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Abstract Natural hazards such as earthquakes threaten millions of people all around the

world. In a few decades, most of these people will live in fast-growing, inter-connected

urban environments. Assessing risk will, therefore, be an increasingly difficult task that

will require new, multidisciplinary approaches to be tackled properly. We propose a novel

approach based on different imaging technologies and a Bayesian information integration

scheme to characterize exposure and vulnerability models, which are among the key

components of seismic risk assessment.
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1 Introduction

Seismic risk is usually defined by three fundamental components, each of which should be

separately quantified (Coburn et al. 1994; Calvi et al. 2006), namely seismic hazard

occurrence probability (in the following referred to as hazard), exposure, and vulnera-

bility. Hazard represents the likelihood of a given location experiencing a certain level of

ground-shaking. The exposure model identifies the inventory of people, buildings, or other

assets exposed to the hazard. The vulnerability model describes how the exposed assets

will be affected by the hazard, for instance quantifying the amount of expected damage to

different types of buildings under a given seismic load. In this paper, we are focusing on

exposure and vulnerability models, considered to be the main sources of spatio-temporal

change in seismic risk. Seismic hazard usually exhibits a low rate of change over short time

spans (from a few months to a few years, not considering aftershocks) and is almost

independent of anthropic activities (Michael 2011). On the contrary, the rapid sprawling of

built-up areas, unplanned settlements and the general rapid changes modern cities and

mega-cities undergo heavily affect the space- and time-dependency of exposure and
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vulnerability models. A thorough, up-to-date inventory of all exposed assets (for instance

residential buildings) is often unfeasible or very time- and resource-intensive. A reliable

model of seismic vulnerability is even more difficult to obtain, involving usually an on-site

complete analysis of the structures and materials by experienced engineers. As a result,

seismic risk assessment is often based on incomplete, uncertain or strongly aggregate data

(Steimen et al. 2004; Grossi et al. 1999). A reliable, spatially defined distribution of

potential losses can greatly improve the organization of rapid response actions, but where

heterogeneous information is being integrated, a clear understanding of the involved

uncertainties should be possible within the model. This paper is ideally the continuation of

a former publication (Wieland et al. 2012), where a stratification scheme based on the

analysis of multi-temporal medium-resolution satellite images were first introduced. In the

same publication, an in situ data collection based on omni-directional imaging was also

suggested, but the integration of collected information into a vulnerability model was not

addressed. The current contribution thus further extends toward a complete assessment of

inventory and seismic vulnerability, by proposing an original information integration

scheme based on Bayesian Networks. Moreover, a building spatial density model based on

selective building footprint digitization has been introduced in order to complement the

building inventory model and to further improve the overall vulnerability assessment. For

sake of clarity, the main components of the overall scheme are briefly reviewed. The

proposed information collection and integration scheme can be used in complex, rapidly

changing urban environments to obtain, with a limited amount of resources, a sound model

of exposure and seismic vulnerability. In Sect. 2, a general outline of the proposed

approach is provided, while Sect. 3 briefly introduces the study area. In Sect. 4, the

stratification and sampling scheme, based on the processing of remote sensing data, is

briefly recalled. In Sect. 5, an in situ data collection strategy, taking advantage of omni-

directional imaging, is described, along with a manual satellite image interpretation stage.

In Sect. 6, a fully probabilistic information integration approach for vulnerability assess-

ment, based on Bayesian Networks is presented. Finally, in Sects. 7 and 8, an exemplifi-

cation of a building inventory and structural seismic vulnerability model assessment is

presented and discussed along with a preliminary validation. In the last section, conclu-

sions and future work are outlined.

2 Outline

The proposed approach is based on three main logic modules: stratification, information

collection, and information integration (see Fig. 1a). The purpose of stratification is to

subdivide the area of interest into sub-areas which can be considered homogeneous with

respect to the type of data to be collected. The more homogeneous a sub-area is, the less

intensive will be the data collection required to have a reliable description of the sub-area

itself. This module will be briefly outlined and interested reader can refer to the previous

publication (Wieland et al. 2012) for further details. Once the area of interest has been

divided into sub-areas, the information collection phase can start. In this phase, several

strategies can be followed, including direct on-site surveys and the processing or manual

interpretation of high-resolution satellite data. The last module, information integration, is

devoted to properly integrate all collected, extracted, or computed information into a

unified description taking into account, whenever possible, the uncertainties involved.

Among different approaches to information integration, we suggest the use of Bayesian

networks (or belief networks). The flowchart of the proposed approach, depicted in Fig. 1b,
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is simple but effective; once the collection phase has been completed, a check of the

resulting homogeneity can lead to a new, improved stratification. Once the information has

been integrated with already available data, an evaluation of the resulting model in terms of

uncertainty can lead to a new collection phase. Following this approach, assessing expo-

sure and vulnerability models for risk assessment is no longer a punctual process, but rather

a dynamical process that can be scaled according to the stakeholders’ resources and

constrains. Furthermore, the Update cycle (see Fig. 1b) can be repeated over time as the

environmental conditions change or need for less uncertain models arises.

3 Study area

As a case study, the capital of Kyrgyzstan, Bishkek, is considered and used throughout the

paper for exemplifying the different components of the scheme. Bishkek is located just

north of the Kyrgyz Ala-Too mountain-range bordering the Chu basin (see Fig. 2). The city

lies in a plain formed mainly by fluvial deposits of the Ala-Archa and Alamedin rivers. The

region of Bishkek in the Chu basin refers to the North Tien-Shan seismic zone, which

belongs to one of the most seismically hazardous areas in Central Asia. The GSHAP

seismic hazard map shows a peak ground acceleration (PGA) of 4.5 m/s2 with a probability

of 10 % to be exceeded in 50 years for the area (Erdik et al. 2005). The city itself was

founded in 1825 and counted 859,800 inhabitants in 2010. Since the 1970s the city almost

doubled its population (436,459 inhabitants in 1970). It is therefore not only the largest city

in Kyrgyzstan at present, but moreover is also rapidly expanding both in terms of area and

inhabitants. Rapid urban growth coupled with mainly non-engineered construction prac-

tices which show high structural vulnerability (Erdik et al. 2005) lead to an increasingly

high level of seismic risk in the area (Bindi et al. 2011). The actual area under observation

within this study covers an area of 665 km2 and is outlined in Fig. 2.

(a) (b)

Fig. 1 Outline of the data collection and integration scheme. a The logical scheme. b The flowchart of the
whole process
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4 Stratification

In order to achieve a reasonable stratification of the considered town, we suggest a multi-

stage approach (Fig. 3); the spatial extent of the town is first subdivided into small geo-

graphic units, obtained by unsupervised low-level segmentations of a time-series of

medium-resolution multi-spectral satellite images (see Sect. 4.1). Then, the geographical

units are labeled and grouped into bigger clusters depending on their predominant land use/

land cover and approximate age using partly supervised classifications and change-

detection analysis (see Sect. 4.2). The technical details can be found in (Wieland et al.

2012). In this section we provide a brief discussion on the approach and a preliminary

validation.

Fig. 2 Location and extent of the study area Bishkek, Kyrgyzstan. On the left: the GSHAP map (1999), on
the right: Landsat TM (2009)

Fig. 3 Stratification workflow exemplified for Bishkek, Kyrgyzstan
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Stratification is a well-known sampling technique (Cochran 1977), particularly useful if

the population from which the data are to be sampled can be clustered into different strata,

each one exhibiting a relative homogeneity with respect to the population as a whole.

Sampling from a suitable stratification ensures an optimal trade-off between time and

resource-effectiveness of the sampling and allows for controlling the uncertainty of the

estimates. Since we are interested in describing the exposed inventory and its seismic

vulnerability, the population we focus our attention on is represented by the inventory of

the assets physically exposed to the earthquake threat. Herein, we will mostly focus on the

residential buildings of the city; hence, information about land use/land cover will be used

to filter out areas mainly characterized by industrial or commercial buildings. The reason is

two-fold: on the one hand, residential buildings are strongly related to social vulnerability

and as such are of particular interest, while on the other, assessing the vulnerability of

industrial or commercial buildings is very difficult and is beyond the scope of the present

paper. The natural stratification of such buildings population would take into account the

building type, according to a specific taxonomy. Unfortunately, this is not the most viable

approach, since in most cases information about the composition of the exposed inventory

is not available, nor the location of the different building types within the considered urban

environment. A more useful stratification is defined on a spatial base, based on the

hypothesis that the building inventory composition, and therefore, the vulnerability

model, follow Tobler’s law of spatial autocorrelation (Tobler 1970). This hypothesis

proposes that often neighboring buildings share several features related to vulnerability,

such as age, typology, and materials of construction, occupation, and can therefore be

clustered together. While this basic hypothesis is used in many studies dealing with urban

structure types (Rapoport 1980; Steiniger et al. 2008), the scale at which homogeneity

should be addressed is still a matter of debate. It is clear, for instance, that a city block

should be considered homogeneous, while larger areas are more likely to show an uneven

distribution of the features of interest. We decided to focus on a spatial scale ranging

from one to several blocks, also considering that other interesting risk-related features

such as soil-amplification effects are usually investigated at a comparable scale in urban

environments.

4.1 Unsupervised segmentation

The main purpose of segmentation is to provide an object-based, higher level description of

a satellite image capturing the urban environment of interest. The resulting segments need

to be considered sufficiently homogeneous to be treated as atomic entities in every sub-

sequent processing stage, while still retaining significant local information in terms of

spectral content and image texture. The resulting segmentation therefore reduces the

complexity of the image, providing an alternative, representationally efficient description

(Shi and Malik 2000). Several algorithms for image segmentation have been proposed in

the literature in the last decade. As proposed in (Wieland et al. 2012) we have opted for the

approach proposed by Felzenszwalb and Huttenlocher (2004), which is computationally

efficient and has the property of capturing perceptually important grouping in the pro-

cessed image. In order to provide a proper base for the stratification, the segmentation

algorithm is applied to three medium-resolution Landsat images of the region of interest,

acquired in 1977, 1994 and 2009 (Fig. 3a). A scale parameter and a merge parameter must

then be chosen, which is done on a trial-and-error basis.
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4.2 Supervised classification and multi-temporal change detection

The segmentation stage described in Sect. 4.1 is the input of the main stratification pro-

cedure. In this stage, each of the computed segments is assigned a label describing its land

use/land cover and approximate age. For the land use/land cover classification, we use a

supervised approach based on statistical learning inference. Support Vector Machines

(SVM) have been used as the reference learning engine (Vapnik 2000). The feature vectors

describing the segments to be classified are composed of 26 features, which include the

mean and standard deviation of values in the six spectral bands of Landsat, the mean and

standard deviation of the Normalized Difference Vegetation Index (NDVI) and two texture

descriptors derived from the Gray-Level Co-occurrence Matrix (GLCM). Training samples

for the SVM learning model have been selected based on local expert knowledge, manual

image interpretation and GPS-photos. A total of 10 different class labels, listed in Table 1,

have been used to provide a comprehensive classification (Fig. 3 b). The classes have been

selected following the approach outlined in (Erdik et al. 2005). A preliminary evaluation of

the performance of this processing stage is provided in Table 2. The confusion matrix has

been built using 10 randomly selected and manually labeled test samples per class. Also,

the test samples were labeled based on a mixture of manual image interpretation, GPS-

Photos, and local expert knowledge.

In order to take into account the temporal changes in the built-up environment over the

considered time-span, that is, adding temporal information to the final stratification, the

extent of built-up areas for each time-stamped image has been delineated using a simple two-

class (built-up/not built-up) learning engine (Fig. 3b). An evaluation of the performance of

this processing stage in terms of receiver operating characteristic curves (ROC) is provided in

Fig. 4. Differences in the performance of the built-up areas’ delineation are dependent upon

both the different quality of imagery sources and the training set used to train the learning

engine (availability of reliable ground truth data for 1977 built-up mask, for instance, is

limited with respect to more recent imagery). In 1977, a total area of 113 km2 was classified as

being built-up in the study area. In 1994 the built environment accounted for 145 km2, while

in 2009, the city reached a total built-up area of 207 km2 inside the study area.

Considering both the 7 labels referring to the built-up environment (classes 1–7 in

Table 1) and the results of a post-classification change-detection analysis of the three time-

stamped built-up masks (Fig. 3c), a total of 21 possible combinations (defining the final

Table 1 Landuse/landcover
(LULC) class labels used in the
classification of the extracted
segments

Class Description

1 1–2-storey masonry, brick (individual apartment houses)-type 1

2 1–2-storey masonry, brick (individual apartment houses)-type 2

3 1–2-storey masonry, brick (individual apartment houses)-type 3

4 3–6-storey masonry, brick, concrete, panel buildings (apartment
blocks)

5 7–9-storey concrete panel, frame ? monolithic (apartment
blocks)

6 Industrial, commercial

7 Mixed built-up area

8 Vegetation

9 Water

10 Other (rocks, bare soil)
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stratification) can be delineated. To describe the strata also in terms of their spatial extent,

the individual segments are merged together according to their combination of attributes.

The final stratification for Bishkek is shown in Fig. 3d. Further explanations and details can

be found in (Wieland et al. 2012).

5 Data collection

Given a stratification of the region of interest, the next logical phase is data collection. For

the case of Bishkek, a preliminary sampling has been performed to collect visual

Table 2 Confusion matrix relative to the classification described by Table 1

Reference

Class 1 2 3 4 5 6 7 8 9 10 TP (%)

Classification

1 9 0 0 0 0 0 1 0 0 0 90

2 0 8 0 1 0 0 1 0 0 0 80

3 0 0 8 0 0 0 2 0 0 0 80

4 0 0 0 9 1 0 0 0 0 0 90

5 0 0 0 0 5 1 2 0 0 2 50

6 0 0 0 0 0 9 0 0 0 1 90

7 0 0 1 2 0 0 7 0 0 0 70

8 0 0 0 0 0 0 0 10 0 0 100

9 0 0 0 0 0 0 0 2 7 1 70

10 0 0 0 0 0 0 0 1 0 9 90

TN (%) 100 100 88.9 75 83.3 90 53.8 76.9 100 69.2 81

A total of 10 test samples per class have been used
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Fig. 4 ROC for three binary urban extent classifications from Landsat images
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information about the buildings inventory and, based on this, to estimate its seismic

vulnerability.

Since we aim at illustrating a solution for rapid screening and assessment, in this paper,

we will only cover visual, indirect assessments. It is nevertheless clear that the proposed

approach can (and should, when possible) be complemented by more in-depth surveys. For

the sake of exemplification, we considered different types of data collection: on-site rapid

image capturing based on omni-directional imaging and a remote, off-line manual inter-

pretation of satellite imagery (building footprints digitizing). In the latter case, some

information was already available from OpenStreetMap which has been integrated into the

obtained dataset.

5.1 Building footprints collection

Building footprints provide useful information about the considered buildings inventory

stock. Each footprint provides the geographical location (and orientation) of the building,

its outer shape, and its area. Such information is increasingly available worldwide, even if

on a very discontinuous base, thanks to open, collaborative projects such as OpenStreet-

Map (Ramm et al. 2011). A complete manual digitization of a large town is often very time

and resource intensive (Ehrlich et al. 2010). Unsupervised approaches for automatic

extraction of footprints from high-resolution satellite images are available or under study,

but often, when applied extensively and in complex urban environments, still do not

provide a sufficient level of accuracy, particularly when the total number of buildings

should be estimated (Aytekin et al. 2009; Durieux et al. 2008; Wieland et al. 2012). On the

other hand, a focused manual digitization, possibly taking advantage of already available,

free of charge data, proves to be a viable and efficient alternative. A total of 8750 building

footprints have been collected within a sampling frame composed of 21 sample areas (one

sample area for each stratum, as depicted in Fig. 5, of which 8255 buildings were manually

digitized during a 4-week project, and 455 were imported from OpenStreetMap. The

collected footprints’ area amounts to about 1.5 km2, roughly equal to 0.75 % of the total

2009 built-up area (estimated to be 207 km2) in Bishkek. Details on the selection and

sizing of the sample areas can be found in (Wieland et al. 2012).

Another 13484 building footprints have been collected outside the above-described

sampling frame, of which 3305 were imported from OpenStreetMap. These footprints are

not used in the subsequent density estimation, because they do not provide a compre-

hensive coverage of the areas, but they are used in the inventory and vulnerability com-

position assessment described in Sect. 6. All collected buildings footprints are stored in a

PostgreSQL/PostGIS database, where they can easily be accessed for processing or GIS-

based visualization.

An exploratory analysis of the collected footprints in terms of the area distribution

among the different strata already shows that stratification is indeed successful in sepa-

rating different populations of buildings. As shown in Fig. 6, buildings belonging to

segments labeled with classes 1, 2, 3 actually exhibit very similar footprint area distri-

butions. We further observe that buildings belonging to segments labeled by class 4, 5, 6,

and 7 exhibit clearly separate area distributions. The mean values of area are compatible

with the type of buildings expected in the respective segments. For instance, classes 1, 2,

and 3 refer to smaller buildings, mostly belonging to single family compounds often

composed by several structures, while class 4 refers to bigger multi-family houses. In

segments classified as 6 and 7, labeled ‘industrial/commercial’ and ‘mixed built-up’, the

footprint areas are more widely spread. Thus, these segments are less homogeneous in
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terms of inventory composition. In order to further assess the stratification based on the

collected footprints, the distribution of areas with respect to estimated age is shown in

Fig. 7. It is possible to note that buildings belonging to segments classified as 1, 2, 3 (1–2-

storey houses) and 4 (3–6-storey buildings) do not show a significant change in area

distribution with built-up age. In contrast, buildings belonging to segments classified as 5

(7–9-storey buildings) exhibit a decrease in their mean footprint area over the 1994–2009

period. This is likely to depend on the recent increase in the number of monolithic high-rise

buildings, whose footprints are usually more compact. Also, the segments classified as 7

(mixed built-up) show a clear decreasing trend. This could be partially due to the reduced

frequency of buildings with bigger footprints included in the most recent ‘‘mixed built-up’’

segments and hence are classified as outliers, although this should be confirmed by further

analysis. The latter preliminary evaluations confirm that the proposed stratification cor-

rectly subdivided the urban areas into clusters that are homogeneous with respect to the

predominant land use/land cover.

5.2 Building density estimation

Buildings’ footprints are a valuable resource for assessing the composition of the build-

ings’ inventory, as they provide information on the shape, area and location of a sample of

buildings. This information can be used in turn to infer useful characteristics of the

buildings inventory such as building density. The latter is important, for example, in order

to provide quantitative loss estimates, which is of particular interest for decision-makers or

insurance companies. However, information about the number of residential or commercial

buildings is seldom available, and often uncertainties are not explicitly considered. In this

Fig. 5 Bishkek: manually digitized footprints, along with the stratification. Respectively in blue and red the
considered sample and validation areas are shown

Nat Hazards (2013) 68:115–145 123

123



section, we describe a simple approach for estimating building density on a per-stratum

base, in order to obtain the expected number of buildings for each spatial segment.

The development of a realistic model of the spatial distribution of buildings in an urban

environment can prove to be a challenging task, given the high number of interacting

phenomena which are contributing to it. For the sake of simplicity, we suppose that the

spatial placing of buildings can be modeled as a stationary Poisson point process (Cox and
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Isham 1980). A Poisson process is a stochastic process which counts the number of events

inside each of a number of non-overlapping finite subregions of some vector space V (in

our case R
2), assuming that each count represents an independent random variable fol-

lowing the Poisson distribution. More specifically, let S be a subset of R2, and A a family of

subsets of S. If {N(A)}A,k is a homogeneous Poisson point process with intensity k, then the

following holds:

PðNðAÞ ¼ kÞ ¼ ekjAjðkjAjÞk

k!
k ¼ 0; 1; . . .; n ð1Þ

where N(A) is the number of events in A, P(N(A) = k) is the probability for this number to

be exactly equal to k, and |A| is a measure of the area of A. This means that the probability

of the number of events N(A) depends on the set A only through its size |A|.

We furthermore hypothesize that the stochastic process is stationary within each con-

sidered segment. This is a strong simplification, since clustering and inhibition of buildings

placement happen naturally in urban environments, following the topology of road net-

works, the availability of services, etc. Missing further detailed information, stationarity is

a common-sense choice, but we decided to apply a boot-strap approach to the Poisson

intensity estimation in order to encode the missing information in terms of uncertainty. For

each sample area, Nssa = 100 possibly overlapping sub-areas have been randomly selected.

For each selected sub-sample area, a stationary Poisson point process has been fitted. The

mean value of the fitted intensities is considered as the intensity reference value for the

sample area (and thus for the relative stratum), and the standard deviation rsa of the fitted

intensities describes the estimated uncertainty through a standard 95 % confidence interval

ci ¼ � 1:96�rsa
ffiffiffi

N
p

ssa
.

A preliminary validation of the proposed approach has been conducted. A set of 10

validation areas (six of which refer to stratum type 2, two to stratum 10 and two to stratum

12), where complete building footprints delineation is available, has been considered. For

each validation area, a confidence bound on the expected number of buildings has been

computed, based on the intensity and uncertainty of the Poisson process estimated for the

underlying stratum. The confidence bound is compared in Fig. 8 with the actual number of

delineated footprints in each validation area. Despite the preliminary nature of the

assessment, a reasonable agreement is found between the estimated and measured values.

We note, though, the greater variability of the areas within stratum 2. At a first glance, this

appears to be related to the less ordered arrangement of buildings in this stratum, where

empty spaces alternate with high-density patches. On the contrary, the other two strata

show a more regular pattern, therefore determining a better performance of the fitted

model.

The number of buildings expected for each stratum, described in term of its dominant

land use/land cover (LULC), is shown in Fig. 9. The total number of buildings resulting

from this estimate for the study area in Bishkek is Nb = 182,000 ± 14,000.

5.3 Omnidirectional mobile mapping

Mobile mapping systems are increasingly used for collecting geo-referenced, multi-sen-

sorial data for a variety of purposes, ranging from urban planning to road maintenance to

tourism applications (Tao and Li 2007). Usually a mobile mapping system is composed of

one or more image-capturing devices and a Global Positioning System (GPS) fixed on a car

and driven around. Other sensors like laser scanners, inertial measurements units (IMUs)
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and microphones can be added, depending on the specific application. In this context,

omni-directional imaging (Haggrén et al. 2004; Teller 1998), recently brought to the

publics attention by Google StreetViewTM, is a very efficient way to collect and store geo-

referenced visual information. It involves very simple deployment and operation, with no

need for skilled operators, nor for sophisticated aiming devices, therefore shifting the focus

of the applications from the collection to the (usually remote and off-line) interpretation of

the collected data. During two weeks of field-work in Bishkek, approximately 1,000,000

images (equal to 3 TB of data) where acquired. The field-data-collection has been guided

along pre-calculated routes using GPS-based navigation system. A total area of approxi-

mately 30 km2 and an overall street-length of 170 km has been covered by the survey. For
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better management, all meta-data describing the collected images, their geographical

locations, their azimuths and speeds are stored in a PostgreSQL/PostGIS database. The

database allows for several spatial reasoning applications involving the collected images.

For instance, since building footprints are available, a visual sample of the buildings

referred to by the collected footprints is straightforward. In the next section, preliminary

automatic processing of the acquired omni-directional images is presented, aiming at

inferring 3D information about the imaged buildings by exploiting the particular omni-

directional image geometry. The proposed approach, already outlined in (Wieland et al.

2012), is briefly recalled in the following section for the sake of clarity. Some new results

are provided along with a preliminary validation.

5.4 Building height from omni-directional images

A preliminary assessment of the capability of the automatic processing is described in this

section. The goal is to select a set of processing routines able to extract information from

the image database, which could be used both in a subsequent unsupervised analysis of

inventory composition and vulnerability, and as an augmentation of the experience for a

user manually interpreting the images. For example, an engineer analyzing the images for

rapid vulnerability screening could find it useful to have displayed ancillary information

extracted off-line, such as the building height, the estimated number of floors, the number

or size of visible openings, etc. in case such information would not be already available

from other sources. We focused on the building height extraction, also because it is a

parameter instrumental to infer the building type, which is directly affecting the vulner-

ability and is often difficult to estimate from remotely sensed imagery (without resorting to

expensive and not always available LIDAR or high-resolution stereo data). The approach

exploits optical flow computation to obtain a dense set of visual correspondences which in

turn are used to infer geometrical translation and rotation between the images. From each

pair of correspondences a 3D point is computed using a simple triangulation technique

(Torii et al. 2005). Metric calibration is then applied based on GPS data embedded in the

captured images. An example of the resulting 3D reconstruction is shown in Fig. 10. Let us

note that such a reconstruction is covering a very extended field of view, since the two

buildings depicted in the Figure are each nine storeys high and not more than 25 m away

from the observer location. Covering such a field of view with a conventional camera

would imply capturing several images with different aims.

The above-described processing has been applied to an extended sample of collected

images over the entire set of sequences acquired in Bishkek, Kyrgyzstan. All computed 3D

measurements have been used to assign a height value to a two-dimensional sparse grid.

Grid cells are 10 m wide squares, whose origin resides for the sake of simplicity in the first

processed location. The size of the grid is coarse enough to partly filter out the 3D noise of

reconstruction (see Fig. 11). In Fig. 12 the distribution of the estimated building heights is

provided and subdivided according to different land use/land cover labels. The fre-

quency distribution of estimated building heights are in general agreement with the land

use/land cover labels. We observe, though, that the histograms related to LULC:3–6-storey

masonry brick/concrete/panel and LULC:7–9-storey concrete panel frames/monolithic are

unexpectedly similar. This could be due to a partial misclassification of some seg-

ments, or to a bias of the height estimation due to occluding trees (generating ghost

measurements).
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An intensive validation of the proposed approach for height estimation will be con-

ducted as soon as a suitable ground truth dataset is available. As a preliminary assessment,

we provide in the following a few examples of the results so far. Four cases have been

selected for which a ground truth height is available and are depicted in Fig. 13. In order to

discuss the usability and possible sources of uncertainty, two of the cases (cases a,b of Fig.

13) refer to optimal conditions, and two (cases c,d of Fig. 13) refer to sub-optimal con-

ditions. Optimality herein is defined by a few basic requirements: the building should not

be too far from the camera (10–40 m, also depending on its height), there should not be

major visual occlusions (vegetation, poles, roadsigns), and the camera should not be

subject to strong erratic accelerations. In our experience within the town of Bishkek, such

simple requirements are very often not complied with: many buildings are surrounded by

tall trees, for instance, and small ones can be occluded by high fences and walls. Fur-

thermore, the uneven surface of several streets (some of which are not sealed) exposes the

acquisition system to sudden accelerations due to the rolling motion of the car. Where the

basic requirements are complied with, satisfactory results are to be expected. A further

source of uncertainty is the GPS signal. Since the metric calibration is based on the

measurement of the displacement of the camera across three consecutive frames, an error

in the position would affect the 3D measurements. This uncertainty is currently deemed of

minor importance and is not accounted for.

Fig. 10 Example, for Bishkek, of a 3D reconstruction based on the processing of omni-directional image
stream. The map in the lower left corner shows the locations of the optical center of the camera when the
images were shot. In orange, several digitized footprints are also shown. In the upper part one of the images
of the processed sequence is displayed. On the right, the 3D reconstruction based on omni-directional image
processing is displayed as a point cloud. All coordinates are in meters. It is possible to recognize the outlines
of the two buildings at the sides of the street
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Fig. 11 Results of extracting 3D measurements from omni-directional image processing. Colored cells
represent elements of the sparse measurements grid. Four different sub-areas of Bishkek are shown

1−2 storeys masonry/brick − type 1

Estimated height (m)

F
re

qu
en

cy

5 10 15 20 25 30 35 40

0
20

0
40

0
60

0

3−6 storeys masonry/brick/concrete/panel

Estimated height (m)

F
re

qu
en

cy

5 10 15 20 25 30 35 40

0
10

20
30

40
50

7−9 storeys concrete panel frame/monolithic

Estimated height (m)

F
re

qu
en

cy

5 10 15 20 25 30 35 40

0
5

10
15

20
25

30
35

mixed built−up

Estimated height (m)

F
re

qu
en

cy

5 10 15 20 25 30 35 40

0
5

10
15

20
25

Fig. 12 Distribution of estimated building height in spatial segments classified with different land use/land
cover labels. The upper histograms are in accordance with the expected height values, while the bottom
histograms show a larger spread of the values

Nat Hazards (2013) 68:115–145 129

123



6 Integration

6.1 Bayes networks

Bayesian networks (BN) were developed in the early 1980s to facilitate the tasks of

inference in artificial intelligence (AI) systems. In these tasks, it is necessary to find a

coherent interpretation of incoming observations that is consistent with both the obser-

vations and the prior information at hand (Pearl 1985, 1991). Bayesian networks have been

recently proposed, within the context of earthquake engineering, for the spatial modeling

of seismic vulnerability (Li et al. 2010) for insurance pricing applications or to tackle the

broader problem of managing uncertainties in seismic risk (Bayraktarli and Faber 2011).

Throughout this section, we will refer to Bayesian networks (also known as belief net-

works) as directed acyclic graphs (DAG) composed of a set of vertexes representing

discrete random variables X1; . . .;Xn. Conditional independence relationships among the

random variables are visually encoded by arcs connecting vertexes (see Fig. 14). Usually,

the joint probability of the considered set of variables can be expressed as:

(a) (b)

(c) (d)

Fig. 13 Examples of building height estimation, compared with available ground truth information. The
upper row cases a, b shows results obtained under optimal conditions, the lower row cases c, d shows the
degraded quality of the assessment where non-optimal conditions are encountered
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pðX1 ¼ x1;X2 ¼ x2; . . .;Xn ¼ xnÞ ¼
Y

i

pðXi ¼ xijX1 ¼ x1; . . .;Xi�1 ¼ xi�1Þ ð2Þ

The most relevant feature of Bayesian networks is that the joint probability of the whole set

of variables can be defined as:

pðX1 ¼ x1;X2 ¼ x2; . . .;Xn ¼ xnÞ ¼
Y

i2PAi

pðXi ¼ xijPAiÞ ð3Þ

where PAi refers to the parents of the vertex describing the random variable Xi, and P(Xi = xi |

PAi) indicates the conditional probability of variable Xi assuming value xi given the particular

state of its direct ancestors PAi. Therefore, Bayesian networks allow to drastically reduce the

complexity of representation and computation of joint probabilities by exploiting the con-

ditional independence relationships among the involved variables. Those relationships can be

stated a priori, on the basis of established knowledge, or can be statistically inferred from

experimental data (or both, see for instance (Heckerman et al. 1995)). As suggested by Eq. 3,

the complexity of the resulting joint distribution is driven by the node with the highest number

of ancestors. The local conditional probability distributions encode the prior knowledge

about the modeled system. The interesting property of Bayesian network is that, whenever

new information is provided, therefore forcing one or more nodes representing the random

variables into a state (hard evidence) or into a distribution (soft evidence), the state of all other

nodes can be computed and a new set of posterior distributions obtained. This process, also

called belief updating, conforms to the well-known Bayes Rule:

pðXi ¼ xijXe ¼ xeÞ ¼
pðXi ¼ xi;Xe ¼ xeÞ

pðXe ¼ xeÞ
ð4Þ

where Xe is the random variable which forcibly assumes the evidence value xe and is tied to

variable Xi by a causal interrelation. Since belief updating is a NP-complete problem,

several sampling-based approaches have been proposed for solving it in the general case

(Gelfand and Smith 1990). We used in this work an open-source C?? implementation of

Bayesian networks included in the DLib library. Building simple Bayesian networks as

those described in the next section is usually performed through the following steps:

• Select the nodes considering the random variables of interest. For the sake of

simplicity, each variable is described by a finite discrete number of states.

Fig. 14 Section of a directed
acyclic graph (DAG) showing a
random variable Xi and its
parents PAi
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• Connect the nodes with directed arcs encoding the causal interrelation among the

considered variables.

• Define the conditional probability tables of the nodes with at least a parent and the prior

distributions for the others.

6.2 Exposure and vulnerability probabilistic estimation

In this subsection, a Bayesian network is used to estimate, for each of the buildings whose

footprint has been collected (see Sect. 5), the most likely building type and its most likely

structural vulnerability class according to EMS-98 (Grunthal and Commission 1998).

According to the EMS-98 classification, vulnerability is described by 6 mutually exclusive

states (A, B, C, D, E, F) with A referring to the highest structural vulnerability and F to the

lowest one. This inference process actually integrates available relevant information,

regardless of its source, propagating the uncertainties encoded by the probability

distributions

The proposed BN, sketched in Fig. 15, is composed of the nodes summarized in

Table 3. A more detailed description of the nodes is provided in Tables 4 , 5, 6, 7, 8. For

each node without parents, the prior distribution is also provided. The prior for nodes A

(age) and S (LULC) is based on the considered stratification. The prior for H (height) is a

flat distribution, because we do not want to make any particular hypothesis on the dis-

tribution. The conditional probability tables for the nodes with parents are also provided.

Since most of the conditional probability tables have been compiled manually, the struc-

ture of the Bayesian network and the number of states for each node have been kept

intentionally small. The conditional probability table describing nodes F (no. of storeys), T

(type), and V (vulnerability) have been inferred for Bishkek from the World Housing

Encyclopedia (WHE) reports (http://www.world-housing.net). These reports, compiled by

local engineers, cover many predominant building types of several countries along with an

evaluation of their structural vulnerability. In particular for Bishkek, a total of 8 reports

have been used. An example of a conditional probability table constructed for node V

(Vulnerability) is given in Table 8.

Its important to stress the fact that the only information used to infer the building

vulnerability is its type according to World Housing Encyclopedia (WHE). Moreover, the

only structural parameter that relates to the building type is the number of storeys, the

others being the land use/land cover and the approximate age of the stratum where the

building is laying. This representation of the conditional relationships of building type and

seismic vulnerability on structural parameters is overly simplified, but the aim of this paper

is to propose a method to efficiently and automatically integrate already available infor-

mation rather than re-assessing the vulnerability of the considered inventory stock. In this

case, all information about seismic vulnerability is extracted from the WHE reports.

In order to provide an example of the proposed integration approach, as well as a

preliminary validation on real-world cases, the posterior distributions relative to the

buildings depicted in Fig. 13 (see Sect. 5.4) are provided in Fig. 16. The values in light

green refer to the ‘‘measured’’ data and as such are considered evidences, with a 100 %

belief (belief quantifies the certainty of the collected data). Had information on the

uncertainty of the measurements been available beforehand, the probability distribution of

the evidence could be modified to take it into account. The ground truth values for the

considered buildings are: height = 30 m, storeys = 9, EMS-98 vulnerability = E

(detailed information on the WHE building type is not available). As we can observe from
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Fig. 16, when the height is correctly estimated, both the number of storeys and the vul-

nerability are correctly inferred. Small variations of measured height, as for instance

between cases a and b, still allow for a correct final estimation. As expected, when the

height measure is wrong, as in case c for instance, the system is not able to provide sound

results. Building 179 has not been considered because it would have produced the same

output as building 269 (see Fig. 13, Sect. 5.4)

7 Exposure inventory

Using the techniques described in the previous section, a preliminary assessment of the

inventory stock of Bishkek has been computed. For each digitized building either inside or

outside the sampling areas mentioned in Sect. 5, the BN described in Sect. 6 has been

initialized with the available data, namely the state of the nodes stratum-age, stratum-

Fig. 15 Bayesian network
encoding the dependence of a
buildings vulnerability on the
state of the node encoding the
building type and its ancestors

Table 3 Bayes network for vul-
nerability assessment. (summary
of nodes)

Node Description No. of states Parents Table

V Vulnerability 6 T 4

T Building type 8 A,F 5

A Stratum-age 3 – 6a

F No. of storeys 7 S,H 7b

S Stratum-LULC 3 – 6b

H Building height 7 S 7a

Table 4 Node relative to build-
ing seismic vulnerability

State Vulnerability (EMS-98)

1 A

2 B

3 C

4 D

5 E

6 F
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LULC and, if available, the state of node building height (in case it is not available, its prior

distribution is automatically used). The recomputed posterior probability distributions of

node WHE building type are then averaged for each building, based on the underlying

stratum, and describe the relative frequencies of the building types listed in Table 5. It is

important to note that the average probability distributions represent both the available

information and the current uncertainties. As a matter of fact, for instance, a flat probability

distribution ðpðstateiÞ ¼ 1
nstates
Þ could represent either complete ignorance of the real

inventory composition or a full inventory description where all building types are equally

represented. In Fig. 17, the resulting distributions for all strata not classified as
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Fig. 16 Posterior probability distributions computed for the buildings depicted in Fig. 13. In light green are
displayed the values inserted as evidence; the strongly peaked probabilities indicate a strong belief in the
values
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‘‘commercial, industrial’’ are provided. A meaningful aggregation of the building types can

be useful considering that, based on the WHE reports, some of the building types can be

grouped together based on their expected vulnerability in terms of EMS-98 classification,

namely type 1 should mostly refer to vulnerability A, types 2–4 should refer to vulnera-

bility B (also extending from A to C), types 5–6 refer to vulnerability C (ranging from B to

D), and types 7–8 are usually associated with vulnerability E (ranging from D to F). The

average distributions depicted in Fig. 17 could thus be aggregated following these trends,

and the result is shown in Fig. 18. In order to better analyze the inventory composition and

distribution, the aggregated probability distributions are also re-aggregated based on three

main land use attributes of strata, namely classes 1–3, class 4 and class 5, as described in

Table 1. This classification takes into account a coarser, but intuitive classification of the

Bishkek inventory. Examining Fig. 18, it is possible to note that buildings of type 1 and 2

are more likely to be found in areas classified as low-rise, whereas on the other hand, areas

with high-rise buildings also show a relative abundance of buildings of type 7 and 8. The

strata with medium-rise, mixed buildings also reflect this heterogeneity in the flatness of

the probability distribution. The estimates computed in Sect. 5.2 of the density, and

therefore, the number of buildings in the considered strata can now be applied to give to the

inventory model a more quantitative assessment. In Table 9, a summary of the estimated

number of buildings counts aggregated with respect of building types is provided, con-

sidering the aggregated land use classification as a spatial reference. The uncertainty in the

buildings count is significant and depends on the size of the sample used for the density

Table 5 Node: ‘‘building type’’

State Building type WHE report

1 Houses with mud walls and thatch roofs 42

2 Two-storey unreinforced brick masonry building with wooden floor 41

3 Buildings with hollow clay tile Load-bearing walls 34

4 Reinforced concrete frame buildings Without beams (serie KUB) 39

5 Single family brick masonry house 36

6 Pre-cast reinforced concrete frame building with cruciform and linear-beam elements 33

7 Prefabricated concrete panel buildings with monolithic panel joints 38

8 Buildings with cast in situ load-bearing reinforced concrete walls 40

Table 6 Nodes relative to
stratification

(a) Node: ‘‘age’’

State Age Prior

1 Until 1977 0.4095

2 Between 1977 and 1994 0.2889

3 Between 1994 and 2009 0.3016

(b) Node: ‘‘stratum’’

State Stratum Prior

1 1–2 storeys, masonry, brick 0.829

2 3–6 storeys, masonry, reinforced concrete, panel 0.143

3 7–9 storeys, reinforced concrete, panel, monolithic 0.028
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estimation and on the simplistic model used in the modeling of the density distribution

itself. In Fig. 19, the spatial distribution of the areas with aggregated land use attributes

considered in Fig. 17 and Table 9 is shown.

8 Vulnerability assessment

A preliminary estimation of the vulnerability model has been performed, following the

same procedure described in the Sect. 7 For each stratum, the posterior probability dis-

tributions of node vulnerability, described in Table 4, have been computed by averaging

over each considered building footprint. In Fig. 20, an overview of the probability

Table 7 Nodes relative to
building height

(a) Node: ‘‘height’’

State Height (m) Prior

1 0–5 0.14286

2 5–10 0.14286

3 10–15 0.14286

4 15–20 0.14286

5 20–25 0.14286

6 25–30 0.14286

7 30–50 0.14286

(b) Node: ‘‘num. storeys’’

State Num. storeys

1 1–2

2 3–4

3 5–8

4 9

5 10–11

6 12

7 13–18

Table 8 Conditional probability table, node: ‘‘building vulnerability’’

Type P(A) P(B) P(C) P(D) P(E) P(F)

0 0.9334 0.04757 0.01903 0 0 0

1 0.175 0.56706 0.19842 0.01984 0.01984 0.01984

2 0.175 0.56706 0.19842 0.01984 0.01984 0.01984

3 0.175 0.56706 0.19842 0.01984 0.01984 0.01984

4 0.0181 0.215 0.427 0.2964 0.0435 0

5 0.0181 0.215 0.427 0.2964 0.0435 0

6 0 0.0303 0.06061 0.22 0.43911 0.24998

7 0 0.0303 0.06061 0.22 0.43911 0.24998
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distribution of the EMS-98 vulnerability states is provided for each stratum not classified

as ‘‘commercial, industrial’’.

Considering the aggregated inventory composition described in Sect. 7 and displayed in

Fig. 18, we can compute the relative vulnerability probability distribution. Figure 21

shows the resulting distributions. We observe that these distributions loosely follow the

trend highlighted in Fig. 18. For instance, as expected, the vulnerability in the strata with

land use attribute 1 (‘‘1–2-storey brick, masonry’’) is higher than in the other strata and

more dominated by vulnerability classes A and B. Likewise, the average vulnerability in

strata with land use 3 (‘‘7–9-storey concrete panel, frame ? monolithic’’) is lower and with

higher relative frequency of low-vulnerability classes such as D, E, and F.
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Fig. 17 Probability distribution of the considered building types according to the WHE taxonomy, for each
stratum not classified as ‘‘commercial, industrial’’
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As an alternative and synthetic scalar indicator for vulnerability, we can also define the

mean vulnerability index (MVI) indicator as:

MVI ¼ 1

ðn� 1Þ
X

i¼0...n�1

pðViÞðn� iÞ � 1

 !

ð5Þ

where n is the number of possible vulnerability states (in our case n = 6), and fVi¼0...5 ¼
A, B, C, D, E, Fg represent the vulnerability states, expressed in the EMS-98 scale.

Vulnerability states are mutually exclusive (each exposed asset is described by only one

vulnerability state) and are given a probability of occurrence p(Vi). The MVI index varies

linearly from 0 (indicating the lowest degree of structural vulnerability) to 1 (indicating the

highest degree of structural vulnerability) and provides an intuitive and easy way to

describe the structural seismic vulnerability of buildings. We can take advantage of the

scalar nature of MVI to depict the spatial distribution of the estimated vulnerability of

Bishkek, as shown in Fig. 22. It is interesting to note that most of the newest urban areas,

located for instance in the south-western corner of Bishkek where the town is expanding,

show a higher structural vulnerability relative to the central, older part of the city. This of

course is a preliminary observation that needs to be validated and possibly complemented

by further analysis.

8.1 Preliminary validation

In order to provide a preliminary validation of the obtained vulnerability model in Bishkek,

several buildings whose seismic vulnerability has been assessed through a detailed

inspection by local engineers have been considered. This set of analyzed buildings

Fig. 19 Spatial distributions of areas with aggregated land use attributes considered in Fig. 17 and Table 9
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represents a particular sampling of the distribution of seismic vulnerability in Bishkek,

result of a previous systematic field activity. The nature of the sampling and the hetero-

geneous spatial distribution of the assessed buildings is not optimal for a thorough vali-

dation but can provide some useful preliminary information. For each building, the

corresponding mvi has been computed. Figure 23 shows the spatial distribution of the

(around 900) sampled buildings superimposed to the extracted strata. Both the strata and

the sampled buildings are colored according to their mvi values. In the figure, it is possible

to note as in strata where a lower vulnerability value is expected, the sampled buildings

exhibit lower mvi values.

ems−98

p(
%

)

A B C D E F

0
0.

3
stratum =  1

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  2

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  3

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  4

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  5

ems−98
p(

%
)

A B C D E F

0
0.

3

stratum =  6

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  7

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  8

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  9

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  10

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  11

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  12

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  13

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  14

ems−98

p(
%

)
A B C D E F

0
0.

3

stratum =  15

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  19

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  20

ems−98

p(
%

)

A B C D E F

0
0.

3

stratum =  21

Fig. 20 Probability distribution of the vulnerability in EMS-98 scale for each stratum not classified as
‘‘commercial, industrial’’
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Fig. 22 Spatial distribution of mean vulnerability index (MVI) in Bishkek, Kyrgyzstan. A 2009 Landsat
TM image is displayed in the background

Fig. 23 Spatial distribution of sampled vulnerability and comparison with inferred values
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Figure 24a, b shows the distribution of the seismic vulnerability of sampled buildings,

expressed in EMS-98 scale. The two strata shown in Fig. 23 are considered. Even though

the empirical distributions differ from those in Fig. 20, the model correctly predicted a

higher frequency of low-vulnerability buildings for stratum 10 with respect to stratum 2,

where higher vulnerability buildings are present. Figure 24c shows the difference in mvi

between the sampled buildings and the (average) value associated with the underlying

stratum. It is possible to remark that the computed vulnerability model apparently

underestimates the vulnerability with respect to the considered sample. Nevertheless, many

of the sampled buildings are in accordance with the expected mvi values associated with

the stratification. Since the considered sample is covering only a subset of the stratification,

only a preliminary and qualitative validation can be performed.

9 Conclusions and future work

In this paper, we described a novel approach to rapid inventory and vulnerability model

assessment based on the combined use of remotely-sensed and ground-based imaging to

select optimal sampling and collection strategies and the use of a fully probabilistic Bayesian

networks-based information integration. The current contribution extends and completes a

previous work, described in (Wieland et al. 2012). We showed how, based on a sound

stratification, heterogeneous information can be used to quickly infer a model of exposition

and vulnerability for a urban environment. A limited amount of manually digitized buildings

footprints, for instance, is used to estimate local spatial density and total number of buildings.

Omni-directional imaging, suggested as an in situ visual sampling tool, has proven to be easy

to deploy and to operate. In this paper, we started exploring the use of automatic off-line

processing of the acquired omni-directional images to infer seismic vulnerability-related

information which could later enrich the operators visual experience. The obtained results

show that a completely automated off-line extraction of relevant parameters is possible, but

its inherently complex nature requires more structured and sophisticated techniques in order

to be fully effective. Finally, we showed that a flexible information integration process based

on Bayesian networks allows for a sound treatment of uncertainties and for a seamless

merging of very different data sources, including legacy data, expert judgment, automatic

data-mining based inferences, etc. The proposed approach can be easily scaled based on the

target location features and on the specific needs or constraints of the users (civil protection
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Fig. 24 a, b Empirical distributions of seismic vulnerability of sampled buildings in the two strata
considered in Fig. 23. The distributions should be compared with those in Fig. 20. c Difference between
average vulnerability of strata and vulnerability of sampled buildings, expressed as mvi
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agencies or decision-makers, for instance). Moreover, our goal is to show that seismic risk

assessment ought to be considered as a continuous process rather than a punctual assessment,

in order to take into account the temporal dynamics of the exposed assets. From this per-

spective, a comprehensive management of uncertainties is instrumental for the iterative

sampling/modeling of the inventory stock and its seismic vulnerability, leading therefore to a

more thorough and robust risk assessment.

Results from the proposed processing stages have been applied to the city of Bishkek,

the capital of Kyrgyzstan. A first plausibility check has been performed by analyzing the

vulnerability composition and distribution of a set of buildings previously assessed by local

engineers. The preliminary assessments provided new, interesting insights about the

seismic vulnerability distribution and composition of Bishkek, which will be validated and

completed in the near future with the help of local experts. The promising results obtained

so far open up a wide range of possible future research activities. From the remote sensing

point of view, we will focus on:

• increasing the temporal resolution of time-change analysis for better built-up and age

estimation;

• exploring the automated analysis of high-resolution satellite images as a complemen-

tary information source;

• further exploring the information collection, acquisition and use of manually digitized

footprints and improving its statistical characterization.

Regarding omni-directional imaging:

• the manual interpretation of omni-directional images by experts will be extensively

tested;

• height computation from omni-directional images will be improved upon and

complemented by pattern recognition tools.

Finally, the use of Bayes networks will be further explored. In the considered appli-

cation, the Bayes networks have been used to encode the conditional relationships between

some properties of the buildings and their seismic vulnerability, as implicitly described in

the World Housing Encyclopedia reports. In the future, more complex network topologies

will be considered, including unsupervised learning of conditional probability tables from

available and collected data. We should also remark that all described activities have been

carried out using free and open-source software tools and libraries and, where possible,

freely available data sources.
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