the slope data layer is comprised of five classes as\10�, 10� to 20�, 20�
to 30�, 30� to 40�, and[40� (Fig. 3). Likewise, as a frequently considered terrain dataset, the

direction of maximum slope of the terrain surface, referred to as slope aspect, of the study

area was divided into nine classes of N, NE, E, SE, S, SW, W, NW, and Flat (Fig. 3). Both the

slope and aspect maps were prepared in ILWIS 3.7 platform. These classified slope and

aspect maps were then used to calculate LSI through InfoVal method, while the same pixel

values of slope and aspect were also used in logistic regression modeling.

Relative relief is another DEM-derived parameter, which is defined as the maximum

height dispersion of a terrain normalized by its length or area. In this study, it was

computed as the difference between maximum and minimum elevations within a given

relief class, and a relief map with a total of five classes at an interval of 50 m was prepared

(Fig. 3). This relief map was used in InfoVal modeling, while for the logistic regression

modeling, the elevation values from the DEM dataset were directly used.

As most of the landslides in the study area were found to have occurred along the streams,

the relative location of a landslide with respect to stream was considered to be one of the

important geomorphology-related causal factors. So, a distance-to-drainage map was also

prepared on the basis of field observations as well as a general understanding that landslides

are more frequent along the streams due to groundwater movement toward the streams, toe

cutting, and upslope erosion. In order to prepare the distance-to-drainage map, the drainage

segment map was first rasterized and the distance to drainage was calculated in meters. The

resultant map was then divided into 7 classes as\10, 10–20, 20–30, 30–50, 50–70, 70–100,

and[100 m. The prepared raster map was used in InfoVal modeling, while for the logistic

regression modeling, the pixel values were directly considered (Fig. 3).

During and after rainfall events, the surface water generally flows from convex terrains

and accumulates in concave terrains. This process is known as flow accumulation, which is
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a measure of terrain that contributes to the accumulation of surface water. Since the flow

accumulation also governs sediment transportation index (STI) of topographic hollows,

STI was also considered to be a relevant parameter in this study, which accounts for the

effect of topography on erosion process. As per the histogram information of sediment

transport index values in the study area and equal area distribution, the STI values were

classified into six categories as \10, 10–20, 20–30, 30–50, 50–100, and [100 m, and an

STI map was prepared (Fig. 3) for the InfoVal model analysis. In logistic regression

analysis, however, the pixel values were directly used to obtain the regression equations.

3.3.3 Drainage density

Drainage density is a ratio of total length of streams in a drainage basin to the total

projected area of the basin. In this study, however, the drainage density was not computed

in the basin scale; it was rather calculated in 1-km grid scale of the study area and classified

into five categories as very low drainage density (\0.001 km-1), low drainage density

(0.001–0.003 km-1), medium drainage density (0.003–0.005 km-1), high drainage density

(0.005–0.008 km-1), and very high drainage density ([0.008 km-1). The classified

drainage density map was then used in InfoVal modeling, but in the logistic regression

modeling, pixel values of the drainage density were used instead.

3.3.4 Geological map

Previous studies have revealed that geology plays a major role in susceptibility of a slope

to landsliding. Different geological units are found to have different susceptibilities for

landslide occurrence. In this study, two geological parameters, that is, lithology and

proximity to fault–fold, were considered for the analysis. Sandstone, mudstone, tuff, and

conglomerate are the main lithological units of the study area. The geological map by

Miyahisa et al. (1976) was referred for the preparation of lithological map and fault–fold

proximity map (Fig. 3).

3.3.5 Soil map

Surface soil type greatly influences the occurrence of shallow landslides which is also true

in northern Shikoku (Dahal et al. 2006, 2008b, 2011). The soil map prepared by Simizu

and Tanbara (1976) was used in this study (Fig. 3). They have classified the top soil of the

study area into five formations, namely Otani 1, Teranoo, Tsunatsukeyama 1, Tsunatsu-

keyama 2, and Tsunatsukeyama 3. Otani 1 is the Pleistocene sandy soil, which is basically

found in topographic hollows. Teranoo is a thin-layered residual soil developed basically

on sandstones of the Izumi Group. It consists of strongly acidic fine sandy soil and is

usually found on steep slopes. Shallow failures and top layer erosion are very common in

Teranoo soil slopes. Tsunatsukeyama 1 formation is developed in topographic hollows as

well as ridge areas. It consists of brownish, relatively dry residual soil deposited over

sandstone and shale of the Izumi Group. Likewise, Tsunatsukeyama 2 formation is found

just below Tsunatsukeyama 1 formation. It is widely distributed in the study area and many

landslides can be found in this formation. It also consists of many angular fragments of

bedrock and the soil is sandy in nature in many places. Tsunatsukeyama 3 is another forest

soil formation, but it has volcanic ash in lower part. This soil mass is particularly sup-

portive to enhanced growth of Japanese cedar and cypress.
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4 Analysis and results

4.1 Landslide characteristics

Most of the landslides in the study area can be classified as shallow debris slides (based on

Varnes 1984). The main features of the 2004 September and October landslides (i.e.,

second and third event landslides) are as follows.

• In general, they can be identified as translational slides, rotational slides, and a

combination of both on the basis of the shape of the failure surface (Fig. 5). The

translational slides were the most dominant failure types (more than 90 %) (Dahal et al.

2006, 2008c).

• The volume of failed mass was generally in a range of a few tens to a few hundreds of

cubic meters.

• In most cases, majority of the debris slides and flows were found to be shallow with a

failure depth of less than 2 m.

• Bedrocks were well exposed after the slide.

• Many of the landslides could be identified as translational debris slides occurring first

on a steep zero-order valley or topographic hollow and then flowing through a first-

order stream channel. Generally, the slides were found to measure several meter wide

and tens of meter long. All of these initial soil slides were found to have been mobilized

completely to transform into debris flows, which continued to erode the soil mass en

route resulting in either huge debris pile-up near the mouth of the streams or continuous

travel through the second-order streams up to a considerable distance.

• In some cases, the down-to-top failure was also noticed, and it was exactly like head

ward erosion of the first-order stream onto the topographic hollow at an extremely high

rate of erosion.

• Finally, the field observations also revealed that the most landslides occurred in natural

as well as man-made slopes with thick residual or colluvial deposits and strongly

weathered bedrock of sedimentary origin.

The inventory map prepared out of all events of landslides considered in this study is

shown in Fig. 6.

Translational Failure Rotational Failure Compound Failure

Rectangular Shape U-shape V-Shape

a

b

Fig. 5 Schematic representation of failure pattern observed in study area after 2004 typhoon. a Longitudinal
section, b transverse section

Nat Hazards (2013) 69:365–388 377

123



4.2 Data analysis

4.2.1 InfoVal model

To evaluate the contribution of each causative factor to landslide susceptibility, both first

and second event landslide inventory data layers were separately compared with various

thematic data layers. For this purpose, the basic equation of InfoVal method (i.e., Eq. 1) is

converted into Eq. (5) in terms of numbers of pixels.

Wi ¼ Loge

Npixa

Npixb

�P
NpixaP
Npixb

� �
ð5Þ

where Wi is weight given to a certain parameter class (such as soil formation or slope

class), Npixa is the number of landslide pixels in a certain parameter class, and Npixb is the

total number of pixels in a certain class of causative factor. The natural logarithm is used to

take care of large variation in the weights.

All thematic maps of the considered causative factors were rasterized in a pixel size of

10 m 9 10 m and were combined with the landslide inventory map for calculating the

LSI. The calculation was basically carried out through a script file written in ILWIS 3.7

and consisting of a series of GIS command to support Eq. (5). The calculated weight values

are either positive or negative. If a positive weight value is obtained, the causative factor is

considered to favor the occurrence of landslides, but if it is negative, the factor is con-

sidered to be ineffective. The obtained weight values were assigned to the classes of each

thematic layer, and the resultant weighted thematic maps were overlaid and numerically

Fig. 6 Landslide inventory map of the study area showing distribution of all landslide events

378 Nat Hazards (2013) 69:365–388

123



added to produce an LSI map. The weight integration approach used for each landslide

event is as follows.

Wij ¼ WiSlope þWiAspect þWiDrnDen þWiDisDrain þWiDisLinea þWiGeology

þWiSoil þWiRelief þWiSTI

ð6Þ

where WiSlope, WiAspect, WiDrnDen, WiDisDrain, WiDisLinea, WiGeology, WiSoil, WiRelief, WiSTI,

respectively are distribution-derived weights of slope, slope aspect, drainage density,

distance to drainages, distance to lineaments, geology, soil formations, relief, and sediment

transport index factor maps, for InfoVal method. The suffix ‘‘j’’ in Eq. (6) represents a

particular class in the causative factors.

Finally, the calculated probability was crosschecked for reliability by ROC (receiver

operating characteristics) curve method. The landslide susceptibility probability index

based on the first event landslides resulted in an ROC value of 0.826, while the second

event landslide yielded an ROC value of 0.772 (Table 1).

4.2.2 Logistic regression model

As also mentioned in previous section, all landslide pixels and an equal number of non-

landslide pixels were used to obtain logistic regression equations for two landslide events.

As the dependent variable is dichotomous and the relationship between the dependent

variables and independent variables is nonlinear, logistic regression model was used on the

causative factors. In this study, geology and soil formation thematic maps were categorized

into various formations. As each parameter was a nominal variable, it was converted into a

numeric variable by coding. For this purpose, landslide density (Carrara 1983) was used

because it avoids the creation of an excessively high number of dummy variables. The

following equation was used for the calculation of landslide normalize densities in each

class of causative factors.

LD ¼
li=aiPn
i¼1

li=ai

ð7Þ

where LD is landslide density, ai is the area of ith class of a causative factor (such as slope

class of 10� to 20�), li is landslide area within ith class of the factor (such as slope of 10� to

20�), and n is the total number of classes of a particular causative factor. All parameter

maps were then overlaid with the landslide inventory map so as to calculate landslide

densities for each causal factor based on Eq. (7). Moreover, all classes of causative factors

were converted into numerical variable of landslide density. The landslide inventory map

Table 1 Overall statistics of logistic regression models and ROC values of InfoVal model based on first
and second landslide events

Events of

landslide

Hosmer–

Lemeshow test

-2log

likelihood

Cox and

Snell R2
Nagelkerke

R2
ROC value

of logistic

regression

model

ROC value

of InfoVal

model
v2 df sig

First event

landslide

11.896 8 0.156 494.51 0.261 0.347 0.797 0.826

Second event

landslide

12.784 8 0.120 13222.69 0.149 0.199 0.726 0.772
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domain was also changed from landslide presence and landslide absence to numerical

variables as 1 and 0, respectively. All spatial databases of causative parameters and

landslide inventory were exported to a statistical package (SPSS in this study) for logistic

regression analysis of first and second landslide events. Finally, the following logistic

regression equations were extracted out of the regression analyses.

log(p=1� pÞ ¼ �4:627þ Slopeð0:094Þ þ Aspectð0:005Þ
þ DrnDenð173:907Þ þ DisDrainð0:008Þ
þ DisLineað�0:002Þ þ Geology(� 0:471Þ þ Soil(0:411Þ
þ Relief(0:005Þ þ STI(� 0:001Þ

ð8Þ

log(p=1� pÞ ¼ �1:88977þ Slopeð0:0417Þ þ Aspectð�0:003Þ þ DrnDenð54:0731Þ
þ DisDrainð�0:0199Þ þ DisLineað0:0017Þ þ Geologyð0:7410Þ
þ Soilð�0:2169Þ þ Reliefð�0:0019Þ þ STI� ð0:001Þ

ð9Þ

The data used in the logistic regression modeling and overall model statistics of the

regression analysis conducted for both landslide events are presented in Table 1. Hosmer–

Lemeshow test shows that the goodness of fit of the equation can be well accepted because

the significance of chi-square is 0.156 for the first event landslides and 0.126 for the second

event landslides. In Hosmer–Lemeshow test, if the significance of chi-square value is less

than 0.05, the logistic regression model cannot be accepted (Zhu and Huang 2006; Chen

and Wang 2007; Dahal et al. 2012). The Cox and Snell R2 values and Nagelkerke R2 show

that the independent variables can explain the dependent variables in an acceptable way for

both the landslide events. Likewise, the ROC values of probability obtained from the first

and second event landslides are 0.797 and 0.726, respectively (Table 1). For a valid

regression model, the ROC value must be greater than 0.5 (Hosmer and Lemeshow 2000).

So, the logistic regression models for both the landslide events in this study are valid and

are in well acceptable range.

4.3 Bivariate versus multivariate and zonation maps

From the ROC of the InfoVal and logistic regression models for landslide susceptibility

assessment, it is understood that the InfoVal model has a slightly better accuracy than the

logistic regression model. It led to a difficulty to decide precisely which model better

predicts new landslides (i.e., the third event landslides). Therefore, the LSIs obtained from

both the logistic regression and InfoVal models were considered for preparing landslide

susceptibility zonation maps of the study area. Considering the InfoVal model based on the

first and second event landslides, LSI-1 and LSI-2 maps were prepared, while considering

the logistic regression model based on the same event landslides, LSI-3 and LSI-4 maps

were prepared, as indicated in Fig. 7. LSI-1 and LSI-3 suggest that the southern part of the

study area has higher susceptibility index, whereas LSI-2 and LSI-4 indicate that northern

part of the study area is highly susceptible to landslides.

4.4 Rectification of zonation maps

When LSI-1, LSI-2, LSI-3, and LSI-4 are compared with the third event landslides, the

ROC value is obtained to be \0.65, which infers that the prediction rate is weak for all

susceptibility maps. So, any of these maps cannot be considered as the best suitable

susceptibility maps for the study area. According to the definition, after the landslide
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susceptibility assessment, a zonation map should accurately indicate potential zone of

occurrence of future landslides. In most cases, previous studies on statistical landslide

hazard assessment, in most cases, indicate that the accuracy of susceptibility maps ranges

from 65 to 85 %. Many comparative studies also suggest that the accuracy of a landslide

susceptibility map relies more on good data rather than the model approaches, and in

general, the multivariate approaches yield better prediction rates than the bivariate

approaches.

If LSI-1, LSI-2, LSI-3, and LSI-4 are visually analyzed for spatial distribution of the

susceptibility zones, it is understood that many pixels of lesser susceptibility zones of LSI-

1 or LSI-3 are higher susceptibility zones of LSI-2 or LSI-4. The same problem can be

noticed in medium and higher susceptible zones too. So, LSI-1 and LSI-3 need to be

combined with LSI-2 and LSI-4, respectively, in such a way that the higher susceptible

zones are accommodated and preserved well in the zonation map. For this purpose, a

rectification process was done, in which, all LSI maps of the two events (i.e., LSI-1 and

LSI-2 based on the InfoVal model and LSI-3 and LSI-4 based on the logistic regression

model) were first divided into 100 classes of low to high LSI values as per the cumulative

distribution percentage of the values. By using ‘‘raster mask’’ operation in ILWIS, each

class was extracted from LSI-1, LSI-2, LSI-3, and LSI-4 maps. As a result, a total of 400

maps were prepared; each map has hazard zonation class of 1, 2, 3…100 %. The zonation

class maps were denoted by LSI-1-1 %, LSI-1-2 %, LSI-1-3 %,…, LSI-1-100 % for maps

generated from LSI-1 and LSI-2-1 % and LSI-2-2 %, LSI-2-3 %… LSI-2-100 % for maps

generated from LSI-2. The same procedure was considered for other maps. Then, the maps

of the same classes and generated with the same model, such as LSI-1-1 % and LSI-2-1 %,

were merged to obtain a combined map of only 1 % class of low to high LSI values in LSI-

1 and LSI-2 maps. Following this procedure, a total of 200 merged maps were generated

out of the 400 maps. To obtain a single zonation map having zonation from 1 to 100 %

classes of low to high LSI values of LSI-1 and LSI-2 maps, all 100 maps of each model

Fig. 7 Landslide susceptibility index maps by InfoVal model and susceptibility probability maps by
logistic regression model. a LSI-1 was prepared through InfoVal modeling using the first event landslides,
b LSI-2 was prepared through InfoVal modeling using the second event landslides, c LSI-3 was prepared
through logistic regression modeling using the first event landslides, and d LSI-4 was prepared through
logistic regression modeling using the second event landslides
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were again merged, and a single raster map was prepared. When joining 100 maps of

combined 1–100 % classes of low to high LSI values estimated from the InfoVal model,

many overlapping zonation class pixels were identified, but they were replaced by higher

zonation class pixels. For example, if 1 % zonation class of LSI-1 map and 2 % zonation

class of LSI-2 map were in the same pixels after the merge, the priority was given to the

2 % zonation class of LSI-2 map. Following the same rule of prioritizing, a single raster

map (LS1) having 1–100 % classes of low to high LSI values of LSI-1 and LSI-2 maps was

prepared. The same procedure was followed to merge LSI-3 and LSI-4 maps and to

generate LS2. A diagrammatical flow of the rectification procedure is given in Fig. 8. The

merging procedure was written as a script consisting of a number of commands in Ilwis

3.7, and the same script was used for merging LSI-1 and LSI-2, and subsequently for LSI-3

and LSI-4.

4.5 Validation of susceptibility map

The classified raster maps obtained with 1–100 % classes of low to high LSI values were

compared with the third event landslides for the estimation of prediction rate. As indicated

in Fig. 9, the prediction rate as interpreted from the area under the ROC curve for LS1 map

as obtained from the InfoVal modeling is 0.757, while that for LS2 map as obtained from

the logistic regression modeling is 0.778. It indicates that in the LS1 map, if 30 % of the

classes have high landslide susceptibility value for future landslides, 70 % of the landslides

can be correctly fit. For LS2 map too, the same is true. For this level of accuracy, the

logistic regression model was considered more suitable for the study area. Then, the final

classified landslide susceptibility map through multivariate modeling was prepared, as

presented in Fig. 10. To prepare the final zonation map, five susceptibility classes as very

low (\20 % class of low to high LSI value), low (20–40 % class of low to high LSI value),

moderate (40–60 % class of low to high LSI value), high (60–80 % class of low to high

LSI value), and very high ([80 % class of low to high LSI value) were considered

(Fig. 10). Figure 11 demonstrates the distribution of the third event landslides in the final

susceptibility zonation map, which is evident that the results are very promising. The high

susceptibility (HS) and very high susceptibility (VHS) classes cover a total of about 84 %

of the third event landslides.

5 Summary and discussion

In this study, we have tried an integrated methodology for reliable landslide susceptibility

zonation mapping. We have used bivariate and multivariate approaches for the same

instability factor database to generate the landslide susceptibility maps. The JTC-1

guidelines suggest a tool for landslide susceptibility zonation taking into account the

frequency of landslide events. However, an annual value of landslide frequency is not

always available, particularly in areas of monsoon- or typhoon-related rainfall. This study

has addressed this problem by preparing an event-based landslide susceptibility zonation

map.

The study also emphasizes the importance of collecting event-based landslide data. The

ancillary data sources, such as Google Earth images and field visit, have also largely helped

to revise the existing event-based landslide data. In the estimation of temporal probability

of landslides, the landslide databases of three extreme events have certainly enhanced the

quality of the probability maps. Up until now, most research studies have considered only a
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single-event-based landslide database for both modeling and validation. Some researchers

have also used old landslides for modeling and new landslides for validation. In this study,

however, we have used two event-based landslide databases to come out with a number of

zonation maps, which are then rectified to yield the final susceptibility zonation map for the

study area. This process has drastically enhanced the quality and accuracy of the zonation

map.

In the initial stage of this work, the susceptibility indexes obtained from the first event

landslide-based bivariate and multivariate models were evaluated for the predictability by

Validation of 
rectified maps
with 3rd event 

landslides

LSI-1 Map

LSI-2 Map LSI-3 Map

LSI-4 Map

Prediction rate and best 
model selection

Logistic Regression Model

100 maps of each class 100 maps of each class

Merging of class maps
Rectification

1% 
class

1% 
class

LSI-2LSI-1

LS1

Merging of class maps
Rectification

1% 
class

1% 
class

LSI-4LSI-3

LS2

InfoVal Model

Final landslide 
susceptibility zonation map

2nd Event-Landslides

1st Event-Landslides

Fig. 8 Rectification procedure and preparation of final landslide susceptibility map, details are in text
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using the second and third event landslide database. At this stage, the prediction rate was

below 0.65. Even when the second event landslides were used to estimate the probability

and the third event landslides were used to evaluate the predictability, the prediction rate

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Percentage of predicted landslides from 
high to low LSI

P
er

ce
nt

ag
e 

of
 o

bs
er

ve
rd

 la
nd

sl
di

es

Prediction rates: 0.778 
(Logistic Regression)
Prediction rates: 0.757 
(InfoVal)

Fig. 9 Prediction rate curves for
the InfoVal and logistic
regression models after the
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Fig. 10 Final landslide susceptibility zonation map of the study area obtained through the logistic
regression modeling
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was still below 65 %. This clearly suggests that a single-event-based landslide suscepti-

bility zonation cannot adequately express the future probability, although it often results in

a good success rate. To overcome this drawback with the statistical methods of landslide

susceptibility zonation, multiple event-based landslide databases may be taken into

account. To estimate the probability of future landslide occurrences, event-based proba-

bility zonation maps should be combined together to generate a reasonably accurate

landslide susceptibility zonation map.

The validation results show that the multivariate model is more accurate than the bivariate

model for the area considered in this work. Other researchers have also found the similar results

when performing susceptibility analysis in different part of the world (Suzen and Doyuran

2004; Lee and Touch 2006; Lee and Pradhan 2007; Nandi and Shakoor 2009; Yilmaz 2010;

Van Den Eeckhaut et al. 2010; Dahal et al. 2012; Schicker and Moon 2012). In this study,

significant improvement on available method of probability modeling has been accomplished

by incorporating an event-based landslide database. Altogether, nine landslide causative fac-

tors were used for the probability evaluation, while it is also considered that incorporation of

hydrological and hydrogeological parameters (e.g., micro watershed, depth to groundwater

table, and rainfall and so on) will further increase the reliability of zonation maps.

6 Concluding remarks

Preparing a landslide susceptibility map is an essential step in landslide hazard mitigation.

In this study, an ideal terrain in the northern part of Shikoku of Japan was selected for

bivariate and logistic regression analyses to define spatial distribution of landslide sus-

ceptibilities in a scale of 1:10,000. Two event-based landslide databases were used for the

susceptibility analysis in 10 m 9 10 m pixel size, while a third event landslide database

was used in accuracy evaluation of the zonation map.

From this work, we conclude that rectification of susceptibility zonation maps is appro-

priate and reliable when multiple event-based landslide database is available for the same
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Fig. 11 Distribution of the third event landslides in shallow landslide susceptibility zonation map prepared
through the logistic regression modeling. The concentration of the third event landslides in the susceptibility
map indicates 83.66 % of landslide coverage in very high and high susceptibility levels based on the logistic
regression modeling, and \1 % new landslides return in very low zone

Nat Hazards (2013) 69:365–388 385

123



study area. The results of this work lead to a significant understanding of improvement in

bivariate and multivariate approaches as well as the success rate and prediction rate of the

susceptibility maps. The methodology described in this paper for event-based landslide

susceptibility map is expected to consolidate an understanding that the integration of

bivariate and multivariate approaches and rectification of the obtained susceptibility zona-

tion maps lead to drastically enhanced predictability of the landslide susceptibility zonation

map for a place where multi-event-based landslide database is available.
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