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Abstract In this paper, an M–EEMD–ELM model (modified ensemble empirical mode

decomposition (EEMD)-based extreme learning machine (ELM) ensemble learning para-

digm) is proposed for landslide displacement prediction. The nonlinear original surface

displacement deformation monitoring time series of landslide is first decomposed into a

limited number of intrinsic mode functions (IMFs) and one residual series using EEMD

technique for a deep insight into the data structure. Then, these sub-series except the high

frequency are forecasted, respectively, by establishing appropriate ELM models. At last,

the prediction results of the modeled IMFs and residual series are summed to formulate an

ensemble forecast for the original landslide displacement series. A case study of Baishuihe

landslide in the Three Gorges reservoir area of China is presented to illustrate the capa-

bility and merit of our model. Empirical results reveal that the prediction using M–EEMD–

ELM model is consistently better than basic artificial neural networks (ANNs) and

unmodified EEMD–ELM in terms of the same measurements.
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1 Introduction

In the Three Gorges Reservoir area, which is located at the upper reaches of the Yangtze

River in China, frequent landslides often result in significant casualties and property losses.

So, the prediction of landslide-prone regions is essential for carrying out quicker and safer

mitigation programs, as well as future planning of the area. It is well known that landslide

hazard is a complex nonlinear dynamical system with the uncertainty (Chen and Zeng

2011; Msilimba 2010; Qin et al. 2001, 2002; Sorbino et al. 2010). The landslide dis-

placement is basically determined by the potential energy and constraint condition of the

slope, but it is also strongly influenced by rainfall and reservoir level fluctuation (Guzzetti

et al. 2005; Kawabata and Bandibas 2009).

In recent years, a number of methods have been tried in the problem of displacement of

landslide forecasting, such as autoregression (AR) (Xu et al. 2011), linear regression

(Kaunda 2010), and artificial neural networks (ANNs) (e.g., Chen and Zeng 2011; Pradhan

and Lee 2009, 2010; Melchiorre et al. 2008; Nefeslioglu et al. 2008). In particular, ANNs

have become one of the frequent modeling approaches among these techniques, because of

the characteristics of adaptability and they can approximate any continuous nonlinear

function with arbitrary precision (Hornik 1991). However, most ANN-based landslide

forecasting methods used gradient-based learning algorithms such as back-propagation

neural network (BPNN), which are relatively slow in learning and may easily get into local

minima points (Jaroudi and Makhoul 1990; Drucker and Cun 1992). Recently, a novel

learning algorithm for single-hidden-layer feedforward neural networks (SLFNs) called

extreme learning machine (ELM) has been proposed (Huang et al. 2006a, b; Zhu et al.

2005). ELM not only learns much faster with higher generalization performance than the

traditional gradient-based learning algorithms but also avoids many difficulties faced by

gradient-based learning methods such as stoping criteria, learning rate, learning epochs,

and local minimum (Huang 2003; Huang and Babri 1998; Huang et al. 2006a, b; Tamura

and Tateishi 1997). ELM has been successfully applied in many fields such as sales

forecasting (Sun et al. 2008; Chen and Ou 2011), face recognition (Zong and Huang 2011),

and reversible watermarking (Feng et al. 2012).

Inspired by the idea of ‘‘decomposition and ensemble’’ (Yu et al. 2008; Guo et al. 2012),

the original time series can be decomposed into several sub-series. Each component can be

predicted with the purpose of simplifying the predication tasks, and the final predicted

value can be obtained by summing the predictive value of each sub-series. Considering the

displacement deformation monitoring time series of landslide is unsystematic and non-

linear, the ensemble empirical mode decomposition (EEMD), which is introduced by Wu

and Huang (2009), is used to decompose the accumulative displacement of landslide series.

In this paper, a modified EEMD–ELM model is proposed for landslide displacement

prediction. The first step is to decompose the displacement of landslide series into several

sub-series with EEMD. The second step is to choose appropriate ELM model for each

decomposed sub-series’s forecasting. At last, the final predicted value is obtained by

summing the each component forecasting results. It should be pointed out that the change

of landslide displacement is considered as one of the most difficult natural parameters to

model and forecast due to the complex structures of factors which affect landslide dis-

placement such as tectonic, rainfall, reservoir level fluctuation, difference in temperature of

day and night, and even earthquake. Considering these influencing factors relate intricately

and interact complexly, we only consider original landslide displacement time series in this

paper because of landslide displacement time series contain the information of the inter-

action of these influencing factors which happened in the past.
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2 Methodology formulation

2.1 EMD and EEMD

The empirical mode decomposition (EMD) is an adaptive and efficient time series decom-

position technique applied to decompose nonlinear and non-stationary signals using the Hil-

bert–Huang transform (HHT) (Huang et al. 1998). The key innovation of EMD is the

establishment of the concept of intrinsic mode function (IMF), each contains the local infor-

mation embedded in the data series. Using EMD, any complex time series can be decomposed

into several IMF components and a residue component which contains the main trend of the

original series. According to Huang et al. (1998), IMFs must satisfy the following conditions:

1. In the whole data series, the number of extrema (sum of maxima and minima) and the

number of zero crossings must be equal, or differ at most by one.

2. At any point, the mean value of the envelope defined by local maxima and local

maxima must be zero.

With the above definition for IMF, any signal series s(t) (t = 1, 2,…, l), t is the time index

and l is the total number of observations, can be decomposed as follows:

Step (1.1) Identify all the local extrema of original signal s(t). Use a cubic spline line

that connects all local maxima (minima) to obtain the upper (lower) envelopes and

calculate the point-by-point envelope mean m1(t) of the upper and lower envelopes.

Calculate the difference between s(t) and m1(t), obtain the first component h1(t):

h1ðtÞ ¼ sðtÞ � m1ðtÞ ð1Þ

Step (1.2) To treat h1(t) as the original signal series s(t) in the next iteration:

h11ðtÞ ¼ h1ðtÞ � m11ðtÞ ð2Þ

where m11(t) is the mean of upper and low envelope values of h1(t). This step will be

repeated for k times, until h1k(t) satisfy the definition of an IMF,
h1kðtÞ ¼ h1ðk�1ÞðtÞ � m1kðtÞ ð3Þ

Designate it as c1(t) = h1k(t). A suggested stoppage criterion (Huang et al. 1998), which is

determined by using a Cauchy type of convergence test, is defined as follows:

SDk ¼
X‘

t¼1

jh1ðk�1ÞðtÞ � h1kðtÞj2

h2
1ðk�1ÞðtÞ

ð4Þ

Here, SDk is less than a predetermined value.

Step (1.3) Once c1(t) is determined, the residue r1(t) can be obtained by separating

c1(t) from the rest of the data,

r1ðtÞ ¼ sðtÞ � c1ðtÞ ð5Þ

To replace s(t) with r1(t), and repeating the steps (1.1) and (1.2), the second IMF and

residue [c2(t) and r2(t)] can be obtained. If c1(t) or r1(t) is smaller than a predetermined

value, or r1(t) becomes a monotone function, the sifting process is stopped. Thus, a series

of IMFs can be obtained. The original signal s(t) can be expressed as follows.

sðtÞ ¼
Xl

i¼1

ciðtÞ þ rlðtÞ ð6Þ
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where ci(t) (i = 1, …, l) are the l number of IMFs, and rl(t) is the residue after repeating

the sifting procedure l times.

However, there are also some shortcomings in EMD, and one of the most significant

problem is the mode mixing, which means either some signals consisting of disparate

scales exist in the same IMF or the signals with the same scale exist in different IMFs. In

order to eliminate the mode mixing problem, a new noise-assisted analysis method, called

EEMD was proposed. The EEMD algorithm can be described as follows:

Step (2.1) Add a white noise to the original signal series.

Step (2.2) Decompose the signal with added white noise into IMFs using EMD.

Step (2.3) Repeat steps (2.1) and (2.2) again and again, with different white noise each

time.

Step (2.4) Obtain the means of corresponding IMFs of the decompositions as the final

result.

Step (2.5) Obtain the mean of corresponding residue of the decomposition as the final

result.

2.2 ELM

ELM is a single-hidden-layer feedforward neural network (SLFN) with randomly generated

hidden nodes independent of the training data. Input weights and biases can be randomly

chosen and the output weights can be analytically determined using the Moore–Penrose

(MP) generalized inverse. Compared with traditional popular gradient-based learning

algorithms for SLFNs, ELM not only learns much faster with higher generalization ability

but also avoids many difficulties, such as the stopping criteria, learning rate, learning epochs,

and local minima. The structure of ELM is demonstrated in Fig. 1. For N distinct samples

(xi, ti), where xi = [xi1, xi2, …, xin]T [ Rn and ti = [ti1, ti2, …, tim]T [ Rm, standard

SLFNs with ~N hidden neurons and activation function g(x) are mathematically modeled as

X~N

i¼1

bigðwi � xj þ biÞ ¼ oj; j ¼ 1; . . .;N: ð7Þ

where wi = [wi1, wi2, …, win]T is the weight of the connection from the input neurons to

the ith hidden neuron, bi = [bi1, bi2, …, bim]T is the weight vector connecting the ith

...........

....

Input Hidden Output

x(t-1)

( )tx

W

β

x(t-2)

x(t-3)

x(t-t')

Fig. 1 The structure of ELM
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hidden neuron and the output neurons, oj = [oj1, oj2, …, ojm]T is the jth output vector of

the SLFN and bi is the threshold of the ith hidden neuron. wi�xj denotes the inner product of

wi and xj. The above N equations can be written compactly as:

Hb ¼ O ð8Þ

where

H ¼
gðw1 � x1 þ b1Þ � � � gðw ~N � x1 þ b ~NÞ

..

.
� � � ..

.

gðw1 � xN þ b1Þ � � � gðw ~N � xN þ b ~NÞ

2
64

3
75

N� ~N

b ¼
bT

1

..

.

bT
~N

2
64

3
75

~N�m

and O ¼
oT

1

..

.

oT
N

2
64

3
75

N�m

where H is called the hidden-layer output matrix of the neural network. The ith column of

H is the ith hidden neuron’s output vector with respect to inputs x1; x2; . . .; xN :
ELM theories claim that the input weights wi and hidden biases bi can be randomly

generated instead of tuned. To minimize the cost function kO� Tk; where T ¼
½t1; t2; . . .; tN �T is the target value matrix, the output weights is as simple as finding the

least-square (LS) solution to the linear system Hb = T, as follows:

b̂ ¼ HyT ð9Þ

where Hy is the Moore-Penrose (MP) generalized inverse of the matrix H. The minimum

norm LS solution is unique and has the smallest norm among all the LS solutions. In

addition, before the ELM training, the input and output data set should be firstly nor-

malized as follows:

Xnormalize ¼
ðXij �maxfXijgÞ þ ðXij �minfXijgÞ

ðmaxfXijg �minfXijgÞ
; ð10Þ

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;N

and the unnormalized method for the input and output data set is given as follows:

Ounnormalize ¼
OijðmaxfXijg �minfXijgÞ þmaxfXijg þminfXijg

2
ð11Þ

i ¼ 1; 2; . . .; n; j ¼ 1; 2; . . .;N

2.3 Overall process of the modified EEMD-based ELM ensemble paradigm

An original displacement deformation monitoring time series of landslide can be

decomposed into various frequency IMFs by EEMD. Inspired by Guo et al. (2012), the

highest frequency component (IMF1) is always so small that has little contribution to

model fitting, while it always gives a great disturbance for the forecasting precision of

displacement of landslide. In order to improve the prediction precision, we remove IMF1

and the model is called M-EEND-ELM, where ‘‘M’’ represents ‘‘Modified.’’

Suppose there are the displacement deformation monitoring time series of landslide

sðtÞðt ¼ 1; 2; . . .; ‘Þ; in which one wants to make the g-step ahead prediction, that is,
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s(t ? g). For example, g = 1 means forecasting one step head in advance and g = 5 means

forecasting five steps head in advance. Based on the previous methods, the modified

EEMD-based ELM ensemble paradigm is illustrated in Fig. 2.

The steps of constructing the landslide displacement prediction model are described as

follows:

1. The displacement deformation monitoring time series of landslide sðtÞðt ¼ 1; 2; . . .; ‘Þ
is decomposed into l IMFs, ciðtÞði ¼ 1; . . .; lÞ; and one residual component rl(t) by

EEMD.

2. To forecast all extracted IMFs and one residual component but IMF1, by establishing

appropriate ELM model.

3. The final predicted value can be obtained through the superposition of all IMFs and

one residual component forecasting results but IMF1.

In order to illustrate the effectiveness of the proposed modified EEMD-based ELM

ensemble methodology, a case study of Baishuihe landslide in the Three Gorges reservoir

area is presented in the next section.

3 Experiments

3.1 Date collection

Baishuihe landslide is located on the south bank of Yantze River and its 56 km away from

the Three Gorges Dam of China. The bedrock geology of the study area consists mainly of

Time Series Data

EEMD Decomposition

IMF1 IMF2 ResidueIMF3 IMF4 IMF5

ELM1

Forecast
ELM2

Forecast
ELM6

Forecast
ELM3

Forecast
ELM4

Forecast
ELM5

Forecast

Prediction Result

Remove IMF1

Input

Output

Fig. 2 The scheme of M–EEMD–ELM ensemble methodology
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sandstone and mudstone, which is an easy slip stratum. The slope is of the category of

bedding slopes. Figure 3 shows the scene of landslide collapse along roads on June 30,

2007 and Fig. 4 shows parts of landslide fissure in the warning zone. Fig. 5 shows the

schematic diagram of monitoring arrangement in Baishuihe landslide. There are eleven

GPS deformation monitoring points layout in the landslide surface. The monitoring data of

landslide accumulative displacement at ZG118 monitoring point is selected as a case study.

Figure 6 shows the monitoring data of landslide accumulative displacement at ZG118

monitoring point.

The total number of data at ZG118 monitoring point is 101 observations from August

2003 to December 2011. The data between August 2003 and November 2009 are selected

as training data in order to construct the forecasting model and the rest of 25 observations

of data from December 2009 to December 2011 are selected as predicting data. Note that

only one-step-ahead prediction is performed in the experiments. Actually, multi-step-ahead

prediction can also be performed, but the prediction performance in such cases is unsat-

isfactory. And 1 month ahead prediction is enough to provide early warnings in the

landslide prediction.

Fig. 3 The scene of landslide collapse along roads on June 30, 2007

Fig. 4 Landslide fissure in the warning zone
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Fig. 5 Schematic diagram of monitoring arrangement in Baishuihe landslide
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Fig. 6 Monitoring curves of landslide accumulative displacement at ZG118 monitoring point
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3.2 Evaluation of forecast performance

In order to measure the prediction performance, three loss functions are used as the criteria

to evaluate the proposed models. The loss functions are the root mean square error

(RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) which

are defined by:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

q

Xq

t¼1

eðtÞ2
s

ð12Þ

MAE ¼ 1

q

Xq

t¼1

jeðtÞj ð13Þ

MAPE ¼ 1

q

Xq

t¼1

eðtÞ
sðtÞ

����

����� 100 % ð14Þ

where eðtÞ ¼ sðtÞ � ŝðtÞ; sðtÞ is the actual value for the time period t; ŝðtÞ is the predicted

value for the same period, and q is the number of predictions.

In addition, one ensemble model, EEMD–ELM without modified, and four single ANN

models, BPNN, RBF neural network (RBFNN), support vector regression (SVR), and

ELM, are also used to predict landslide displacement for comparison purposes.

3.3 Experimental results

We use the mean monthly landslide accumulative displacement for prediction. The original

time series is first decomposed into several IMFs and one residue using EEMD
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Fig. 7 EEMD decomposition of the monthly accumulative displacement
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decomposition tool. The amplitude of add noise we used is 0.2, the number of ensemble is

100. The decomposition results with EEMD can be seen in Fig. 7. Then, we choose

appropriate ELM model to forecast all extracted IMFs. The input and output data should

firstly normalized using Eq. (10). The activation function of all ELM model we used is the

sigmoidal function g(x) = 1/(1 ? e-x). With the output variable x(t), the other parameters,

which can be determined by trial and error, used in ELMs are shown in Table 1, where the

series of x(i) represents those six normalized series, respectively.

Using the above settings, the forecasting results for IMFs and residue are shown in

Fig. 8. As shown in Fig. 8, the predicted values and extracted values for each sub-series are

very close for every calculation except IFM1. As mentioned previously, IMF1 mainly

reflects the random component of the original sequence, which is the most disorder and

Table 1 Parameters used
in the ELM

Hidden nodes Input variables

ELM1 17 [x(t - 4), x(t - 3), x(t - 2), x(t - 1)]

ELM2 25 [x(t - 3), x(t - 2), x(t - 1)]

ELM3 7 [x(t - 2), x(t - 1)]

ELM4 7 [x(t - 2), x(t - 1)]

ELM5 7 [x(t - 2), x(t - 1)]

ELM6 7 [x(t - 2), x(t - 1)]

MonthMonth

MonthMonth

MonthMonth
0 5 10 15 20 25

-40

-20

0

20

40

0 5 10 15 20 25
-40

-20

0

20

40

0 5 10 15 20 25
-50

0

50

0 5 10 15 20 25
-150

-100

-50

0

50

0 5 10 15 20 25
-50

0

50

100

150

200

0 5 10 15 20 25
1600

1800

2000

2200

2400

IMF1

ELM1
IMF2

ELM2

IMF3

ELM3

IMF4

ELM4

IMF5

ELM5
Residue

ELM6

(m
m

)
(m

m
)

(m
m

)

(m
m

)
(m

m
)

(m
m

)

Fig. 8 Comparison of predicted and extracted values of each sub-series
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unsystematic part of the landslide displacement sequence. ELM can approach any con-

tinuous nonlinear function with arbitrary precision and fit IMF1 well, but the prediction is

unpredictable and even may reduce the accuracy of prediction.

The final predicted value is obtained by adding the predictive values of IMFs (except

IMF1) and one residual. The final predicted values are shown in Fig. 9. As shown in Fig. 9,

we can find that only two ensemble models successfully predict the obvious deformation

from the 19th month to the 20th month, and there is an obvious predict time delay in the other

single ANN models. In Table 2, the comparison of different methods for the landslide

displacement prediction is given via RMSE, MAE, MAPE, maximum error, minimum error.

Obviously, the results obtained from Table 2 indicate that the prediction performance of

the two ensemble model, EEMD–ELM and M–EEMD–ELM, is better than those of the

Table 2 Compare the performance for the above-mentioned six models

Method RMSE (m) MAE (m) MAPE (%) Minimum error
(mm)

Maximum error
(mm)

BPNN 0.5473 0.4136 1.9588 2.3812 233.39

RBFNN 0.3838 0.2319 1.0906 0.3270 124.51

SVR 0.5287 0.4110 1.9349 0.9337 137.99

ELM 0.2522 0.1553 0.7549 2.2012 98.706

EEMD–ELM 0.1610 0.1339 0.6451 1.6405 39.921

M–EEMD–ELM 0.1222 0.0952 0.4553 0.5692 33.663

MonthMonth

MonthMonth

MonthMonth

A
cc

um
ul

at
io

n
di

sp
la

ce
m

en
t(

m
m

)
A

cc
um

ul
at

io
n

di
sp

la
ce

m
en

t(
m

m
)

A
cc

um
ul

at
io

n
di

sp
la

ce
m

en
t(

m
m

)

A
cc

um
ul

at
io

n
di

sp
la

ce
m

en
t(

m
m

)
A

cc
um

ul
at

io
n

di
sp

la
ce

m
en

t(
m

m
)

A
cc

um
ul

at
io

n
di

sp
la

ce
m

en
t(

m
m

)

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

0 5 10 15 20 25
1800

1900

2000

2100

2200

2300

BPNN

Actual Value

RBFNN

Actual Value

SVR

Actual Value

ELM

Actual Value

EEMD-ELM

Actual Value
M-EEMD-ELM

Actual Value

Fig. 9 The comparison among six forecast models
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single ANN model. And the prediction precision of M–EEMD–ELM has an appropriate

improvement to EEMD–ELM where the MSE, MAE, and MAPE reduce by 1.0961,

0.0387, and 0.1898 %, respectively; especially, we can see that M–EEMD–ELM model

produces better results than the other five models in terms of getting the smallest maximum

error and minimum error. And two ensemble models, EEMD–ELM and M–EEMD–ELM,

have a big reducing in the maximum error. So, we can draw the conclusion that the

proposed M–EEMD–ELM model is superior to the single ANN models and EEMD–ELM

model. This illustrates that the idea of ‘‘decomposition and ensemble,’’ which is achieved

using EEMD decomposition, can effectively improve the performance of landslide dis-

placement prediction.

4 Conclusions

This study proposes a modified EEMD-based ELM ensemble paradigm to obtain accurate

prediction results and improve landslide displacement prediction quality further. In terms

of different criteria, RMSE, MAE, and MAPE, we can find that across different models for

the test case of Baishuihe landslide, our proposed M–EEMD–ELM method performs the

best. In comparison with the other classic single ANN models, only two ensemble models,

EEMD–ELM and M–EEMD–ELM, successfully predict the obvious deformation without

time delay, which is very important in landslide forecast warning. In conclusion, the

M–EEMD–ELM prediction paradigm can effectively improve landslide displacement

prediction and help make future planning of the area.
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