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Abstract One of the important recent advances in the field of hurricane/storm modelling

has been the development of high-fidelity numerical simulation models for reliable and

accurate prediction of wave and surge responses. The computational cost associated with

these models has simultaneously created an incentive for researchers to investigate

surrogate modelling (i.e. metamodeling) and interpolation/regression methodologies to

efficiently approximate hurricane/storm responses exploiting existing databases of high-

fidelity simulations. Moving least squares (MLS) response surfaces were recently proposed

as such an approximation methodology, providing the ability to efficiently describe dif-

ferent responses of interest (such as surge and wave heights) in a large coastal region that

may involve thousands of points for which the hurricane impact needs to be estimated.

This paper discusses further implementation details and focuses on optimization charac-

teristics of this surrogate modelling approach. The approximation of different response

characteristics is considered, and special attention is given to predicting the storm surge for

inland locations, for which the possibility of the location remaining dry needs to be

additionally addressed. The optimal selection of the basis functions for the response sur-

face and of the parameters of the MLS character of the approximation is discussed in

detail, and the impact of the number of high-fidelity simulations informing the surrogate

model is also investigated. Different normalizations of the response as well as choices for

the objective function for the optimization problem are considered, and their impact on the

accuracy of the resultant (under these choices) surrogate model is examined. Details for

implementation of the methodology for efficient coastal risk assessment are reviewed, and

the influence in the analysis of the model prediction error introduced through the surrogate

modelling is discussed. A case study is provided, utilizing a recently developed database of

high-fidelity simulations for the Hawaiian Islands.
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1 Introduction

Hurricane/storm risk assessment has received increased attention in the past decade, partly

in response to the destructive 2004, 2005 and 2008 hurricane seasons (Dietrich et al. 2010;

Kennedy et al. 2011a, b). A significant recent advance in this field has been the devel-

opment of high-fidelity numerical simulation models for reliable and accurate prediction of

surge responses for specific hurricane events or regions (Resio and Westerink 2008). These

models permit a detailed representation of the hydrodynamic processes, albeit at a greatly

increased computational effort, since they typically require thousands of computational

hours for each simulation. This high computational cost has created the incentive to adopt

surrogate modelling (also frequently referenced as metamodeling) and interpolation/

regression methodologies that use information from existing high-fidelity simulations, that

is, a database, to efficiently approximate hurricane/storm responses for different scenarios

that do not belong in this database. This has been further motivated by the fact that various

such databases are constantly created and updated for regional flooding and coastal hazard

studies (Resio et al. 2007; Niedoroda et al. 2010; Kennedy et al. 2012).

Though different potential implementations of the aforementioned approximation

approaches exist, one of the most important ones (Song et al. 2012) is within the context of

the joint probability method (JPM) hurricane risk assessment framework (Ho and Myers

1975; Myers 1975), a framework that has become increasingly popular in recent years

(Resio et al. 2009; Toro et al. 2010a, b; Condon and Sheng 2012). JPM relies on a

simplified description of hurricane scenarios through a small number of model parameters.

Description of the uncertainty in these parameters, through appropriate probability models,

leads to a probabilistic characterization of the coastal risk. This risk is ultimately expressed

as a probabilistic integral over the uncertain parameter space, and its estimation requires

numerical evaluation of the hurricane responses for a large number of scenarios resulting

from the adopted probabilistic description for the model parameters (Toro et al. 2007;

Resio et al. 2009; Toro et al. 2010a). Adoption of the aforementioned high-fidelity models

significantly increases the associated computational cost, making surrogate modelling

approximations a critical tool (but note not the only available approach) for efficient

implementation of JPM.

Motivated by these facts, low-cost, dimensional surge response functions were devel-

oped by Irish et al. (2009), but they only addressed the variation with respect to hurricane

storm size, intensity, and track and were restricted to hurricane surge only and limited to

specific locations of interest on the Texas coast. Udoh and Irish (2011) presented pre-

liminary discussions for extending these surge response functions to address additional

hurricane model parameters, the forward speed and heading, whereas Song et al. (2012)

recently investigated the influence of regional changes in bathymetry on the surge response

functions. Das et al. (2010) developed a methodology for selecting the most appropriate

storm within some given database, without extending their approach to interpolation within

the database. In Taflanidis et al. (2012), the use of response surface approximations (RSAs)

was proposed as a surrogate model. Though this approach cannot provide the physical

insight that the aforementioned dimensional surge response functions can, it has some

important advantages: (1) responses for a given hurricane scenario may be calculated
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rapidly for hundreds of thousands of locations in the coastal region of interest, and for any

modelled quantity representing hurricane impact (e.g. surge, wave height, runup), (2)

variation for any parameter used to describe the hurricane characteristics may be con-

sidered, and (3) new information (when available) can be directly and immediately added

in the database of high-fidelity simulations to improve accuracy. In the aforementioned

study by Taflanidis et al. (2012), though, the direct use of RSAs was considered, adopting

existing general guidelines for their implementation. There was no effort to investigate the

optimization of their characteristics (such as selection of basis functions or normalization

techniques of the response) for the specific application of interest, to discuss validation

procedures or to address potential differences in the implementation for different hurri-

cane/storm outputs.

This paper seeks to address this latter knowledge gap by discussing the systematic

implementation and more importantly the optimization of moving least squares (MLS)

RSAs for hurricane wave and surge predictions. We offer significant advancements in that

(1) the optimal selection of the basis functions for the response surface and of the

parameters of the MLS character of the approximation is examined, (2) the impact of the

number of high-fidelity simulations informing the surrogate modelling is investigated, (3)

different normalizations of the response are proposed to improve accuracy, (4) special

attention is given to predicting the surge in inland locations for which the possibility of the

location remaining dry needs to be additionally addressed, and (5) the model prediction

error introduced through the surrogate modelling is explicitly optimized, and its potential

impact in the analysis is investigated. As a case study, an application to the Island of Oahu

in Hawaii is discussed, using the high-fidelity simulation database described in Kennedy

et al. (2012).

In the following section, the general hurricane modelling approach is presented. In Sect.

3, RSAs are first reviewed, with enough information to support the understanding/insight

for the optimization problem introduced later, and then, details for implementation for the

problem of interest are discussed, extending to both the prediction of the surge in inland

locations as well as to statistical approaches for quantifying the accuracy of RSAs for

problems involving a large number of response quantities. Section 4 introduces the opti-

mization framework, including both the formulation of the objective function and

numerical tools for solving the associated optimization problem, and finally, Sect. 5 dis-

cusses the case study considered and investigates different trends in the RSA

implementation.

2 Modelling and approximation assumptions

The foundation for the approximation of hurricane/storm responses through surrogate/

interpolation models (Resio et al. 2009) is the parameterization of each hurricane/storm

event by a small number of model parameters, corresponding to its characteristics at

landfall such as (1) landfall location xo, (2) track heading h, (3) central pressure cp, (4)

forward speed vf, (5) radius of maximum winds Rm, (6) tide level et, and (7) Holland B

parameter B. Typically, a constant tide level is assumed, and the Holland B term is

related (using regional approximations) to the rest of the hurricane parameters (Resio

et al. 2009), leading to the following definition of the model parameter vector, x,

describing each hurricane scenario (for both the high-fidelity and surrogate models)
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x ¼ xo h cp vf Rm½ �T ð1Þ

where []T denotes a matrix transpose. Note that the discussions in this paper can be directly

extended to include the tide level and Holland term (or any other appropriate hurricane

characteristic) as model parameters. The implicit assumption is, though, that x is low

dimensional (includes \8–10 parameters). This is necessary for facilitating an efficient

description through a surrogate model, without requiring an overly large database to

adequately describe the variability with respect to all the model parameters. In this context,

the temporal and spatial variability of the hurricane track and characteristics prior to

landfall are typically addressed (Resio et al. 2009) by appropriate selection of the track-

history prior to landfall (e.g. giving the track a typical curvature over time for the

appropriate landfall heading), so that expected variations based on historical data are

adequately described. Figure 1 shows the different tracks from the study by Kennedy et al.

(2012) that will be later used in the illustrative example.

For characterizing, now, the hurricane/storm response in the coastal region examined

multiple variables may be of interest. Examples include (1) the storm surge (f) (still water

level, defined as the average sea level over a several minute period, (2) the significant wave

height (Hs) (possibly along with the corresponding peak period Tp), (3) the wave runup

level) defined as the sea level including runup of wind waves on the shore, or (4) the time

that normally dry locations are inundated. Response variables (1)–(3) may refer to max-

imum responses over the entire hurricane history, or to responses at specific time instances

prior to landfall. In this setting, let z(x) denote the vector of response quantities of interest

(wave, surge, and so forth) throughout all locations of interest. This vector, used ultimately

to describe the hurricane/storm impact, will be referenced herein as the response vector.

The ith component of vector z(x) is denoted by zi(x) and pertains to a specific response

variable [any of the (1)–(4)] for a specific coastal location. The augmentation of these

responses ultimately provides the nz-dimensional vector z(x). One significant advantage of

the RSA advocated here is that no constraint is imposed for nz (i.e. multiple response

outputs can be simultaneously addressed). Also, no special characteristics are exploited for

z(x) thus providing versatility to the developed methodologies. Such characteristics could

have been, for example, assumptions for specific variation patterns with respect to the

components of x (as is utilized in dimensional response function approximations).

A (120°)

B (150°)

C (180°)

D (210°)

E (240°)

165° W 160° W 155° W 150° W 145° W 

10° N 

15 ° N 

20° N 

Hawaiian 
Islands

Fig. 1 Basic storm tracks
(A–E) considered in the study
(Kennedy et al. 2012). In
parenthesis, the angle of final
approach (track heading) h
(clockwise from South) is
indicated
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For a specific hurricane/storm scenario, described by the model parameter vector x, z(x)

can be accurately estimated by numerical simulation, once an appropriate high-fidelity

model is established (Resio and Westerink 2008; Westerink et al. 2008). Surrogate mod-

elling methodologies can provide an approximation to z(x) using an available database of

such high-fidelity simulations. If ẑðxÞ denote this approximation to z(x), then the rela-

tionship between zi(x) and ẑiðxÞ is ultimately

ziðxÞ ¼ ẑiðxÞ þ ei ð2Þ

where ei is the prediction error between the surrogate model and the high-fidelity model,

assumed to be zero mean (since the contrary indicates a bias) Gaussian random variable

with standard deviation rei
. This choice of probability distribution incorporates the largest

amount of uncertainty (Taflanidis and Beck 2010), in terms of Information Entropy, under

the constraints that only the mean and variance are known. The standard deviation rei
,

assumed herein to be independent of x (note that different assumptions could be made, that

would though increase the complexity of estimating this standard deviation), can be finally

approximated by comparison of the high-fidelity and surrogate models over a set of hur-

ricane scenarios chosen to serve as validation points. This then completely defines the

prediction error ei and the relationship between zi(x) and ẑiðxÞ in a probabilistic sense. Note

that additional modelling errors can be incorporated in the relationship (2), for example the

errors introduced by the approximate description of hurricane by a small dimensional

vector x (Resio et al. 2009; Taflanidis et al. 2012) or the errors associated with the

assumptions made about tides.

As discussed in the introduction, an important application of these concepts for mod-

elling and approximation of hurricane/storm impacts is within the context of probabilistic

hurricane risk assessment. Appendix 1 reviews briefly this implementation, focusing on the

implications of using surrogate modelling methodologies and addressing the prediction

error ei.

3 Response surfaces for hurricane/storm response approximation

3.1 Problem formulation

Let x ¼ x1 � � � xnx½ � 2 < nx be the nx dimensional vector of free variables defining the

hurricane characteristics [with nx = 5 for definition (1)], z ¼ z1 � � � znz

� �
2 < nz the aug-

mented vector of response quantities of interest, and assume that a database is available

consisting of Nh evaluations (frequently referenced as observations) of the response vector

{zh; h = 1, …, Nh} for different hurricane scenarios {xh; h = 1, …, Nh}, obtained through

an appropriate high-fidelity simulation model. An important characteristic for this database

is the need to adequately describe the variability with respect to all hurricane parameters

(i.e. all components of vector x). When developing such databases, this is established by

considering for each hurricane characteristic xi a sufficient number of parameter values and

then combining these values for all components of x to create a canonical grid, excluding

combinations that are deemed improbable based on regional historical data. Further insight

for this task may be found in (Resio et al. 2009).

Once the database is established, response surface methodologies can use its informa-

tion to provide an approximation to z. For this purpose, the database is partitioned into

three different subsets (not necessarily exclusive), a larger subset (this is the main subset)
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of NS simulations {xI; I = 1, …, NS} used to establish the surrogate model (frequently

called support points), and two other small subsets, one with Nc simulations used for

optimizing the characteristics (tuning the parameters) of the response surface (frequently

called control points) {xc; c = 1, …, Nc}, and one with NE simulations {xp; p = 1, …, NE}

used to evaluate the accuracy of the surrogate model (frequently called validation points).

Note that when finally implementing the RSA (i.e. not at the development stage), the

control and validation points should be added to the support points (expand the available

database for informing RSA).

Instead of directly providing an estimate for z, the response surface can be established for a

normalized or transformed response variable vector y ¼ y1 � � � ynz

� �
2 < nz , where the

transformation is intended to improve accuracy and avoid numerical problems, for example

when z is strictly a positive quantity but it is difficult to establish a surrogate model that can

satisfy this requirement. Two common transformations we will investigate are

yi ¼
zi � li

ri

yi ¼ log
zi

ri

� �
; zi [ 0

ð3Þ

where li and ri are the mean and standard deviation, respectively, for zi over the obser-

vation set {zi
h h = 1, …, Nh}

li ¼
1

Nh

XNh

h¼1

zh
i

ri ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nh

XNh

h¼1

zh
i � lið Þ2

vuut ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nh

XNh

h¼1

zh
ið Þ

2 � l2
i

vuut
ð4Þ

Note that the first transformation in (3) leads to a zero mean (over the observation set)

variable yi with unit standard deviation, whereas the second can be implemented only when

zi is strictly positive. These two transformations will be referenced herein as linear and log,

respectively. They are both invertible, thus provide a one-to-one correspondence between

each yi and zi, and once the approximation for yi has been established, the corresponding zi

can be directly calculated.

3.2 Review of moving least squares response surface approximation for a scalar output

Response surfaces (Myers and Montgomery 2002) express any yi(x), through j = 1, …, NB

preselected basis functions bj(x): < nx ? < through introduction of coefficients aij{x}, that

can be constant or depend on the location x for which the interpolation is established. The

notation {.} is introduced to denote the latter potential dependence, and the RSA is ulti-

mately expressed as

ŷiðxÞ ¼
XNB

j¼1

bjðxÞaijfxg ¼ bðxÞT aifxg ð5Þ

where b(x) is the vector of basis functions and ai{x} is the vector containing the coeffi-

cients for the basis functions. A common choice for basis functions is a full second order

polynomial
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ŷiðxÞ ¼ ai0fxg þ
Xnx

j¼1

aijfxgxj þ
Xnx

j¼1

Xnx

k� j

aijkfxgxjxk; NB ¼
nxðnx þ 3Þ þ 2

2
ð6Þ

leading to the following definitions for vectors b and ai.

bðxÞ ¼ 1 x1 � � � xnx
x2

1 x1x2 � � � x2
nx

� �

aifxg ¼ ai0fxg ai1fxg � � � ainx
fxg ai11fxg ai12fxg � � � ainxnx

f xg½ �
ð7Þ

The coefficients ai{x} are calculated by selecting a set of NS [ NB support points,

{xI; I = 1, …, NS} (subset of the available high-fidelity simulations) and by minimizing a

weighted mean squared error over these points between yi(x) and its approximation,

leading to the following choice (Taflanidis et al. 2012).

aifxg ¼M�1fxgLfxgFi ð8Þ

where the following quantities were defined

M ¼ BTWfxgB and Lfxg ¼ BT Wfxg

B ¼ bðx1Þ � � � bðxNSÞ
� �T

; Fi ¼ yiðx1Þ � � � yiðxNSÞ
� �T

Wfxg ¼ diag w dðx; x1Þ
� �

w dðx; xNSÞ
� �� �

ð9Þ

and diag[.] stands for a diagonal matrix. W{.} ultimately corresponds to the diagonal

matrix of weights w dðx; xIÞð Þ for each support point xI, and these weights are dependent on

the distance d between that point and the point x for which the approximation is established

dðx; xIÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xnx

k¼1

xk � xI
k

� �2
v2

k

s

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v x� xIð Þ½ �T v x� xIð Þ; v ¼ diagðv1 � � � vnx

Þ
q

ð10Þ

with vk representing the relative weight for each component of xk (Taflanidis 2012).

The introduction of the distance-dependent weights establishes for each configuration

x a weighted local averaging of the information obtained by the support points that are

closer to it. Without these weights, the coefficient vector, ai, would be constant over the

whole domain for x, which means that a global approximation would be established

(global least squares). The accuracy of global approximations depends significantly on

the selection of the basis functions, which should be chosen to resemble yi(x) as closely

as possible, something that is not always straightforward. The MLS circumvents such

problems by establishing the aforementioned weighted local approximation for ai{x}

around each point in the interpolation domain (Breitkopf et al. 2005). Still, the effi-

ciency of the MLS interpolation depends on the weighting function chosen, which

should prioritize support points that are close to the approximation point and should

vanish after an influence radius Dd. This radius should be selected so that a sufficient

number of neighbouring supporting points are included to avoid singularity in the

solution for ai{x}, or equivalently so that M in (9) is invertible (this means that at least

NB support points need to be included within the domain defined by Dd, though typi-

cally a much higher value is suggested). The exponential type of weighting function

will be used in this study
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wfdg ¼ e
�ð d

cDd
Þ2k

� e�ð
1
cÞ

2k
h i

= 1� e�ð
1
cÞ

2k
h i

if d\Dd

¼ 0 else
ð11Þ

where c and k are free parameters to be selected (optimised) for improved accuracy. The

relative weights vk ultimately define the moving character of the approximation within the

different directions in the x space and should be chosen to (1) establish a normalization for

the different components of x, but more importantly (2) provide higher importance for

components that have larger influence on the values of zi(x) (Taflanidis 2012).

Finally combining Eqs. (5) and (8) yields the MLS RSA expression

ŷiðxÞ ¼ bTðxÞM�1fxgLfxgFi ð12Þ

which involves simple matrix manipulations and requires for each configuration x evalu-

ation only of the basis vector b(x) at that point as well as of matrices M-1{x} and L{x}

through Eq. (9). Once yi is obtained, then, zi may be directly calculated by the inverse of

the initial respective transformation in Eq. (3). Note that the information from the database

for zi (and ultimately yi) influences only vector Fi; thus, updated information (from new

high-fidelity simulations) can be directly incorporated into it. It is important to also stress

that this response surface approach uses no implicit assumptions for the characteristics of

zi, as such can be used for any response variable of interest.

Figure 2 presents an illustrative example for a 2-D problem; it includes a plot of the

exact function zi(x) [part (a)], the location of the support points and the value of zi(x) at

these points [part (b)] and finally, the global and MLS approximations using quadratic

basis functions [parts (c), (d)], respectively. In this case, a quadratic approximation pro-

vides a poor fit to zi(x), and so the global response surface cannot efficiently describe zi(x).

On the other hand, the MLS approach provides an accurate response surface approximation

to zi(x).

3.3 Evaluation of fit and relationship to prediction error

The fit of the RSA may be judged by evaluating some statistical measure of accuracy for

the difference between ẑi and zi for some database of validation points {xp; p = 1, …, NE}

(subset of the available high-fidelity simulations). Two such measures commonly used are

the coefficient of determination Ri
2 and the mean percent error MEi. The first is given by

R2
i ¼ 1� SSE

SST
; SSE ¼

XNE

p¼1

ziðxpÞ � ẑiðxpÞð Þ2;

SST ¼
XNE

p¼1

ziðxpÞ � �zið Þ2; �zi ¼
PNE

p¼1

ziðxpÞ
,

NE

ð13Þ

and denotes the proportion of variation in the data that is explained by the response surface

model. A larger value of Ri
2 (i.e. a value closer to 1) indicates a good fit. The mean percent

error MEi is

MEi ¼
PNF

p¼1

zi xpð Þ � ẑi xpð Þj j
,
PNF

p¼1

zi xpð Þj j ð14Þ
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Smaller values (i.e. close to zero) for MEi correspond to better fit in this case.

Finally, the standard deviation of the prediction error ei can be estimated based on these

validation points as (Grimmett and Stirzaker 2001)

rei
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NE

XNE

p¼1

ziðxpÞ � ẑiðxpÞð Þ2
vuut ð15Þ

This completely defines the probability model for the prediction error ei since it has been

already assumed to follow a zero mean Gaussian distribution. This standard deviation

provides a third measure for evaluating the fit of the response surface approximation, one

that is directly related to the statistical relationship between zi and ẑi as expressed by

Eq. (2). Smaller values for rei
indicate better fit. For meaningful evaluation, this fit rei

needs to be normalized with respect to some proper threshold (note that contrary to the Ri
2

and MEi, this third fit-measure rei
is not unitless, and thus, it needs to be normalised for

proper comparisons) with the standard deviation for zi over the observation database, ri,

providing an appropriate candidate. This leads then to the normalized prediction error

standard deviation
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Fig. 2 Illustrative example for response surface approximation implementation

Nat Hazards (2013) 66:955–983 963

123



NS ¼ rei

ri
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

NE

PNE

p¼1 zi xpð Þ � ẑi xpð Þð Þ2

1
Nh

PNh

h¼1 zi xhð Þ � 1
Nh

PNh

h¼1 zi xhð Þð Þ
	 
2

vuuut ð16Þ

3.4 Response surface approximations for entire response vector z

The approximation for the entire vector z, consisting of the response quantities of interest

in our coastal region (as discussed in Sect. 2), is finally established by approximating each

yi through Eq. (12) and is ultimately expressed in a simple matrix form as

ŷ ¼ bTðxÞM�1fxgLfxgF where F ¼ F1 F2 � � � Fnz½ � ð17Þ
The initial output vector z is then calculated by the inverse of the respective transfor-

mation in Eq. (3). Thus, the MLS response surface approximation simultaneously provides

the entire response vector of interest (that is a separate surrogate model does not need to be

implemented independently for each response variable). Note that the expressions for

b(x) and M{x} are identical to the case for scalar yi; thus, the computational burden for

approximating the entire y is similar to the one for approximating simply one of its

components yi.

The overall fit of the response surface approximation can be then evaluated by aver-

aging the coefficient of determination and mean error (ME) over all different response

variables. This then provides the average coefficient of determination, AR2, and average

mean error, AME, given, respectively, by

AR2 ¼ 1

nz

Xnz

i¼1

R2
i AME ¼ 1

nz

Xnz

i¼1

MEi ð18Þ

Similarly, with respect to the prediction error statistics, we have the average standard

deviation, AS, or the average normalized standard deviation ANS

AS ¼ 1

nz

Xnz

i¼1

rei
ANS ¼ 1

nz

Xnz

i¼1

rei

r
i

ð19Þ

3.5 Implementation for surge prediction for inland locations

Though the response surface approximation described in Sect. 3.2 is a generalized one, that

is, it does not depend on the characteristics of the response quantity zi, its implementation

for inland locations needs to additionally address the challenge that they do not always get

inundated (in other words dry locations might remain dry for some storms). Though some

scenarios in the database include full information for the storm surge fi (when location

i gets inundated), some provide only the information that the location remained dry.

One solution to this problem is to develop a surrogate model (Burges 1998) for the

binary response quantity describing the condition of the location, that is, either wet or dry.

This would require, of course, a separate surrogate model formulation for those compo-

nents of the response vector (surge in inland locations). If we additionally need to know the

storm surge, fi, some alternative approach needs to be established, one that allows each

scenario in our database to provide full, exact or approximate information for fi. To

facilitate this, the following approach is proposed. The storm surge fi is described with

respect to the mean sea level as reference point. When a location remains dry, the
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incomplete information for the exact storm surge for it is resolved by selecting (approx-

imating) as its storm surge the one corresponding to the nearest location (nearest node in

our high-fidelity numerical model) that was inundated. Figure 3 illustrates this approxi-

mation for an example with a 1-D transect (note that this approach is ultimately applied in

the context of the full high-fidelity model grid, not simply with respect to 1-D transects).

Once the database is adjusted for fi (for the scenarios for which the location remained dry),

the response surface approximation for fi follows directly the steps discussed in Sect. 3.2.

Comparison of fi to the elevation of the location (defined with respect to the mean sea level

as a reference point) provides finally the answer as to whether the location was inundated

or not, whereas the storm surge elevation for the inundated locations is calculated by

subtracting these two quantities. The latter is defined here as the height of inundation with

respect to the ground. Thus, this approach allows us to gather simultaneous information

about both the inundation (binary answer; yes or no) as well as the storm surge elevation.

More importantly, it falls within the generalized response surface model discussed in the

Sect. 3.2, as such it can be simultaneously implemented along with the other components

of response vector z, as presented in Sect. 3.4. Of course, it does involve the approximation

illustrated in Fig. 3 for enhancing the database with complete information for fi for all

hurricane scenarios.

4 Optimal selection for response surface characteristics

For a specific set of support points {xI; I = 1, …, NS}, the effectiveness, that is, fit, of the

response surface approximation given by Eq. (17) depends on

(a) Selection of type of basis functions b(x).

(b) Selection of the parameters of the weighting function w{d(x; xI)}, for example c, k
and Dd for the weighting function given by Eq. (11).

(c) Selection of the weighting vector v for the distance norm in Eq. (10).

Let s correspond to the vector representing these choices, then an optimal selection for s
may be obtained by optimizing some expression that measures the fit of the response

surface approximation. The choice for s should be the same for the entire response vector z
as it is computationally impractical to implement Eq. (12) for each of the response

Reference 
level

Scenario 1

Scenario 2

Location 1 Location 2 Location 3 Location 4

ζ3
1

ζ3
2

ζi
k: storm surge in location i for scenario k

For scenario 2, location 3 remains dry and 
closest inundated location is location 2

Coast 

Elevation of location 3

Fig. 3 Illustration of selection of storm surge for an example with a 1-D transect. Corrections for the surge
in location 3 are shown
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quantities zj separately, rather than for the entire vector as in Eq. (17). Thus, the selected

measure should quantify the fit over all response quantities of interest. Any of the

expressions provided in the previous section in Eqs. (18) or (19) can be used for this

purpose, but the prediction error statistics are a more appropriate choice since they directly

characterize the difference between zi and ẑi. These expressions, though, should be eval-

uated for a set of control points (from the available high-fidelity simulations) {xc; c = 1,

…, Nc}, that are different from the validation points. This is important so that the effec-

tiveness of the response surface approximation is evaluated using a different part of the

database from the one used to optimize its characteristics.

Using the relationships in Eq. (19), two different objective functions are thus defined

f ðsÞ ¼ 1

nzNc

Xnz

i¼1

XNc

i¼1

zi xcð Þ � ẑi xcð Þð Þ
2

ð20Þ

fnðsÞ ¼
1

nzNc

Xnz

i¼1

1

r2
i

XNc

c¼1

ziðxcÞ � ẑiðxcÞð Þ2 ð21Þ

where s ultimately influences the approximation ẑiðxÞ, a dependence that is not explicitly

noted to simplify notation. The first objective function [Eq. (20)] corresponds to sum-

mation of square errors (estimated over the control points) for all response variables,

whereas the second [Eq. (21)] additionally incorporates weights for each of the response

variables, chosen as the variance over the initial observation points. Thus, the second

choice incorporates a normalization for each of the response variables towards the overall

objective function. Similarly, weights can be incorporated for each of the response

quantities, to prioritize accuracy for the responses in a specific region. This can be

established by combining the term ð1=r2
i Þ with additional weights qi for each zi. Response

components for which it is considered critical to have better accuracy (for example, surge

in locations of importance such as emergency evacuation routes) should be given higher

weights qi to increase their contribution towards the overall objective function value.

The selection for the optimal s, denoted s*, corresponds then to a nonlinear minimi-

zation problem

s� ¼ arg min
s

f ðsÞ ½or fnðsÞ� ð22Þ

which may be solved through any appropriate numerical optimization algorithm. Note that

the relationship between f ðsÞ and s is not necessarily convex neither smooth. An easy

explanation for the latter is the following. Selection of s impacts the distance d and thus the

exact support points included in the domain Dd for each x (note that since the weights for

the remaining support points are zero they ultimately do not inform the surrogate model for

that x). Thus, changes in s can lead to abrupt changes in the predictions for some zi (when

the support points informing the surrogate model change) and ultimately abrupt changes to

f(s) (depending on the contribution of those zi’s to the total objective function). Thus,

algorithms appropriate for global, non-smooth optimization problems—such as direct-

search methods or genetic algorithms— should be chosen. In this study, the powerful

numerical optimization toolbox TOMLAB is used (Holmstrom et al. 2009), which offers a

wide range of state-of-the-art algorithms appropriate for nonlinear, global optimization

applications.

It should be pointed out that this optimization approach, relying on a single set of

control points, creates some dependency of the optimization results on the exact control
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points chosen, especially if these are not appropriately selected to represent the entire range

of the observation points. Thus, it may promote a surrogate model that provides a targeted

fit for scenarios with specific characteristics (the ones corresponding to these control

points). Two alternative approaches exist for circumventing this problem (Loweth et al.

2010). In the first one, called leave-one-out cross-validation method, each observation

point is removed from the data set to serve as a control point; then, the response surface is

built using the remaining points, and the error between the approximated and actual

response is calculated for the removed point. This is repeated for each of the observation

points, and the total value of the error is calculated by summing all these individual

contributions. The second approach, called k-fold method, is similar, but instead of sys-

tematically leaving out each observation point in turn, a random subset of k points is used

as control points whilst the remaining points are used to build the surrogate model. The

error is calculated between the approximate and actual values at each of the k control

points, and this process is repeated multiple times with the total error calculated by

summing over all repeated k-folds. Both these approaches, though, increase significantly

the cost for evaluating the objective function (and performing the optimization) as they

require formulation of the surrogate model multiple times, for different parts of the initial

database. In this study, since we are primarily interested in exploring different trends (i.e.

examine multiple cases), the single set of control points approach is adopted, as it reduces

the computational burden of the optimization effort.

5 Case study

The proposed framework for response surface implementation for hurricane (and storm)

wave/surge approximation is demonstrated here for an application to the Hawaiian Islands,

focusing on the region around Oahu and using the database described in the study by

Kennedy, et al. (2012). Both maximum (over the hurricane duration) significant wave

heights Hs and surge levels f will be used as response quantities of interest, and different

cases will be considered for the response surface implementation to investigate (a) the

impact of the transformations in Eq. (3), (b) the influence of the different objective

functions (20) and (21), (c) the differences in the approximation for different response

quantities, and (d) the impact of the number of support points informing the surrogate

model. A brief review of the characteristics for the high-fidelity simulations is given first,

and then, the discussion focuses on the surrogate modelling optimization. Finally, illus-

trative results are shown for implementation of the developed surrogate model for risk

assessment, emphasizing the computational benefits.

5.1 High-fidelity model details

The model used in the development of the database of high-fidelity data to predict the

surge and wave response was a combination of the ADCIRC and SWAN numerical models

(Kennedy et al. 2012). The computational domain for the high-fidelity model encompasses

a large portion of the northern Pacific Ocean from 0 to 35� North and from 139 to 169�
West. The unstructured Hakou-2010-r2 grid (Kennedy et al. 2012) resolves the deep ocean

with 10-km elements, incorporates all the main Hawaiian Islands (Hawai’i, Maui,

Kaho’olawe, Lana’i, Moloka’i, Oahu, Kauai, and Ni’ihau), represents Oahu with signifi-

cant detail up to 30 m resolution and extends inland to the 4-m-elevation contours.

Figure 4 shows the grid for the high-fidelity model, which incorporates 1,590,637 vertices
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and 3,155,738 triangular elements. The coarsest resolution at the domain edge is up to

10 km, and finest resolution of 30 m is found in complex coastal areas and overland. For

the numerical simulation, SWAN applies 10-min time steps, while ADCIRC applies 1-s

time steps. A SWAN ? ADCIRC simulation runs in 16 wall clock min/day of simulation

on 1,024 cores on Diamond, a 2.8 GHz dual quad core-based cluster with a 20 Gb/s

InfiniBand network (http://www.erdc.hpc.mil/). On the average, each simulation required

over 1500 CPU hours to complete. The Hakou-2010-r2 model was validated by simulating

tides and by hindcasting hurricane-Iniki (1992) and comparing to measured water levels as

well as wave data. More details on the model itself and the validation may be found in

Kennedy et al. (2012).

5.2 High-fidelity simulation database and partitioning

The available database consists of hurricane scenarios corresponding to five basic storm

tracks, depicted in Fig. 1, representing different angles of final approach (i.e. track

headings) h with histories selected based on information from regional historical storms.

Three different values for the central pressure cp were used, 940, 955 and 970 mbar, three

different forward velocities vf were considered, 7.5, 15 and 22 knots, and three radius of

maximum winds, Rm, 30, 45 and 60 km, were utilized in the development of the database.

Landfall xo was defined as the longitudinal point where each hurricane crosses 21.3� North,

and in the database used for this study, corresponding to hurricanes with important impact

on Oahu, 12 different landfall locations are considered corresponding to landfalls of

157.60, 157.85, 158.10, 158.30, 158.60, 158.90, 159.20, 159.50, 159.80, 160.00, 160.40,

160.70� West. A total of 603 storms are available in the database, which is partitioned into

three different sets. One set consisting of 23 storms (chosen randomly) that serve as the

control points {xc; c = 1, …, Nc} for the optimization of the response surface character-

istics, another set of 20 storms (also chosen randomly) that serve as the validation points

{xp; p = 1, …, NE} for evaluating the accuracy of the approximation, and the remaining

set of 560 storms that correspond to the support points {xI; I = 1, …, NS} used to develop
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the surrogate model. An additional subset is considered for the support points, by excluding

some landfall locations, to obtain a subset with a reduced number of support points. This

subset consists of only 370 storms, corresponding to landfall locations of 157.60, 158.10,

158.30, 158.90, 159.20, 159.80, 160.10, 160.40� West (landfall locations evenly chosen

among the initial database). The observation points that were not considered as support

points are added in this case to the validation set, leading to NS = 370 and NE = 210. The

control points remain the same for this subset as for the one with NS = 560.

5.3 General characteristics of the response surfaces

Two different types of hurricane response characteristic will be examined. The first one is

the significant wave height in the regions extending from 156 to 160� West and 20 to 23�
North on a canonical grid consisting of a total nz = 9,053 points (excluding the inland

areas of the Hawaiian Islands). The second one is the surge in nz = 77,175 locations

around the coast of Oahu. These locations correspond to inland nodes (up to the 4 m

elevation contour) in our high-fidelity numerical model that were inundated in at least one

storm of our database. The response surface approximation for each of these outputs will

be separately examined, to provide insight about the differences between them.

Polynomials up to second degree (quadratic) are considered as basis functions

b(x) [with full quadratic basis functions corresponding to case illustrated in Eq. (7)] with

the exact degree for the polynomial for each hurricane parameter corresponding to a

variable to be optimized (this ultimately corresponds to a constraint for the degree of the

polynomial with respect to each xi). This leads to NB = 21 basis functions based on Eq. (6)

if second order polynomials are considered for all components of x. Parameters for which

the optimal basis is identified to be linear will be denoted as ‘linear’ (the remaining will be

quadratic). For the weight function, the one given by Eq. (11) is adopted with Dd adap-

tively selected so that it includes 60 support points with c, k corresponding to additional

variables to be optimized. This choice falls within the common guidelines for selection of

Dd, to include a range of points 2–4 times NB [this relates to having M in Eq. (9) be

invertible while giving priority only to support points in close proximity] (Choi et al.

2001). Note that slightly higher values for this number are suggested in the literature when

the MLS RSA is intended to be used for moderate extrapolations (i.e. to predict the impact

for scenarios with model parameters that fall outside the domain of the support points), but

this topic falls outside our scope here (we are primarily interested in using RSA for

interpolation). Finally, the weight vk used for the distance norm of Eq. (10) is selected for

each parameter as vk = rk/rk, where rk is the standard deviation for xk in the database

{xh; h = 1, …, Nh} and is used to normalize the distance norm, whereas rk is a weight

variable, to be optimized, used to provide an importance factor to the model parameters.

Larger values for rk indicate stronger influence along that direction in the model parameter

space for evaluating the distance norm. Note that the approximation in Eq. (8) is not

impacted by scaling of w{d}; thus, only the relative ratio between the vk’s, and equiva-

lently rk’s, (and not their exact values) influence the established response surface. This

means that only four out of the five rk’s need to be optimized, with the exact selection of

the rk to have a certain value or that specific value having no influence on the established

surrogate model. In our case, r1 is always chosen as 1.

Thus, the vector s of variables that can be optimized for the response surface approx-

imation includes (1) the degree of the basis function for each hurricane parameter, (2) the

variables c, k for the weighting function, and (3) the weight (importance) variable rk’s for

determining vk. The optimization is actually performed in two stages. In the first stage, a
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specific value is set for variables (1), and the optimal values of variables (2) and (3) are

obtained through the optimization described in Eq. (20). In the second stage, different

choices for (1) are considered, and the overall optimal solution s* is finally identified.

Apart from the full optimization (for entire vector s) sub-optimization problems are also

investigated. The first one considers full quadratic basis functions (so no optimization for

the polynomial degree) and allows for optimization of only c, k and rk’s, and the second

additionally assumes rk = 1 and considers only optimization for c and k.

Finally, with respect to transformation for response and objective function selection,

three different cases are examined here. The first two correspond to the linear transfor-

mation in Eq. (3) and consider Eq. (20) [first case] and (21) [second case] as the objective

function. They are denoted as linear and linearn, respectively. The third one corresponds to

the log transformation in Eq. (3) and considers Eq. (21) as the objective function. It is

denoted as logn.

For all cases, only the results for the fit of the response surface approximation are

presented here with respect to all the four quantities discussed in Sect. 3.4. The optimal s*

is then presented in Appendix 2 (Table 7) which also includes (Table 6) a summary of all

cases considered along with their characteristics, that is, the number of support points,

transformation for response and objective function selections, and optimization problem

solved. These tables include all the different optimal models from the different optimi-

zation sub-problems discussed above. To simplify the presentation, each case considered is

given an identification (ID) number; then, the optimal response surface characteristics are

referenced in the Appendix 2 with respect to that ID number.

5.4 Significant wave height

For the significant wave height, Fig. 5 presents the contours for the mean and standard

deviation over the database. Table 1 presents the results for the optimal response surface

for the three different optimization cases (linear, linearn and logn) and for two different sets

of support points. Table 2 presents the results for the different optimization sub-problems

for case linearn. It also includes the instance that no optimization is performed, and typical
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values (Choi et al. 2001) are used for the response surface characteristics (full quadratic

function, rk’s = 1, c = 0.4, k = 1). Finally, Fig. 6 presents the contours for the ME for the

optimal linearn surrogate model for (a) 560 [case ID = 2] (b) 370 support points [case

ID = 5].

It is evident from Table 1 that when the entire database is used (560 support points), the

developed surrogate models provide a very good approximation, with average MEs less

that 2.5 % and coefficient of determination over 98 %. It should be pointed out that the

latter demonstrates that the developed approximate model describes the variability within

the data very well, a feature that is very important for risk assessment applications for

which the accuracy over an ensemble of scenarios is more crucial than the accuracy on

individual basis (as multiple scenarios contribute ultimately to the total risk). When the

number of support points is reduced (370), the accuracy of the response surfaces signifi-

cantly reduces, especially for the logn transformation. This shows that the density of

landfall locations in the initial database was important for adequately describing the var-

iability of the response in this case study. The linearn transformation is proven to provide

an overall better fit, which is the reason it is chosen for presenting the results in Table 2 for

the sub-optimization problems (note though that based on the studies we performed for the

other transformations, the trends are fairly similar). Comparing the linear and linearn cases

shows that the normalization of the different response quantities in the objective function

definition provides some accuracy/robustness to the optimization results; this is expected as

it ultimately prevents the optimization to be dominated by response quantities (wave

Table 1 Fit for the optimal response surface for wave height for different number of support points and
optimization cases (transformation of response variables or objective function selections)

Number of support
points

Optimization
case

ID number AR2 AME (%) AS (m) ANS

560 Linear 1 0.987 2.38 0.297 0.102

Linearn 2 0.987 2.37 0.297 0.102

Logn 3 0.988 2.34 0.284 0.098

370 Linear 4 0.921 6.51 0.810 0.284

Linearn 5 0.926 6.37 0.786 0.276

Logn 6 0.883 9.24 0.999 0.349

Table 2 Fit for different optimization sub-problems for wave height for different number of support points
for linearn optimization case

Number of
support points

Optimization
sub-problem

ID number AR2 AME (%) AS (m) ANS

560 Optimal-full quadratic 2 0.987 2.37 0.297 0.102

Full quadratic basis c, k, ri’s 2 0.987 2.37 0.297 0.102

c, k 7 0.955 5.14 0.552 0.190

None 8 0.948 5.32 0.594 0.204

370 Optimal—cp, vf, Rm linear 5 0.926 6.37 0.786 0.276

Full quadratic basis c, k, ri’s 9 0.771 10.57 1.376 0.481

c, k 10 0.419 10.83 2.992 1.041

None 11 0.867 8.27 1.009 0.352
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heights in this case) that have higher values and thus higher relative errors. The most

important result coming, now, from Table 2 is the significance of performing an explicit

optimization for the characteristics of the RSA model; the performance improvement for

the optimal case over the case for no optimization is significant. It also shows that opti-

mizing for the exact basis functions can provide a considerable improvement when the

number of support points is smaller, whereas the explicit optimization for ri’s, which

ultimately dictate the moving character of the surrogate model within the different

direction in the model parameter space x, also has a significant impact, especially for a

smaller number of support points. This discussion clearly shows that the optimization for

the characteristics of the response surface approximation can provide important accuracy

benefits.

Finally, comparison of Figs. 6 and 5 does not indicate any correlation between the

errors of the surrogate model and the statistics of the initial database of observation points.

Comparison between the two cases presented in Fig. 6 shows that though the regional

trends are similar, there also exist significant differences, that is, errors in some regions

relatively increase when the fewer support points are used. This further demonstrates that

the distribution of the landfall location for the support points can have an impact on the

spatial variability of the errors established through the response surface approximation

(since the difference in the surrogate models considered is ultimately with respect to the

distribution of the landfall locations of the support points) .

5.5 Storm surge

For the storm surge, the database is initially augmented following the discussion in Sect.

3.3. Close to 30 % of the database points required updating using the proposed approach.

Tables 3 and 4 present the optimization results, in a similar format as Tables 1 and 2. In

this case, an additional measure is introduced to evaluate the efficiency of response surface

approximation; the percentage of misclassified locations with respect to inundation, that is,

the percentage of points that were classified as inundated when they were actually dry or

classified as dry when they were inundated. A subset of the locations is also created,
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considering the points that were wet for all simulations; these correspond to 15,867

nearshore locations in our grid. These are locations for which no modification was required

in our initial database for developing the surrogate model (as discussed in Sect. 3.3). In

parenthesis in both tables, the statistics for this subset are presented. Finally, Fig. 7 pre-

sents a comparison between predicted and exact storm surge for all 20 validation scenarios

for 50 locations (out of the 77,175) randomly selected.

The results in Tables 3 and 4 indicate the same trends with Tables 1 and 2; the fit when

the entire database is used is very good (Table 3), with the optimization for the exact type

of basis functions and the values, or ri’s having an important role, especially for the

surrogate model informed by a reduced number of support points (Table 4). Though the

errors increase here compared to the ones for the wave height, when the evaluation is

constrained to the 15,867 nearshore locations in the grid that always remain wet, this

difference is very small. Thus, the larger errors for the surge can be attributed to the

challenges associated with the inland locations that may remain dry. Even for those cases,

though, the surrogate model provides an overall adequate fit when the entire database is

used, with a small rate of misclassifications (below 3 %). The quality of this fit is further

demonstrated by the results in Fig. 7.

5.6 Combined output

A final study is performed by combining the different type of outputs (wave height and

surge) into a single response vector z and performing the optimization for the response

surface approximation. Table 5 presents the results by evaluating the fit separately for the

wave height or surge (only AME and ANS fit measures are reported due to space limi-

tations); it also presents the results for the optimal cases established when developing

surrogate models only for the wave height or surge response outputs (as described in the

previous two sections). The results show that there is indeed a reduction in accuracy for

either of the response quantities when the optimization does not explicitly have it as a

target. That reduction is though not large. The combined optimization yields results that are

closer to the optimization for surge, which is expected since the number of surge points

used were larger (ratio of almost 9:1), and thus, relative contribution towards the total error

is larger. This discussion indicates that the response surface surrogate model can perform

adequately for simultaneously predicting both the response quantities of interest here, but

also that a surrogate model that targets a specific response quantity can offer an improved

accuracy. The later demonstrates that, if possible (in terms of computational cost), separate

Table 3 Fit for the optimal response surface for the storm surge level for different number of support points
and optimization cases (transformation of response variables)

Number of

support

points

Optimization

case

ID

number

AR2 AME (%) AS (m) ANS Misclassification

(%)

560 Linear 12 0.930 (0.974) 5.23 (3.38) 0.078 (0.048) 0.213 (0.146) 2.56 (0.002)

Linearn 13 0.930 (0.974) 5.17 (3.32) 0.078 (0.047) 0.212 (0.145) 2.55 (0.001)

Logn 14 0.931 (0.975) 5.06 (3.24) 0.077 (0.047) 0.210 (0.143) 2.52 (0.001)

370 Linear 15 0.816 (0.891) 9.18 (6.48) 0.148 (0.103) 0.398 (0.315) 3.42 (0.054)

Linearn 16 0.823 (0.895) 9.11 (6.42) 0.146 (0.101) 0.395 (0.312) 3.38 (0.052)

Logn 17 0.816 (0.888) 9.39 (6.95) 0.158 (0.105) 0.392 (0.327) 3.52 (0.018)
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surrogate models should be developed and implemented for each of the response

quantities.

Finally, looking collectively (extending to all cases considered in the previous three

sections) at the results in Table 7 of Appendix 2, it can be inferred that the landfall location

and angle of final approach (especially the former) (1) have in general a greater importance

in affecting hurricane responses and that (2) the responses exhibit larger variability with

respect to these two parameters. These two attributes are indicated, respectively, by the fact

that (1) larger optimal values for ri’s are identified for them and that (2) in no case is a

linear basis function identified as optimal for them.

5.7 Example of risk assessment implementation

To demonstrate a possible implementation of the proposed surrogate modelling approach,

the optimal response surface surrogate model is used to estimate hurricane risk, based on

the theoretical and computational framework discussed in Appendix 1, for the hurricane
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± 10% error
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(m

)

Surge 
Approximation (m)

Fig. 7 Comparison between approximated and exact storm surge elevation for 50 locations

Table 5 Comparison between the response surface optimal models established for response vector cor-
responding to the storm surge or wave height or for them combined for linearn optimization case

Number of support
points

Optimization
for

ID
number

Wave height Surge

AME
(%)

ANS AME
(%)

ANS Misclassification
(%)

560 Surge 13 3.12 0.120 5.17 0.212 2.55

Wave height 2 2.37 0.102 6.47 0.293 2.74

Combined 24 3.10 0.120 5.19 0.213 2.57

370 Surge 16 6.11 0.258 9.11 0.395 3.38

Wave height 5 6.37 0.276 10.83 0.449 4.01

Combined 25 6.10 0.258 9.16 0.398 3.41
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illustrated in Fig. 8 approaching landfall to Oahu. This corresponds to the real-time hur-

ricane risk assessment implementation that has been advocated in (Taflanidis et al. 2012).

The estimated mean values for hurricane parameters [landfall longitude, heading at landfall

in degrees measured clockwise from south; central pressure in mbar; forward speed in

knots; radius of maximum winds in km] are chosen as

xmean ¼ ½ 158:12
�

155
�

950 mbar 16 knots 45 km �T ð23Þ
For defining p(x), these parameters are assumed to follow independent Gaussian dis-

tributions with mean values given in Eq. (23) and standard deviations selected here as

[based on estimation errors for a time until landfall equal to 42 h (Taflanidis et al. 2012)]

rx ¼ 0:28
�

17:5
�

10:5 mbar 3:5 knots 2:5 km
� �T ð24Þ

Hurricane risk is evaluated through Eq. (29) using N = 2,000 samples. Figure 9 shows

[part (a)] the probability that the significant wave height will exceed 9 m and [part (b)] the

wave height with probability of being exceeded 5 %. Then Fig. 10 shows the probability

that the surge will exceed threshold b for two locations, the first with coordinates

21.2999�N, 158.1101�W (near Pearl Harbor) and the second with coordinates 21.3101�N,

157.9302�W (close to the old runway in the airport). Results with and without including

the prediction error of Eq. (2) (due to the surrogate modelling) are shown in this figure. The

comparison indicates that the prediction error can have a significant impact on the cal-

culated risk (though not always), and it will lead to more conservative estimates for rare

events (with small probabilities of occurrence). This demonstrates that it is important to

explicitly incorporate it in the risk estimation framework. These trends agree with the

results published recently by Resio et al. (2012) within the context of storm surge risk

estimation. Then, Fig. 11 presents similar results for the wave height; it shows the prob-

ability that the wave height will exceed threshold b for two locations, the first with

coordinates 21.29�N, 157.92�W (close to the coast) and the second with coordinates

21.17�N, 158.34�W (in the open sea). In this case, the higher accuracy of the surrogate

model (smaller prediction error variance as discussed in previous sections) leads to smaller

160° W 155° W 150° W 

15° N 

20° N 

Expected landfall 
location 

Current location of 
hurricane

Hurricane characteristics:
Angle of landfall: 155º

Central pressure: 950

Radius of maximum 
winds 45 Km

Forward speed 16 knots

Expected 
track

Cone of 
possible 
tracks

(42 hours prior to 
landfall)

Fig. 8 Hurricane track and
characteristics used in the
illustrative risk assessment
implementation
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(relatively to Fig. 10) impact of the prediction error on the calculated exceedence proba-

bilities. It is important to note that, like in the case of Fig. 10, the impact of including the

prediction error is higher when looking at rare events, that is, for small probabilities of

exceedence.

The total time needed for this risk assessment is 2 min on a 3.2 GHz single core

processor with 4 GB of RAM. This corresponds to a tremendous reduction of computa-

tional time compared to the high-fidelity model, which required over 1500 hours for

analysing a single hurricane track. Thus, a risk computation requiring independent eval-

uations of the surrogate model for N = 2,000 different scenarios is still approximately 104

times faster than evaluating a single hurricane scenario using the high-fidelity model

SWAN ? ADCIRC. Note that ability to use a large number of evaluations in the stochastic
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Fig. 10 Probability that surge will exceed threshold b for two locations in Oahu with coordinates
21.2999�N, 158.1101�W (location 1) and 21.3101�N, 157.9302�W (location 2). Results with (dashed lines)
and without (solid lines) the prediction error of the surrogate model are shown
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simulation-based evaluation (29) of the risk integral (25) contribute to improved accuracy

[reduced coefficient of variation (30)] for that estimate. The computational simplicity of

the stochastic simulation-based estimation (29) along with the computational efficiency of

the developed surrogate model also promote the development of automated risk assessment

tools for hurricane/storm risk predictions, as advocated in (Taflanidis et al. 2012) and

(Kijewski-Correa et al. 2012). These arguments illustrate the efficiency of the proposed

theoretical and computational scheme, based on an optimized response surface

approximation.

6 Conclusions

The systematic implementation and optimization of MLS response surface approximations

for hurricane wave and surge response prediction were discussed in this paper. Using an

existing database of high-fidelity simulations, the surrogate model can efficiently predict

hurricane impact for any hurricane scenario of interest (within the bounds of the database),

for any quantity of interest and for a large coastal region that might involve thousands of

locations. The optimal selection of the basis functions for the response surface and of the

parameters of the MLS character of the approximation were addressed. The impact of the

number of high-fidelity simulations informing the surrogate modelling was investigated

and different hurricane response characteristics (surge and significant wave height) were

also analysed. Special attention was given to predicting the surge in inland locations for

which the possibility of the location remaining dry needs to be additionally addressed. An

approximate methodology was proposed here for these cases, based on a modification of

the initial database; the storm surge for any location that remained dry was correlated to the

closest inundated location. Though this ultimately has an impact on the accuracy of the

response surface approximation, the established percentage of misclassifications (wet

nodes that are identified as dry and vice versa) was small.

The results for the case study considered (Oahu Island) demonstrate that MLS response

surface models can provide accurate approximations for both the wave and surge responses

4 6 8 10 12 14 16

10 -2

10 -1

10 0

Pr
ob

ab
ili

ty
 o

f 
w

av
e 

he
ig

ht
  e

xc
ee

di
ng

  
sp

ec
if

ie
d 

th
re

sh
ol

d 

Wave height threshold (m)

Location 1
Location 2

Fig. 11 Probability that significant wave height will exceed threshold b for two locations in Oahu with
coordinates 21.29�N, 157.92�W (location 1) and 21.17�N, 158.34�W (location 2). Results with (dashed
lines) and without (solid lines) the prediction error of the surrogate model are shown
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and can ultimately facilitate a highly efficient estimation of hurricane risk. The explicit

optimization of the characteristics of the response surface model provide considerable

improvements in accuracy; this pertains to both the order of basis functions used as well as

to the parameters that dictate the moving character of the surrogate model. The number of

support points also has an impact on the results (as is expected in any surrogate model),

with the landfall locations for the support points playing a key role in the case of storm

responses. Though this result will definitely depend on the topographical characteristics of

the coastal region in which this methodology is implemented, it was shown in the case

study for Hawaii (focusing on Oahu) that very high accuracy was established when the

landfall location for the support points had an average distribution of 0.3�, with a moderate

accuracy decrease when this distribution was increased to 0.5�. Overall, the landfall

location and angle of approach were the two model parameters influencing the hurricane

impact more, and thus the accuracy of the surrogate model. Though the proposed response

surface approximation can provide an overall good fit for multiple response quantities, it

was also shown that improvement in accuracy can be established when the surrogate model

is optimized with specific quantities of interest in mind. This shows that the optimization of

separate surrogate models should be considered when the quality of the approximation

needs to be improved for specific responses of interest (for example, for waves compared

to surge or for surge for different regions within the coast compared to the surge for

the remaining regions). Finally, it was shown that within a risk estimation framework, the

prediction error due to surrogate model approximation can have a significant impact on the

calculated risk, especially for rare events (small probabilities of occurrence) for which it

will typically lead to more conservative estimates.
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Appendix 1: Implementation in coastal risk assessment

Within the JPM setting, hurricane/storm coastal risk may be quantified in terms of the

response ẑðxÞ provided by the surrogate model and a probability density function p(x)

describing the uncertainty in the input hurricane parameters x. For real-time risk evalua-

tion, that is, when predicting the risk due to an approaching hurricane, p(x) may be

constructed through the estimates provided by the National Hurricane Center (http://

www.nhc.noaa.gov); each component of x can be selected to follow an independent

Gaussian distribution with mean equal to the forecast quantities and standard deviation

equal to the associated statistical estimation error (Taflanidis et al. 2012). For long-term

hurricane risk evaluation for a region, p(x) is selected based on statistical data, and it

further incorporates information on occurrence rates for hurricanes, not just on relative

plausibility of the model parameters (Resio et al. 2007).

Risk is ultimately expressed as some desired statistic of the response z, for example the

probability that the wave height will exceed some specific threshold or the median surge.

The exact selection used for these statistics leads to definition of the risk consequence

measure hi[.]. Ultimately, for any component zi of the response vector, the risk, denoted Hi,

is provided by the multi-dimensional probabilistic integral (Taflanidis et al. 2012)
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Hi ¼
Z

X

hi ẑiðxÞ½ � pðxÞdx ð25Þ

where X corresponds to the region of possible values for x. The risk consequence measure

depends on the definition for Hi, and it additionally addresses the prediction error ei.

Through its appropriate selection different potential hurricane risk quantifications can be

addressed. For example, if Hi corresponds to the expected (mean) value for some zi,

Hi ¼ E½zi� (where E[] denotes expectation), then (Taflanidis et al. 2012)

hi ẑiðxÞ½ � ¼ ẑiðxÞ ð26Þ

and the model prediction error has no impact on the risk consequence measure. If alter-

natively, Hi corresponds to the probability that some zi will exceed some threshold bi,

Hi ¼ P½zi [ bi� (where P[] denotes probability), then (Taflanidis et al. 2012)

hi½ẑiðxÞ� ¼ F
i
ðẑi � biÞ ð27Þ

where Fi corresponds to the cumulative distribution function for the model prediction error

for zi. In this case, the statistics of the prediction error do have an impact on the risk

quantification. This simplifies to

hi ẑiðxÞ½ � ¼ U
ẑiðxÞ � bi

rei

� �
ð28Þ

for the proposed case of Gaussian distribution for the model prediction error, where U[.]

denotes the standard Gaussian cumulative distribution function.

Once risk for zi has been quantified by the proper selection of the consequence measure

(dependent only on ẑi), the probabilistic integral in Eq. (25) can be estimated by stochastic

simulation (Robert and Casella 2004). For the simplest approach (direct Monte Carlo), and

using N samples of x randomly selected from p(x), the estimate for Hi is given by

~Hi ¼
1

N

XN

m¼1

hi ẑiðxmÞ½ � ð29Þ

where vector xm denotes the sample of the uncertain parameters used in the mth simulation.

The quality of this estimate is assessed through its coefficient of variation, d obtained by

d � 1
ffiffiffiffi
N
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

PN
m¼1 hi ẑiðxmÞ½ �ð Þ2

~H2
i

� 1

s

ð30Þ

which decreases (i.e. estimation improves) proportionally to
ffiffiffiffi
N
p

. Thus, estimation of risk

may be efficiently and accurately performed using the established surrogate model, as

evaluation of ẑiðxÞ requires minimal computational effort [thus a large number of samples

N can be used for (29)].

Appendix 2: Summary of cases considered for response surfaces and corresponding
optimal parameters

The following two tables present a summary of all cases considered (Table 6) in the case

study along with the optimal parameters, that is, type of basis functions, values for c and
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Table 6 Summary of cases considered for response surfaces

ID
number

Response quantity for
optimization

Optimization
problem solved

Transformation of response and
objective function

Number of
support points

1 Wave height Full Linear 560

2 Wave height Full (same for
only c, k, ri’s)

Linearn 560

3 Wave height Full Logn 560

4 Wave height Full Linear 370

5 Wave height Full Linearn 370

6 Wave height Full Logn 370

7 Wave height Only c, k Linearn 560

8 Wave height None Linearn 560

9 Wave height Only c, k, ri’s Linearn 370

10 Wave height Only c, k Linearn 370

11 Wave height None Linearn 370

12 Storm surge Full Linear 560

13 Storm surge Full Linearn 560

14 Storm surge Full Logn 560

15 Storm surge Full Linear 370

16 Storm surge Full Linearn 370

17 Storm surge Full Logn 370

18 Storm surge Only c, k, ri’s Linearn 560

19 Storm surge Only c, k Linearn 560

20 Storm surge None Linearn 560

21 Storm surge Only c, k, ri’s Linearn 370

22 Storm surge Only c, k Linearn 370

23 Storm surge None Linearn 370

24 Combined Full Linearn 560

25 Combined Full Linearn 370

Table 7 Optimal values for model parameters of response surfaces

ID number Basis functions c k r1 r2 r3 r4 r5

1 Full quadratic 0.159 0.50 1 1.405 0.050 0.204 0.289

2 Full quadratic 0.158 0.50 1 1.417 0.050 0.205 0.289

3 Rm linear 0.507 1.61 1 1.169 0.063 0.305 0.668

4 cp, vf, Rm linear 0.449 1.99 1 0.498 0.248 0.311 0.148

5 cp, vf, Rm linear 0.466 1.99 1 0.543 0.277 0.344 0.164

6 Rm linear 0.334 0.83 1 0.817 0.272 0.164 0.051

7 Full quadratic 0.759 1.89 1 1 1 1 1

8, 11, 20, 23 Full quadratic 0.400 1.00 1 1 1 1 1

9 Full quadratic 0.299 0.94 1 0.652 0.346 0.299 0.134

10 Full quadratic 0.817 1.97 1 1 1 1 1

12 cp, vf, Rm linear 0.233 0.58 1 0.996 0.423 0.489 0.435

13 cp, vf, Rm linear 0.149 0.50 1 0.988 0.427 0.487 0.441
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k and for weights rk for them (Table 7). These correspond to all unique cases that were

examined in Sects. 5.4, 5.5 and 5.6, by considering the full- and sub-optimization problems

for the different outputs and the different normalization of response and objective function

selections (more information on the selection is provided in Sect. 5.3). Each case is

referenced here by its identification index, ID. Note that for parameters in Table 7 for

which their basis function are not explicitly referenced as linear, the chosen polynomial

degree is quadratic.
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