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Abstract Fire and land management in fire-prone areas can be greatly enhanced by

estimating the likelihood of fire at every point on the landscape. In recent years, powerful

fire simulation models, combined with an in-depth understanding of an area’s fire regime

and fire environment, have allowed forest managers to estimate spatial burn probabilities.

This study describes a methodology for selecting input data and model parameters when

creating burn probability maps in difficult-to-model areas and reports the results of a case

study for a large area of the Columbia Mountains, British Columbia, Canada. In addition to

having particularly mountainous topography, the study area is covered by vegetation types

that are poorly represented in fire behavior systems, even though these vegetation types

have experienced considerable (if highly irregular) fire activity in premodern times (before

1920). Parameterization of the fire environment for simulation modeling was accomplished

by combining various types of fire information (e.g., fire history studies, reconstructed fire

climatologies), new technologies (high-resolution remotely sensed data, wind flow mod-

eling), and—a must in data-limited areas—ample expert advice. In this study, we made

extensive use of personal accounts from experienced fire behavior officers for the creation

of model inputs. Despite difficulties in validating outputs of burn probability models, the

multisource model-building approach described here provides a conservative, yet infor-

mative, means of estimating the likelihood of fire. Due to the data-intensive nature of the

M.-A. Parisien (&) � J. M. Little � B. N. Simpson
Northern Forestry Centre, Canadian Forest Service, Natural Resources Canada, 5320
122nd Street, Edmonton, AB T5H 3S5, Canada
e-mail: Marc-Andre.Parisien@NRCan-RNCan.gc.ca

G. R. Walker
Mount Revelstoke and Glacier National Parks, Parks Canada, PO Box 350, Revelstoke,
BC V0E 2S0, Canada

X. Wang
Department of Renewable Resources, University of Alberta,
751 General Service Building, Edmonton, AB T6G 2H1, Canada

D. D. B. Perrakis
Wildfire Management Branch, British Columbia Ministry of Forests, Lands, and Natural
Resource Operations, 2957 Jutland Road, Victoria, BC V8T 5J9, Canada

123

Nat Hazards (2013) 66:439–462
DOI 10.1007/s11069-012-0495-8



modeling and paucity of input data, an argument is made that modelers must focus on the

inputs that are the most influential for their study area.

Keywords Burn probability � Fire � Simulation modeling � Fuels � Ignitions � Weather

1 Introduction

In large fire-prone landscapes, an increasingly popular method of estimating spatial fire

likelihood involves simulating the ignition and spread of individual wildfires across a range

of environmental conditions (Miller et al. 2008). This fire simulation technique, termed

burn probability (BP) modeling, relies heavily on modern fire-growth algorithms (Finney

2002; Richards 1995). These models depict fire shapes realistically and, as a result, yield

more accurate spatial BP estimates. In addition, explicitly incorporating spread into the

prediction of fire likelihood captures the spatial topology or landscape ‘‘context’’ in which

fires burn. For example, a forest stand that is flammable but highly isolated, such as an

island in a large lake, will have a low BP, as observed in field studies (Wardle et al. 1997).

Similarly, BP models can depict spatial effects such as ‘‘fire shadows’’ (areas of low fire

frequency on the lee side of large nonburnable features such as lakes) (Cyr et al. 2005;

Heinselman 1973). In short, BP models offer the possibility of depicting the fine-scale

patterns of fire likelihood that exist on the landscape and thereby allow for better strategic

planning of fire and forest management (Moghaddas et al. 2010; Thompson et al. 2011a;

Scott et al. 2012a).

As a result of these characteristics, the BP modeling approach has been applied to a

variety of ecological and land management objectives. Because BP maps represent

quantitative estimates of fire likelihood, they can be readily incorporated into risk man-

agement frameworks by the superimposition of other mapped impacts or values (Calkin

et al. 2010; Finney 2005; Miller and Ager 2012). For example, fire likelihood (i.e., BP) has

been used to assess likely points of contact with the wildland–urban interface (Braun et al.

2010), to evaluate the potential loss of habitat for endangered wildlife (Ager et al. 2007),

and to identify the trade-offs among fuel management strategies for competing values

(Ager et al. 2010; Thompson et al. 2011a). BP modeling has recently been applied to the

entire conterminous US by collation of 134 landscapes with estimated BP (Finney et al.

2011), the final product of which was used to develop the US Cohesive Wildfire Man-

agement Strategy (Calkin et al. 2011). As a complement to fire probability, many of these

studies have used simulated fire behavior components (e.g., fire intensity, rate of spread) to

integrate measures of fire effects, such as flame length or tree mortality, into their risk

analysis. BP models have also been used to enhance our basic understanding of spatial

controls on fire likelihood. For example, Bar Massada et al. (2009) showed that the relative

severity of fire weather (normal vs extreme) significantly affected not only the magnitude

of BP, but also its spatial distribution and patterns. Similarly, by manipulating inputs into

the model, Parks et al. (2012) showed that bottom-up controls on BP, ignitions, fuels, and

topography varied substantially across the fire-prone landscapes of western North America.

Despite recent technological advances and improvements in the availability of spatial

data (e.g., Rollins 2009), BP modeling remains a challenge for some areas. The first

potential limitation to creating a BP project is a lack or sparseness of source data for

building the inputs (e.g., fine-scale vegetation, reliable fire atlas). For example, in settings

where the base data describing vegetation are suboptimal, modelers must often make

somewhat arbitrary decisions when translating information about vegetation into fuel
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models (Ager et al. 2011). An equally important problem stems from the fact that in some

areas with potential fire problems (as indicated by their rich history of fire occurrence) area

burned has been minimal, because fire has been effectively excluded in modern decades

(Collins et al. 2010). As a result, potential locations and effects of large conflagrations are

speculative. Another major impediment to BP modeling is that the complexity inherent to a

given landscape may compromise the ability to accurately capture all of the key spatio-

temporal patterns in fire ignition and spread that modellers are attempting to incorporate

into a BP framework. This is often true of mountainous landscapes, where topography

affects every aspect of the fire environment: vegetation, fire weather, and ignition patterns

(Kellogg et al. 2008; Parks et al. 2012).

In spite of the various issues that can undermine the ability to map fire likelihood with

BP models, the usefulness of this technique justifies the effort necessary to overcome

challenges to its implementation (Thompson et al. 2011b). It is up to the landscape fire

modeling community to uphold the imperative of Ager et al. (2011) that ‘‘modeling needs

to keep pace with the demand of the planners.’’ The central goal of this study was to

demonstrate how BP modeling projects can be created in spite of the aforementioned

obstacles. The study area used for this research was the diverse and complex environment

of the Columbia Mountains of British Columbia, Canada. The Burn-P3 model (Parisien

et al. 2005), a BP model designed for the forested landscapes of Canada, was used for the

simulation modeling. A key objective was to illustrate how several disparate sources of

data, combined with expert advice, could be used to assemble the necessary inputs for

running data-hungry BP models. Therefore, we aimed to develop a ‘‘recipe’’, including all

of the necessary ingredients and procedures, for mapping BP in areas that might appear

problematic. We also developed a short list of specific recommendations that will assist in

implementing future BP projects in similarly challenging landscapes.

2 Methods

2.1 Study area

The study area, located in the Columbia Mountains of southeastern British Columbia

(Fig. 1), covers 1,343,921 ha. It encompasses two national parks: Mount Revelstoke and

Glacier. The Columbia Mountains form a range with distinct geology, remarkably steep

slopes, and highly complex terrain that is naturally fragmented by barren peaks and

numerous avalanche paths (Valentine et al. 1978). The climate of the study area is affected

by both dry continental air masses and wet air moving inland from the Pacific Ocean,

which results in warm summers with moderate precipitation and winters that are cool,

snowy, and wet (Chilton 1981). Winter snow packs are among the deepest in North

America (Brown et al. 2003). As a result of the prolonged period of snowmelt (longer than

1 month at higher elevations), the onset of vegetation green-up may be considerably later

than adjacent areas. By contrast, after the snow has melted gradual drying of the study area

leads to likely conditions for fire occurrence from July to September or later.

Although the study area is far inland, its distinctive climate and geology have resulted,

at low elevations (400–1,500 m), in an interior rain forest that is unique in North America

(Ketcheson et al. 1991): the Interior cedar–hemlock forest (ICH; Meidinger and Pojar

1991). Scattered patches of natural or human-induced meadows are found at these ele-

vations, as are deciduous and mixed forests, but the conditions clearly favor coniferous

trees. At mid-to-high elevations (1,500–2,300 m), the forests form a wet and highly
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productive variant of Engelmann spruce-subalpine fir forest (ESSF; Meidinger and Pojar

1991), a forest type found throughout the mountainous areas of western North America

(Coupe et al. 1991). Stands of pine (mainly the serotinous Pinus contorta Dougl. ex Loud.)

are also found at this elevation range, especially where high-intensity fires have occurred in

recent decades. At higher elevations, there is a large alpine zone comprising meadows,

sparse patches of trees (often with stunted or krummholtz form), and bare rock.

Given this particular ecological setting, the fire regime of the Columbia Mountains is

regionally unique (Wong et al. 2004) and poorly studied. First, spring fire activity is rare,

largely because of the extended snowmelt period (Fig. 2). Historical records have shown

that the fire season generally extends from mid-May to mid-September, but only about 5 %

of area burned is accounted for by fires occurring during the spring (May and June), with

the majority of area burned (87 %) being accounted for by fires that occur in July and

August (Rogeau 2003). In most mountainous areas, fire cycles are believed to be shortest at

the valley bottom, increasing with elevation (Schoennagel et al. 2004). However, some

estimates suggest that this pattern is reversed in the Columbia Mountains, with shorter fire

cycles at higher elevations (in the ESSF forests) than at lower elevation (in the ICH

forests). Estimated historical fire-return intervals in the ESSF forests of the study region

range from 110 to 300 years; for the ICH forests, historical fire-return intervals are

between 150 and 250 years (Parminter 1995; Rogeau 2003). This pattern of relatively high

fire occurrence at high elevation may arise from the occurrence of strong mid-slope

thermal belts (nocturnal temperature inversions leading to cooler and wetter valley bot-

toms) (Powell 1970), a concentration of lightning at mid-elevations (Rogeau 2003) and

more flammable forest fuels in the ESSF forests. Another difference of the study area is

that, unlike adjacent areas where human-caused fires are more frequent, a large proportion

Fig. 1 Boundary of the study area in the Columbia Mountains of British Columbia, Canada (a) and fires
C10 ha for the period 1920–2009 by data source (b). Mount Revelstoke National Park and Glacier National
Park are outlined in green
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(about 80 %) of fires recorded since 1960 were ignited by lightning (Rogeau 2003). The

Columbia Mountains lie in a region where lightning-caused fires are relatively frequent

and, although lightning strike density is not particularly high, lightning is especially

effective at igniting fires (Wierzchowski et al. 2002).

For most of the past century, fire management across British Columbia, including

Mount Revelstoke and Glacier national parks, was designed to minimize the impacts of fire

on values at risk, including communities and natural resources. The ‘Hit hard, hit fast’

motto succinctly describes an aggressive initial attack focus that was effective at excluding

fire for much of the twentieth century (Pyne 2007). This began to change after a number of

severe wildfire seasons with structural losses. In 2010, the province adopted a new pro-

vincial wildland fire management strategy that outlines a more ecosystem-based focus for

fire management, including increased use of prescribed fire and wildland fire use, in

addition to mechanical fuel treatments and other prevention programs. The implementation

Fig. 2 Mean number of fires (points) and area burned (bars) for each 2-week period of the fire season for
a the interior cedar-hemlock and b Engelmann spruce-subalpine fir fire zones. Values are based on the atlas
of fires C10 ha for the period 1920–2009
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of the new strategy has just begun, but it will take many years to undo the mark of the

twentieth century exclusion.

2.2 The Burn-P3 model

We used the Burn-P3 model (Parisien et al. 2005) to estimate BP in the study area. Burn-

P3 is a fire simulation model that uses the Prometheus fire-growth engine (Tymstra et al.

2010) to explicitly simulate the ignition and spread of a very large number of fires (e.g.,

104–106 fires). The Burn-P3 model is conceptually similar to other BP models, such as

FSIM (Finney et al. 2011), as well as versions of succession-disturbance models, such as

Landis (Yang et al. 2008) and BFOLDS (Perera et al. 2008), that can be adapted to run

like a BP model. BP models do not model postfire succession; instead, they focus on

properly modeling fine-scaled fire patterns. The main result of a BP model is a surface of

fire probabilities for a given year (e.g., the upcoming fire year); however, such models

can also generate various other outputs, such as fire intensity, which can be used to infer

some measure of fire effects (e.g., biomass consumption, flame length, tree mortality).

Burn-P3 simulates the fires burning in a single year, but repeats this year a large number

of times (hereafter termed ‘‘iterations’’) on the basis of the variability that is known to

occur on the landscape and in the regional climate. Each iteration is therefore a repre-

sentation of fires in a specific fire year. For example, a given iteration might model a

‘‘mild’’ fire year, with only a few fires burning under moderate conditions, whereas the

following iteration might simulate an ‘‘extreme’’ fire year, during which a large number

of fires, some burning under high to extreme weather conditions, happen to occur.

A pixel-wise BP estimate consists of the cumulative number of times a pixel burns

divided by the total number of iterations, such that a BP of 0.01 represents a 1 % annual

likelihood of burning.

The accuracy of BP estimates is strongly dependent on replicating the natural spatio-

temporal variability with which fires ignite and spread (Lertzman et al. 1998; Parisien et al.

2010). To avoid straying from the natural variability of the fire regime, all Burn-P3 inputs

are based on a modern historical (i.e., observed) data set. As such, Burn-P3 model rep-

resents a modern measure of fire risk that is not necessarily representative of historical fire

regimes. Burn-P3 is well equipped to model the fluctuations in fire regimes that occur from

year-to-year and from fire-to-fire within a given fire season. The general simulation flow

for a given iteration comprises the following four steps. First, the number of fires is drawn

from a probability distribution, and, for each of the fires, the season and cause are

determined from categorical probability distributions. The next step consists of assigning

an ignition location to each fire by drawing a coordinate from grids of spatial probabilities

of ignitions. In the third step, the duration (in days) is drawn independently for each fire

from a historical frequency distribution of spread-event days (subsection 2.4.8). Finally, for

each day that a given fire is simulated, Burn-P3 selects daily fire weather as a function of

its season and geographic location (hereafter termed ‘‘fire zone’’). More detailed

descriptions of the model are available in previous studies (Beverly et al. 2009; Braun et al.

2010; Parisien et al. 2011).

2.3 Selection of input data and modeling parameters

Building a BP project is typically a time-consuming endeavor. Like other models of its

kind, Burn-P3 is a data-hungry model that requires a large number of data inputs. The

effort required to prepare the inputs depends on the ability to obtain or develop the
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following data sets: a detailed fire atlas, mapped fuels, elevation, and daily weather

observations. The level of detail required varies tremendously from one study area to

another, depending on the complexity of the landscape and its fire regimes. One should

always strive to obtain the highest-quality geospatial data for fire simulation modeling.

However, given the financial and time investment that is often required in developing some

BP inputs, a grasp of the sensitivity of these inputs can help dictate the necessary degree of

data refinement (Parks et al. 2012). For example, in much of the boreal forest, the land is

flat enough that topography-related inputs have a negligible effect on spatial fire likelihood

(Parisien et al. 2011).

A representation of flammable vegetation (i.e., fuels) is a required and crucial input, and

every BP project must have the best available gridded fuels map. If there is appreciable

topography within the study landscape, the same principle applies to elevation. By contrast,

inputs related to spatiotemporal patterns of ignitions and weather can vary greatly in

complexity. For example, if the spatial patterns of ignitions vary significantly as a function

of cause (human or lightning), season and/or geographic area, the inputs must capture this

variability. Such stratification implies substantially more work; therefore, its potential

influence on model output should be assessed. In this study, the threshold used to deter-

mine if a given input should be stratified was based on an ‘‘influence’’ threshold of 5 %.

For instance, although the majority of fires in the study area are ignited by lightning,

human ignitions account for 16.7 % of the historical area burned, so ignition locations

were stratified by cause.

Because the study area is large and encompasses substantial natural variability in

topography, vegetation, and weather (and hence in its fire environment), a multifaceted set

of inputs was warranted for BP modeling. To guide our modeling decisions with respect to

the more complex input types (specifically, ignitions and weather), we developed a simple

flowchart (Fig. 3). In terms of ignitions, it was necessary to model the annual number of

fires (those C10 ha; subsection 2.4.7) as a frequency distribution, because of significant

interannual variability in fire occurrence. The total number of fires was apportioned by

cause, season, and fire zone, given important spatiotemporal differences in ignition

numbers according to these factors. In this study area, ignition locations were stratified by

cause and fire zone, but not by season (not shown in the flowchart) because there was a

lack of seasonality in the historical fire records. For the purpose of BP modeling, weather is

defined both by the duration of fire (analogous to the rain-free interval) and the daily

weather conditions under which fires burn. Because the burning time of fires varies sig-

nificantly, fire duration was sampled from frequency distributions for each fire zone. The

daily weather conditions were also stratified by fire zone, as well as by season. In addition,

wind speed and wind direction were adjusted for topographic roughness.

2.4 Source data and Burn-P3 inputs

Inputs for the Burn-P3 model include both spatial and nonspatial variables, all of which are

described in Table 1. The spatial variables are represented as raster grids to capture

environmental factors that vary considerably from one location to another. For this study,

five spatial variables were used: topography, fire zones, fuels, ignition probability grids,

and wind grids. Nonspatial inputs are those that are not applied to specific locations (i.e.,

pixels), although they are often stratified geographically (i.e., by fire zone). These variables

pertain to temporal aspects, such as the number of fires and seasonality, as well as the

weather component. Five nonspatial variables were used: season, number of fires, escaped

fire rates, fire duration, and daily fire weather. This section describes the functions of the
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variables used in simulation modeling and the source data from which they were derived

for the purposes of this study. All input raster grids in this study had a resolution of 100 m.

To account for fires that ignite outside and then spread into the study area, a 10-km buffer

was added to the study area for the fire modeling; this buffer was removed for the analysis.

2.4.1 Topography (spatial variable)

The topography variable is based on a digital elevation model (Fig. 4). Burn-P3 uses

topography only to calculate the wind-slope vectoring of fire growth. However, topo-

graphic effects are considered implicitly in many other variables related to fuels, ignitions,

and weather. In addition, topography is used to compute the wind grids using external

software (subsection 2.4.5).

2.4.2 Fire zone (spatial variable)

Because the two main vegetation types, ICH and ESSF, support distinct fire regimes, it was

deemed necessary to stratify the territory by geographic zone (i.e., fire zone) for the

modeling of ignitions and weather in Burn-P3 (Fig. 4). These zones were delineated using

the British Columbia Biogeoclimatic Classification System (Meidinger and Pojar 1991). A

third fire zone encompassing the alpine areas exists but was not considered in the modeling

for this study because very few fires C10 ha occur in this zone.

Fig. 3 Decision tree for the process of creating a Burn-P3 project. The user must apply a predetermined
threshold (e.g., 5 or 10 %) to determine if a given factor (e.g., ignition locations by cause) is variable enough
to warrant the additional input stratification. Parallelograms represent data types, rectangles represent
processes, and diamonds represents decisions. Gray boxes and thick arrows indicate decisions made as part
of the project reported here. The Burn-P3 project for this study area required a very high level of input
complexity to adequately estimate burn probability

446 Nat Hazards (2013) 66:439–462

123



2.4.3 Fuels (spatial variable)

In all but the most homogeneous landscapes, fuels is usually the most important variable

driving spatial patterns in BP at the spatiotemporal frame of BP studies (Parks et al. 2012).

As such, it is a worthy investment of time to obtain the best possible fuel grids. Although

readily usable maps of forest fuels have been produced for extensive areas (e.g., Nadeau

et al. 2005 for Canada; Rollins 2009 for the conterminous US), the Canada-wide fuels are

too coarse and outdated to be used for our study area. Therefore, a vegetation map for the

study area was built from a composite of sources using supervised classification and

decision rules based on expert advice (Fig. 4). In general, priority was given to the British

Columbia Vegetation Resource Inventory, but where data were missing or of doubtful

Table 1 Burn-P3 state variables used in modeling burn probability in the Columbia Mountains study area

Variable (subsection described) Data type Descriptiona

Spatial variables

Topography (Sect. 2.4.1) Raster grid (numeric) Elevation (m)

Fire zone (Sect. 2.4.2) Raster grid (nominal) Geographic zones with distinct fire regimes
and fire weather: Interior cedar–hemlock
(ICH) and Engelmann spruce-subalpine fir
(ESSF)

Fuels (Sect. 2.4.3) Raster grid (nominal) Fuel types and nonfuel features defined by
Canadian Forest Fire Behavior Prediction
System

Ignition location (Sect. 2.4.4) Raster grids (2 grids;
numeric)

Relative probability of ignition, by season
(unitless)

Wind grids (Sect. 2.4.5) Raster grids (16 grids;
numeric)

Influence of topography on wind direction
(degrees) and wind speed (km/h) for the
eight main cardinal directions

Nonspatial variables

Season (Sect. 2.4.6) Setting (nominal) Start and stop dates of periods for which fire
weather, grass curing and green-up change
(spring = April 1 to June 15,
summer = June 16 to September 31);
deciduous trees modeled as ‘‘green,’’ except
for spring in ESSF; grass curing set at 60 and
75 % in spring and summer, respectively

Number of fires (Sect. 2.4.7) Frequency
distribution
(numeric)

Number of fires C10 ha per iteration;
range = 0–38 fires per iteration

Escaped fire rate (Sect. 2.4.7) Frequency
distribution
(numeric)

Overall proportion (percent) of fire ignitions
by season, cause and fire zone in a Burn-P3
run

Fire duration (Sect. 2.4.8) Frequency
distribution
(numeric)

Number of spread-event days per fire (i.e.,
duration of burning); range = 1–10 for ICH,
1–8 for ESSF

Daily fire weather (Sect. 2.4.9) List of burning
conditions
(numeric)

Daily fire weather conditions at noon local
standard time and associated Fire Weather
Index System components (Van Wagner
1987); list partitioned by season and fire
zone

a For numeric variables, units are provided in parentheses
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quality (e.g., outdated), remote sensing products were used: the Earth Observation for

Sustainable Development (Wulder et al. 2003) and the Land Cover Map of Canada 2005

(Canada Centre for Remote Sensing 2008). Finally, where omissions and obvious errors

remained, modified zones from the British Columbia biogeoclimatic classification system

(Meidinger and Pojar 1991) and elevation were used to infer missing vegetation types.

Vegetation was classified as fuel types according to the Canadian Forest Fire Behavior

Prediction (FBP) System (Forestry Canada Fire Danger Group 1992). Substantial expert

advice was sought to translate vegetation into FBP System fuel types because some

vegetation types are not adequately described by the FBP System. Fire behavior varies by

fuel type depending on weather conditions and slope. Fuel types can be broadly catego-

rized as coniferous, deciduous, mixed wood, grasses, and slash. The coniferous fuel types

are typically viewed as the most flammable (i.e., most conducive to fire ignition and

spread) of forested types; however, flammability varies greatly among fuel types. The

deciduous (D-1) and mixed wood (M-1) fuel types (Forestry Canada Fire Danger Group

1992) have greater susceptibility to fire growth in the spring, before leaf flush, than later in

the season. The grass fuel type (O-1) is also more flammable in spring than in summer

because most of its standing biomass is dead and dry during that season. The proportions of

FBP System fuel types by fire zone are presented in Table 2.

2.4.4 Ignition location (spatial variable)

Assessing where fires are most likely to occur is the most challenging aspect of BP

modeling. Using past ignitions to model current potential ignitions would not be valid in

this study area for a number of reasons. First, past ignitions represent only a finite sample

of all of the potential ignitions that might have occurred. Second, some past ignitions are

likely to have occurred in areas that are no longer suitable for ignition (e.g., the vegetation

has been burned or a major avalanche has occurred). To circumvent these limitations, we

used a statistical model to link past fire ignition locations (subsection 2.4.6) to certain envi-

ronmental factors (compare Bar Massada et al. 2011; Parks et al. 2012, Scott et al. 2012b).

Fig. 4 Spatial inputs to the Burn-P3 fire simulation model: a Canadian Fire Behavior Prediction System
fuel types (Table 2 for descriptions), b elevation and c fire zones (ICH interior cedar-hemlock, ESSF
Engelmann spruce-subalpine fir). The weather stations used in the modeling are shown in the fire zones map
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Given the transient nature of vegetation patterns, the environmental factors used as

independent variables for the ignition models consisted only of features that that would not

be expected to change over the period modeled, such as topography.

We used logistic regression analysis to generate ignition probability grids (Fig. 5). The

dependent variable was a binary vector of presumed ignition locations of fires C10 ha (i.e.,

fire ‘‘presences’’) and 500 randomly chosen background points that did not overlap with

fire-presence pixels (i.e., fire ‘‘absences’’). When the location of origin of a fire was

unknown, the centroid of the fire was used as the ignition location. The statistical model

evaluated differences in the environment between the presence and the absence points.

Exploratory analyses showed that spatial patterns of ignitions in the study area varied

significantly by cause (lightning or human), but not by season. Therefore, ignition models

were built only by cause. Three variables were selected for the logistic regression model of

lightning-caused fires: elevation; topographic position index, which is an index of con-

cavity (calculated with a 3-km window) (Weiss 2001); and solar radiation, which is

computed from aspect and slope (ESRI 2010). For the model of human-caused ignitions, an

additional variable, the distance to roads (of any type), was considered as a proxy for

human influence.

The ignition models were built in a two-step process. First, a self-fitting model was built

using generalized additive models (Hastie 2011; R Development Core Team 2007). This

allowed us to determine which predictor variables were significant and whether nonlinear

functional forms were warranted for some variables. The next step consisted of building

generalized linear models with the significant variables and with the appropriate trans-

formations (e.g., quadratic). In the model for lightning-caused ignitions, all three topo-

graphic variables were significant; the topographic position index was linear, but solar

radiation and elevation both required a quadratic term. In the model for human-caused

ignitions, all of the variables except solar radiation were significant, and distance to road,

topographic position index and elevation were all linear. Ignition grids were generated

from the logistic models and the mapped predictor variables using the ‘‘raster’’ package in

R (Hijmans and van Etten 2012).

Table 2 Distribution of fire behavior prediction (FBP) system fuel types in the study area and in the two
fire zones

FBP System fuel typea Entire study
area (%)

Interior cedar-
hemlock (%)

Engelmann spruce-
subalpine fir (%)

Spruce-Lichen Woodland (C-1) 14.8 8.6 17.2

Boreal Spruce (C-2) 21.5 9.6 26.0

Mature Jack or Lodgepole Pine (C-3) 0.7 1.3 0.4

Immature Jack or Lodgepole Pine (C-4) 0.1 0.3 0.1

Red and White Pine (C-5) 19.9 56.7 5.9

Boreal Mixedwood (M-1 and M-2) 2.5 6.1 1.2

Aspen (D-1 and D-2) 3.5 5.9 2.6

Matted Grass (O-1a) 8.7 4.4 10.3

Nonfuel Features 27.0 3.0 36.0

Water 1.3 4.0 0.3

a Fuel codes as described by Forestry Canada Fire Danger Group (1992)
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2.4.5 Wind grids (spatial variable)

To capture the effect of wind channeling in mountainous areas, grids for wind direction

and wind speed were incorporated into the modeling. WindNinja version 2.1.1 (Forthofer

and Butler 2007) was used to generate the topography-modified wind direction and wind

speed grids for the eight cardinal wind directions (at 45� intervals). These grids modify the

winds at every point on the landscape according to the underlying topography. In Burn-P3,

specific wind direction and wind speed grids are activated as a function of the wind

direction input from the list of daily fire weather conditions, if this direction falls within the

range from 22.5� below to 22.5� above a given cardinal point.

2.4.6 Season (nonspatial variable)

The seasonality of fire activity—in conjunction with its spatial variation—is highly

important because neither the number of fires nor the areas burned is uniform throughout

the fire season (Fig. 2). Fire behavior varies because of seasonal differences in vegetation

(e.g., before and after leaf flush) and daily fire weather. The seasons incorporated into the

BP model were determined through summary explorations of fire weather, by examining

temporal fire activity and—most importantly—through the advice of experienced fire

managers.

Using the criteria above, two seasons were deemed adequate for capturing spatiotem-

poral patterns of ignition and spread in the study area: spring (April 1–June 15) and

summer (June 16–September 31). The bulk of fire activity (*90 %, in terms of both fire

ignitions and area burned) occurs in the summer. The season start and end dates are fairly

comprehensive, in that they correspond to, on average, the earliest and latest dates at which

Fig. 5 Ignition grids for a lightning-caused and b human-caused fires used in Burn-P3 modeling of the
study area. These grids represent the relative probability of ignition of fires C10 ha. Fires used in the
statistical modeling of ignitions are shown as black dots (see Sect. 2)
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fires C10 ha occur. The average green-up date in each fire zone was taken into consid-

eration for the classification. Although the timing of phenology has an important effect on

fire activity in many northern forests (e.g., the boreal forest), it is hardly a factor in the

study area. In the ICH fire zone, leaf flush has usually occurred by the time of the fire

season; in the ESSF, green-up is initiated at the start of the summer season, following the

extended period of snowmelt. Grass fuel cover (i.e., FBP System fuel type O-1), which is

relatively sporadic in the study area, was set at a low level of curing (60 %), except for the

ICH zone in summer, where it was increased to 75 %.

2.4.7 Number of fires and escaped fire rates (nonspatial variables)

To better understand fire history and develop certain variables, a reliable fire atlas had to be

assembled for the study area. Such an atlas was compiled for fires C10 ha for the period

1920–2009. To ensure that the atlas would be as comprehensive as possible, data from

multiple data sources were collated. The main database used was that of the British

Columbia Wildfire Management Branch (for 1920–2009). Some recent fires (occurring in

the period 1995–2010) were added from the Natural Resources Canada coarse-resolution

burned area maps derived using a multi-technique approach (Fraser et al. 2000). Finally,

the Parks Canada fire database (for 1960–2004) was used to fill in gaps in the two national

parks in the study area. For some of these fires, the data consisted only of an ignition point

and total area burned, so a circular buffer was added to represent their final size. Compiling

these multiple sources into an atlas with complete coverage for the study area involved

standardizing attributes and selecting the best available data source for each fire event. The

resulting fire atlas undoubtedly underestimates the number of fires and area burned,

especially in the early decades of the simulation study; however, the database did allow us

to adequately characterize the spatioseasonal patterns of fire used to build BP model

variables.

In this study, only fires C10 ha were simulated, and, accordingly, only the fires meeting

this size threshold were used to develop the inputs. Smaller fires are usually not com-

prehensively reported, and they represent only a small fraction (2–3 %) of the total area

burned. Importantly, only fires with the potential to become large should be considered for

building BP model inputs; for example, very small fires (B0.1 ha), which are typically

disproportionately numerous, usually exhibit spatial and temporal patterns of occurrence

that differ from those of larger fires (Sturtevant and Cleland 2007).

At the start of each iteration, Burn-P3 must determine how many fires will be simulated

using the number of fires variable (Table 1). This information is drawn from a frequency

distribution based on the historical atlas of fires, which is smoothed using a logistic

function (as shown in Fig. 6). Once the number of fires for a given iteration has been

determined, the fires are assigned to a given combination of season, cause, and fire zone

from a categorical probability distribution (the escaped fire rates variable) that is also based

on historical fire data (Table 3).

2.4.8 Fire duration (nonspatial variable)

Although wildfires in the study area may burn for periods ranging from days to weeks, the

bulk of their progression is usually limited to a few days (Parisien et al. 2005; Podur and

Wotton 2011). In Burn-P3, only days on which fires experience substantial spread (here-

after termed ‘‘spread-event days’’) are modeled. Spread-event days were extracted from a

database of daily fire progression derived from satellite-detected hot spots for 1994–2010.
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Fire progression was mapped as follows: (1) a 2,000-m buffer was applied to the accu-

mulated season-to-date Moderate-Resolution Imaging Spectroradiometer (MODIS) hot

spots (USDA Forest Service 2008) available for each day throughout the fire season; (2)

the overlapping buffered areas were dissolved to create single fire-event clusters; (3) each

cluster was then reduced by 1,300 m using an inward buffer, which helped to smooth the

perimeter and resulted in an updated estimate of total area burned for that day; and (4) each

daily fire perimeter was clipped (i.e., subtracted) where there was overlap with the previous

day, and perimeters were then successively combined to produce a fire-progression esti-

mate for each burned area.

To distinguish between spread-event and non-spread-event weather days, a cutoff was

applied to the fire-progression data. Here, we attempted to relate fire progression to daily

fire weather of the closest weather station, as Podur and Wotton (2011) did for the boreal

forest of Ontario, but our attempt was deemed unsuccessful. The sparseness of weather

stations and the localized weather patterns due to mountainous topography, compounded

by the noise inherent to the daily progressions (e.g., because of cloud cover), blurred the

relationship between fire spread and daily weather. We thus opted for another approach, in

which days of spread-event weather were identified by means of a fire-growth threshold,

specifically by calculating a rate of spread value for each day of each fire, assuming

circular growth. We set the minimum threshold for rate of spread as 2 m/min, on the basis

of 4 h of burning per day; these values allowed for a reasonable dichotomy of spread and

non-spread days. Although it involves simplifications, this method of calculation is pref-

erable to a size-based threshold because it does not depend on the final size of each fire.

A frequency distribution of the number of spread-event days was produced for each fire

zone (Fig. 7). The areas burned by individual fires are highly sensitive to this input variable

(Parisien et al. 2010). As such, these distributions may require further adjustment to ensure

Fig. 6 Frequency distribution of
the number of large fires per year
(modeling parameter applied to
each iteration). The gray bars are
based on observations for the
number of large fires, and the
dots represent logistic smoothing
of the distribution used in Burn-
P3. These values are based on the
atlas of fires C10 ha for the
period 1920–2009

Table 3 Distribution of fire ignitions simulated in Burn-P3 by season, cause, and fire zone (escaped fire
rate variable)a

Season Cause Interior cedar-
hemlock (%)

Engelmann spruce-
subalpine fir (%)

Spring Human 4.5 1.7

Lightning 2.9 1.6

Summer Human 7.5 3.0

Lightning 35.6 43.2

a Values are based on an atlas of fires C10 ha for the period 1920–2009
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that simulated fires approximate the sizes of historical fires. In our study, size discrepancies

were indeed observed between the ‘‘first-pass’’ simulated fires and the historical fires.

Using trial and error, we decided to make the following adjustments. First, we limited the

number of spread-event days to 10 and 8 days in the ICH and ESSF fire zones, respec-

tively. Second, we increased the frequency of 1 day spread events slightly, to 70 %, for

both of the fire zones, because too few small fires (i.e.,\100 ha) were simulated relative to

the fire atlas data. Finally, we adjusted the classes for spread-event days [1 using a

multiplier to retain the shape of the distribution.

2.4.9 Daily fire weather (nonspatial variable)

Only days with substantial fire spread are modeled in Burn-P3, so only daily fire weather

conditions that are conducive to substantial spread are considered in the model. Fire

weather refers to noon weather observations of temperature, relative humidity, wind speed,

wind direction, and 24-h precipitation, recorded daily, as well as the associated fuel

moisture codes and fire behavior indexes of the Fire Weather Index System (Van Wagner

1987). Using observations from 19 weather stations in and around the study area, we

extracted days with fire-conducive conditions according to the threshold established by

Podur and Wotton (2011) (i.e., Fire Weather Index C19). The list of daily fire weather

conditions is stratified by fire zone and by season, and Burn-P3 therefore draws daily fire

weather for a given simulation according to the location of ignition and the time of year.

Table 4 highlights the mean differences among fire zones and seasons within the days

deemed conducive to fire. For example, although fire-conducive days in the spring are, on

average, cooler, the cooler temperatures are compensated by drier and windier average

conditions.

3 Results

As expected for such a complex region, the modeled annual fire likelihood across the study

area was highly heterogeneous (Fig. 8). The mean BP was 0.0024 and the median 0.0011,

Fig. 7 Frequency distributions of the number of spread-event days per fire (duration of burning variable)
for each forest type. The gray bars are based on observations for spread-event days, and the dots represent
logistic smoothing of the distributions used in Burn-P3. These values are based on a database of the daily
progression of fires C10 ha for the period 2000–2011
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but the range (0–0.0283) was wide and the standard deviation (0.0033) high. Furthermore,

the BP varied considerably between the two fire zones, with the ESSF zone predicted to be

generally more prone to fire than the ICH zone (mean BPs of 0.0026 and 0.0017,

respectively). However, the BP was highly spatially variable within a given zone. When

the BP map was compared with the fuels map (Fig. 4a), much of the variation in BP

appeared to be explained by the configuration of fuel types. The fuels input tells only part

of the story, however, as various other factors (e.g., daily fire weather, patterns of nonfuel

features, ignition patterns) interact to produce any given BP value.

Fig. 8 a Burn probability estimates of the entire study area, and b magnified portion of the area around the
town of Revelstoke, BC

Table 4 Selected fire weather components (mean ± standard deviation) for fire-conducive conditions (Fire
Weather Index C19) by fire zone and season

Fire zone Season Temperature
(�C)

Relative
humidity (%)

Wind speed
(km/h)

Fire Weather
Index

Interior cedar-hemlock Spring 22.6 ± 3.9 27.7 ± 9.5 10.0 ± 5.5 24.8 ± 4.9

Summer 26.0 ± 3.6 31.8 ± 8.4 8.0 ± 5.3 27.5 ± 7.1

Engelmann spruce-subalpine fir Spring 19.6 ± 3.4 25.4 ± 6.9 13.1 ± 3.4 21.7 ± 2.9

Summer 23.7 ± 3.5 30.0 ± 8.1 10.3 ± 4.7 27.6 ± 7.4
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The modeled patterns of fire likelihood can be interpreted across two spatial scales:

broad patterns at the regional level and fine patterns at the local level. At the regional scale,

the highest BP seemed to be concentrated in three areas: along the series of lakes and rivers

from Revelstoke to Mica Creek; in the southeast corner of the study area; and to some

extent along the eastern edge of the study area, along the Rocky Mountain Trench. As the

scale is increased (zooming in), striking fine-scale patterns emerge. For example, the right-

hand map in Fig. 8 illustrates the BP patterns at the local scale in the area surrounding

Revelstoke.

4 Discussion

4.1 Interpreting the BP map for the Columbia Mountains study area

Our results support the claim that the steep topographic and climatic gradients of the study

area, as well as its variable land-use history, contribute to highly localized fire regime

patterns (Nesbitt 2010; Wong et al. 2004). The BP patterns also reflect the landscape

changes of recent decades—in terms of vegetation succession, human land-use and fire-

suppression capabilities—that have altered the potential for fire ignition and spread in

some areas. Broad areas of high fire likelihood suggest that some parts of the study area

that have not experienced many fires in the past century may be more fire-prone than the

recent fire data might indicate. Some areas may have been spared from fire during the

period spanned by the fire atlas because of successful fire suppression, because of omis-

sions in the database, or simply because of chance. Ager et al. (2012) have provided

compelling evidence that, even if ignition densities are low in a given part of a landscape

(or alternatively, initial attack success is high), the BP approach can effectively capture its

potential for large fires to burn through.

Localized patterns of modeled fire likelihood, obtained by zooming in on a specific area,

are useful to assess the susceptibility of burning around communities and infrastructure

(e.g., roads, pipelines). For example, the town of Revelstoke may not be located within the

most extensive tracts of high BP, but areas of high fire likelihood only 1–5 km away

practically surround the townsite and deserve further scrutiny. Fine-scale patterns of BP are

also useful to better understand the underlying controls on fire likelihood, such as the high

connectivity of highly flammable fuels, the concentration of ignition probabilities, or

topographic (i.e., uphill) effects (Parisien et al. 2011). A more detailed examination of the

sensitivity of BP to the environmental factors in a given area is worthwhile, in that it

provides some guidance with respect to the potential for reducing BP through management

of fuels (e.g., thinning or prescribed burning) or ignitions (i.e., prevention and initial

attack) (Ager et al. 2012; Collins et al. 2011; Suffling et al. 2008).

Mapping fire likelihood in this study area highlights the importance of considering the

spatial context in highly fragmented areas. In the Columbia Mountains, high BP values are

largely confined to large core areas of connected fuels, whereas BP is relatively low in

greatly fragmented areas (i.e., where there are numerous high peaks). In other words, large

portions of the study area are naturally limiting in terms of fire spread, as suggested by

Rogeau (2003). This information has practical implications for fuel treatments, as it helps

in determining what proportion of the landscape should be treated to effectively reduce BP

(e.g., Finney et al. 2007; Parisien et al. 2007). Conversely, it may also help in identifying

areas where fuels treatment would be largely ineffective at reducing fire likelihood around

values at risk and where a focus on ignition prevention and initial attack may provide
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greater benefits in terms of reducing fire likelihood (Cary et al. 2009). That said, we

emphasize that a low BP value should never be interpreted as meaning that an area is

invulnerable to large, high-intensity fires. For instance, parts of the study area that currently

have low fire likelihood have, in the past, had a high frequency of large fires because of

high rates of ignition, notably along the railroad, which locally inflated fire probabilities for

several decades (Johnson et al. 1990).

4.2 Creating burn probability model inputs: focus on what matters most

BP models are useful, but building their inputs can be onerous. As such, careful planning

should be undertaken before the lengthy process of acquiring and manipulating data for BP

modeling is initiated. Fortunately, there is a body of the literature on BP modeling from

various parts of the world that can help to guide this process (Carmel et al. 2009, Chuvieco

et al. 2012, Miller and Ager 2012). For instance, some studies (e.g., Parisien et al. 2010,

2011) have explicitly evaluated the sensitivity of certain inputs on fire likelihood. How-

ever, most of the modeling decisions need to be specific to the study area, because every

landscape is unique, exhibiting its own fire-environment relationships (Parks et al. 2012).

In fact, the sensitivity of certain inputs—or combinations of inputs—makes it risky to

extrapolate the results of BP models from one study area to another, even though the areas

may be similar in appearance (Bar Massada et al. 2009).

At the spatiotemporal frame of BP modeling, the spatial configuration of fuels strongly

influences patterns of fire likelihood in most study areas. Even in flat terrain, it is extremely

rare for land cover patterns to be so uniform that they only minimally affect fire likelihood.

Although obtaining a reliable fuel grid can be difficult in some areas, a rudimentary map

built on experts’ rules of thumb will be preferable to a completely uniform fuels map

(Nadeau et al. 2005; Thompson et al. 2011b). As a first step, the modeler can focus on

nonfuel features of the landscape, which are partially responsible for the spatial variability

in BP by impeding fire spread. These features can be derived from an array of remote

sensing products (which are available free of charge) and should thus be carefully depicted.

Similarly, if high-quality vegetation data are spatially sporadic for fuel typing, as was the

case in the study area, it can be useful to fill in the blanks with remote sensing products

refined according to expert advice, even if those data are coarse. Detailed vegetation

structure and composition data are certainly preferable for accurate fuel typing; however,

where this type of information does not exist, a simplistic representation of fuels is more

likely to produce realistic BP outputs than is a uniform representation. Nonetheless, the

importance of accurately depicting fuels for fire modeling needs to be assessed relative to

other inputs to BP modeling (e.g., Salvador et al. 2001) in a variety of landscapes and fire

regimes.

Topography exerts a strong indirect influence on fire regimes through its effect on

vegetation, ignition patterns, weather, and fire spread (Parks et al. 2011). The effect of

wind-slope interactions on fire spread is well established (e.g., Rothermel and Rinehart

1983; Van Wagner 1977), and such interactions are already incorporated in all major fire

behavior systems. Digital elevation models are available worldwide and may always be

included as a model. However, in study areas that are particularly flat (e.g., Parisien et al.

2011), this input need not be included in a BP model, especially if it further taxes already-

high computational demands. A more complex—and less well understood—input to BP

models is wind, expressed by speed and direction grids in Burn-P3. Even if an approxi-

mation is used, taking wind channeling into account in a study such as ours will likely be
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beneficial to the fire likelihood predictions. However, the accuracy of this input, and its

effect on fire likelihood remain to be fully assessed.

The weakest links with respect to BP modeling inputs are undoubtedly the temporal

and—most importantly—spatial patterns of ignitions: It is simply unknown when and

where fires are most likely to ignite. When ignitions are highly clustered across a landscape

(Krawchuk et al. 2006), BP patterns may be fairly sensitive to modeled ignition locations.

However, ignition clustering may not contribute much to the spatial patterns of BP in areas

that experience fires large enough to dwarf the effect of ignition clusters (Bar Massada

et al. 2011; Parisien et al. 2011). As mentioned, it is inappropriate to model only the

ignition locations that have occurred in the past. However, methods have been proposed to

capture broad patterns of ignitions without modeling specific ignition locations by means

of a smoothing function (e.g., determining kernel density) (Beverly et al. 2009; Braun et al.

2010). In this study, we used statistical techniques to model ignition probability (Bar

Massada et al. 2009; Parks et al. 2012; Scott et al. 2012b). The advantage of this method is

that areas without recent fires may be modeled as ignition-prone. In addition, the method

can be used with sparse or geographically biased data, to a certain extent. As such, we

consider this approach superior to others that have been proposed, but we acknowledge that

simpler techniques may be equivalent for some landscapes.

An important aspect of modeling fire likelihood is the ability to simulate a distribution

of fire sizes similar to that of the historical fires on which the inputs were based. In fact,

matching the fire size distribution of simulated fires to that of fires in the fire atlas rep-

resents the main calibration in BP models (Parisien et al. 2005; Braun et al. 2010). In this

study, the only input that required a post hoc adjustment for calibration purposes was the

fire duration (i.e., spread-event days distributions), as the initially derived distributions

yielded fires that were generally too large. Because fire weather largely controls the size

and shape of fires, this component requires careful attention within the BP modeling

framework. Whereas the size of a fire is mainly a function of its duration (analogous to the

rain-free period), fire shape is mainly controlled by daily fire weather conditions, in par-

ticular wind direction. The relative influence on fire likelihood of these two components of

fire weather appears to vary greatly over the landscape. For example, Parisien et al. (2011)

found that BP was highly sensitive to fire duration in the western boreal forest of North

America, where fires can grow very large. By contrast, such may not be the case in areas

where most fires achieve their spread in a single day, that is, where there is little variability

in the duration of burning (e.g., Ager et al. 2012; Weise et al. 2010). Although in the past

some BP modelers have been constrained to using simplifications (e.g., conditions asso-

ciated with a single percentile), the manner in which BP models incorporate daily weather

is evolving rapidly (Finney et al. 2011).

Evaluating the accuracy of BP estimates is an arduous task, but one that will need to be

better addressed in the future. Currently, validation of BP outputs is not routinely per-

formed and leaves us relying heavily on our knowledge of the study area and expert advice.

Very few studies have attempted to validate their estimates of fire likelihood. One way this

can be achieved is to produce a BP map for a period in the past and assess if the fires of

subsequent years have occurred in high probability areas more often than expected (cf.

Parisien et al. 2005; Paz et al. 2011). This approach has produced encouraging results but is

often difficult to implement because it relies on the availability of data (e.g., fuels data for

some period in the past). Another validation method would involve cross-validation using

different methods. If the predictive outcome of different techniques is the same (in this

case, based on area burned), such a comparison could be informative.
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4.3 Limitations of burn probability models

As in any model, the predictive estimates produced in this study are contingent on various

assumptions. In particular, caution is required when using simulation models such as Burn-P3

because combining fairly simple inputs can cause behavior that is difficult to predict (Parisien

et al. 2010), a phenomenon known as ‘‘emergence.’’ Despite substantial effort to capture

variability relevant to BP, many inputs inevitably represent simplifications of the real world

and may be prone to error. For instance, the fuel grid of the study area, which we consider

reasonably good, is limited by the Canadian FBP System, a factor that is beyond our control.

Because one of the main fuel types in the study area, the ICH forest, is not yet considered in the

FBP System, we opted to use a fuel type based on vegetation that occurs more than 3,000 km

to the east of the study area (i.e., Red and White Pine [C-5]). Although this modeling decision

translates into some uncertainty in the inputs, according to local fire behavior experts, this

uncertainty is far less than the error that would have occurred from simply using the fuel types

of the upper slopes (e.g., Boreal Spruce [C-2] and Mature Jack or Lodgepole Pine [C-3]).

Typically, the most important limitation to building a BP modeling project is the lack of data

required to properly model spatio-temporal patterns of ignitions. However, using random spatial

ignition patterns in BP modeling instead of spatially variable ignition patterns can be quite

informative, even if it is not realistic. Using different inputs will result in BP maps that lend

themselves to different interpretations. Spatially random ignitions would result in simulations

that exclude any effects of ignition location. These simulations would assess the BP potential of

the landscape (e.g., fuels and topography) and weather, which might be preferable if processes

controlling the likelihood of ignition are unknown, relatively even across the landscape, or highly

variable in time (and therefore unknown at any one time) (Ager et al. 2010; Parisien et al. 2007).

Despite efforts to provide the most accurate inputs to a BP model, some limitations

associated with the model itself. First, because these models do not explicitly take into

account fire-suppression activities, inputs must implicitly factor in their effect on fire

ignition and growth. For example, ignition grids are built using fires that are all assumed to

have escaped initial attack, which is a reasonable assumption in our study area. Second,

burn probability models cannot fully capture the changes in fuel moisture associated with

fine-scale variation in aspect and elevation, resulting in a homogenization of BP patterns.

Finally, some discrepancies between simulated fire perimeters and those observed on the

ground may be due to the mathematical processes driving the spread algorithm. However,

the relative degree at which the spread algorithm affects the accuracy of fire spread

compared with the model inputs remains to be investigated.

Some instances of data or model process limitations for BP modeling may be insur-

mountable. In such cases, certain alternative means of mapping fire probability are

available. For example, statistical techniques can be used to relate fire occurrences or area

burned to environmental factors describing climate, ignitions, and vegetation (or fuels)

(Parisien et al. 2012; Syphard et al. 2008). However, because this broad-scale, ‘‘top-down’’

approach does not explicitly simulate fire ignition and spread, it cannot fully capture fine-

scale spatial effects such as fire shadows. At this fine spatial scale, BP mapping provides a

more spatially detailed estimate of fire likelihood.

5 Conclusions and recommendations

BP modeling is a time-consuming and often onerous means of obtaining spatial fire

probability estimates. However, we would argue that to properly model something as
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complicated and variable as fire ignition and spread, a certain degree of model complexity

is necessary and even desirable. Fortunately, the payoffs that can be achieved through

careful preparation of inputs and a thoughtfully built BP project are numerous. For

instance, the BP map can be refined and updated as the landscape changes or as new data or

information becomes available. Once a BP project is in place, it is possible to manipulate

the inputs for use in a multiscenario approach that can, for example, measure the potential

effectiveness of proposed fuel treatment strategies.

This study illustrates how complementary data types, combined with expert advice, can

be used to generate spatial estimates of fire likelihood using BP modeling. Preparing the

modeling inputs for this study area was time-consuming, and investing a tremendous

amount of time into creating model inputs may not always be feasible. However, this

challenge should not dissuade scientists or land managers from using this tool, because

sensible shortcuts may be available that will allow BP mapping with only minimal loss in

accuracy (Finney 2005). In fact, the following guidelines should ensure that most of the

variability in fire likelihood is captured:

1. Fuels: Because BP estimates are likely to be strongly sensitive to the fuels input, use

the highest-quality fuel grid; if information about fuels is sparse, focus on nonfuel

features, and approximate the fuel types on the basis of expert advice.

2. Fire duration: Realistic fire sizes lead to more accurate BP patterns; therefore, if daily

fire progression data are not available, use trial and error to build a distribution of daily

spread-event days that will yield representative fire sizes.

3. Daily fire weather: Fire shapes are highly sensitive to changes in weather; if

integrating the full level of variability is onerous, produce BP maps for a single set of

percentile weather conditions, but for each of the main directions of fire spread. The

resulting maps can ultimately be combined.

4. Ignitions patterns: Ignitions patterns represent the weakest link of BP models. These

patterns should be modeled by season and cause (if warranted), but if ignition patterns

are highly uncertain or are unlikely to affect BP patterns (compare Parks et al. 2012), it

is preferable to use random ignitions.

5. Topography: Free digital elevation models are available for the entire planet. If

topography is a factor, it should be incorporated, as well as spatial wind grids, into the

model.

In summary, a lack of data for modeling, or quasi-absence of fire in a study area, need

not present a roadblock to mapping fire likelihood. These challenges can usually be

overcome, by accessing the existing ‘‘fire intelligence’’ for the area of interest, which may

come from databases (modern or paleoecological), the published literature or local experts,

to provide a basic understanding of how fires ignite and burn across the landscape (Collins

et al. 2010). We emphasize that careful a priori planning is crucial to facilitate the project-

building phase and perhaps to prevent researchers from spending time on inputs that are

unlikely to influence the final BP output. Ultimately, a simple suite of input variables may

be sufficient to generate an estimate of fire likelihood that is far better than anything

currently available.
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