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Abstract This paper presents a new methodology for slope reliability analysis by inte-

grating the technologies of updated support vector machine (SVM) and Monte Carlo

simulation (MCS). MCS is a powerful tool that may be used to solve a broad range of

reliability problems and has therefore become widely used in slope reliability analysis.

However, MCS often involves a great number of slope stability analysis computations, a

process that requires excessive time consumption. The updated SVM is introduced in order

to build the relationship between factor of safety and random variables of slope, con-

tributing to reducing a large number of normal computing tasks and enlarging the problem

scale and sample size of MCS. In the algorithm of the updated SVM, the particle swarm

optimization method is adopted in order to seek the optimal SVM parameters, enhancing

the performance of SVM for solving complex problems in slope stability analysis. Finally,

the integrating method is applied to a classic slope for addressing the problem of reliability

analysis. The results of this study indicate that the new methodology is capable of

obtaining positive results that are consistent with the results of classic solutions; therefore,

the methodology is proven to be a powerful and effective tool in slope reliability analysis.

Keywords Slope � Reliability analysis � Monte Carlo simulation � Support vector

machine � Particle swarm optimization

1 Introduction

Uncertainties are widely encountered in geotechnical engineering analysis and design. In

general, these uncertainties are associated with the following problems: (1) the inherent

randomness of natural processes; (2) model uncertainty reflecting the inability of the
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simulation model, design technique or empirical formula to represent the true physical

behavior of the system, such as the calculation of the safety factor of slopes using limit

equilibrium methods; (3) model parameter uncertainties resulting from the inability to

accurately quantify the model input parameters; and (4) data uncertainties including

measurement errors, data inconsistency or non-homogeneity, and data handling. In slope

stability analysis, uncertainties may be attributed to the detailed geological information

losses in the exploration program and the inaccurate estimation of soil and rock properties

that are difficult to quantify in the laboratory. For example, the spatial variability in the

field cannot be reproduced accurately, and the same applies for fluctuation in pore water

pressure, testing errors, and many other relevant factors.

The conventional approach for assessing the performance of a slope is to calculate the

factor of safety (FOS). A major shortcoming of this approach is that the uncertainties in the

material parameters, pore water pressures, and loads are not explicitly reflected in the FOS.

In fact, deterministic analysis may cause the slope design to become over-conservative. To

avoid such misleading results, reliability analysis is usually applied to the slope stability

analysis. Over the past few decades, a number of methods for slope reliability analysis

have been presented and have stimulated the interest for the probabilistic design of slope.

The probabilistic approach was applied to slope stability analysis using the first-order

second-moment method (Sung 2009; Suchomel and Masin 2010; Wu and Kraft 1970;

Cornell 1971; Alonso 1976; Tang et al. 1976; Venmarcke 1977; Wol 1985; Li and Lumb

1984; Barabosa et al. 1989). In the previous studies, a number of applications of slope

reliability analysis using other methods such as Monte Carlo simulation or point estimate

method were reported (Dai et al. 1993; Chowdhury and Xu 1993). Tobutt (1982) used the

Monte Carlo method as a sensitivity-testing tool for slope stability and also as a method for

calculating reliability of a given slope. In addition, artificial neural networks (ANN) have

also been applied to the reliability analysis (Deng et al. 2005; Deng 2006; Gomes and

Awruch 2004).

As a simulation method, Monte Carlo simulation (MCS) possesses the following

advantages: it may be applied to many practical problems, allowing the direct consider-

ation of any type of probability distribution for the random variables, it is able to compute

the probability of failure with the desired precision, and it is easy to implement. Despite

these advantages, this method has not been widely used in reliability analysis due to the

fact that MCS requires a large amount of stability analyses performed through the limit

equilibrium or finite elements methods, which could result in high computing costs,

especially for large and complex geotechnical problems.

Support vector machine (SVM) appears to be a promising technique to overcome this

difficulty. In recent years, SVM has been rapidly developed for universal function

approximations (Vapnik et al. 1996). Feng et al. (2004) and Feng and Hudson 2004

employed SVM to express the complex nonlinear relationship between the displacement of

geotechnical structures and the mechanical parameters of geomaterials. Similarly, in the

process of slope reliability analysis by MCS, SVM may be employed to approximate the

safety factor of slope, replacing the cumbersome limit equilibrium and finite element

methods. This will allow the determination of the slope reliability after only a very small

number of operations.

Nevertheless, the general SVM has a major weakness in accuracy when dealing with

complex slope stability analysis problems. In order to overcome this difficulty, an updated

SVM (Zhao et al. 2007) may be adopted by incorporating the particle swarm optimization

(PSO) method to search the optimal SVM parameters.
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Therefore, the main concept of the proposed method (SVM-based MCS) may be

described as follows: First, the parameters of SVM are selected by PSO. Next, an SVM

model is constructed to substitute the modeling of slope stability analysis. Then, the index

of slope reliability is computed by the SVM-based MCS method. Finally, to investigate the

performance and suitability of this approach, the results obtained by the proposed method

are compared to those obtained by the point estimation method (PEM), as well as several

other numerical analysis methods.

2 Methods

2.1 Monte Carlo simulation

In reliability analysis of geotechnical engineering, the MCS method is particularly

appropriate when an analytical solution is not attainable, and the limit state function cannot

be expressed or approximated in direct formulation. This is mainly the case in problems of

complex nature with a large number of basic variables where no other reliability analysis

methods are applicable. Despite the fact that the mathematical formulation of the MCS is

relatively simple and the method has the capability of handling virtually every possible

case regardless of its complexity, this approach has not received extensive acceptance due

to the excessive computational effort involved.

A reliability problem is usually formulated by a performance function, g(X1, X2, …, Xk),

where X1, X2, …, Xk are random variables. The performance function of slope reliability

analysis may be established as follows:

Z ¼ g X1;X2;X3; . . .; Xkð Þ ¼ F X1;X2;X3; . . .; Xkð Þ � 1 ð1Þ

where Xi (i = 1, 2, …, k) are the random variables in the slope reliability analysis;

g X1;X2;X3; . . .; Xkð Þ is the performance function; Z [ 0 indicates that the slope is stable,

Z \ 0 indicates that the slope has failed, and Z = 0 means that boundary is hovering

between stable and unstable. F X1;X2;X3; . . .; Xkð Þ is the FOS. In order to calculate the

reliability index, an adequate number of n independent random samples are produced based

on the probability distribution for each random variable. The value of the performance

function of the slopes is computed for each random sample Xi, and the Monte Carlo

estimation of the mean value and the standard deviation of the safety factor F are given by

the following formula:

lz ¼
1

n

Xn

i¼1

zi ð2Þ

rz ¼
1

n� 1

Xn

i¼1

zi � lz

� �2 ð3Þ

Then, the reliability index can be determined as follows:

b ¼ lz

rz
¼ lF � 1

rF

ð4Þ

where b is the reliability index, and lF and rF are the mean value and the standard

deviation of the safety factor F X1;X2;X3; . . .; Xkð Þ, respectively.
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The Monte Carlo method allows the determination of an estimate of the probability of

failure, given by the following:

nf ¼
Xn

i¼1

I X1;X2; . . .; Xkð Þ ð5Þ

where I X1;X2; . . .; Xkð Þ is a function defined as follows:

I X1;X2; . . .; Xkð Þ ¼ 1 if g X1;X2; . . .; Xkð Þ� 0

0 if g X1;X2; . . .; Xkð Þ[ 0

�
ð6Þ

According to Eq. (5), n independent sets of values X1, X2, …, Xk are obtained based on

the probability distribution for each random variable, and the performance function is

computed for each sample. Using MCS, an estimation of the probability of slope failure is

obtained by the following:

pf ¼
nf

n
ð7Þ

where nf is the total number of cases where failure has occurred, and n is the total number

of simulations.

2.2 Updated support vector machine

In this section, only the basic concepts of SVM which are essential in clearly explaining

the integration method of SVM and MCS are discussed. SVM was originally proposed by

Vapnik et al. (1996) and has been used for practical applications in many research fields.

Reliability analysis of geotechnical engineering using MCS is a highly intensive compu-

tational problem which renders conventional approaches incapable of treating real large-

scale complex problems. The idea presented in this paper is to train SVMs to provide

computationally inexpensive estimation of slope FOS which is required in the reliability

analysis. The major advantage of an SVM over the conventional numerical process, under

the provision that the predicted results fall within acceptable tolerances, is that the results

may be produced in only a few clock cycles, requiring orders of magnitude less compu-

tational effort than the conventional computational process.

According to support vector machine theory and algorithm, suppose we are given a set

of observation data (samples) (X1, y1), (X2, y2), …, (Xk, yk), Xi 2 Rn; yi 2 R. For the

regression problem based on the SVM, we may obtain the regression function of the SVM

using the following equation:

f Xð Þ ¼
Xn

i¼1

ai � a�i
� �

X � Xið Þ þ b ð8Þ

where ai; a�i are the coefficients of lagrange, and b is a variable of SVM. The value of

ai; a�i and b may be obtained by solving the following optimal problems.

maximize

W a; a�ð Þ ¼ � 1

2

Xn

i;j¼1

ai � a�i
� �

aj � a�j

� �
K Xi � Xj

� �
þ
Xn

i¼1

yi ai � a�i
� �

� e
Xn

i¼1

ai þ a�i
� �

ð9Þ

subject to
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Pn

i¼1

ai � a�i
� �

¼ 0;

0� ai; a�i �C; i ¼ 1; 2; . . .; n

8
<

: ð10Þ

f Xð Þ ¼
Xn

i¼1

ai � a�i
� �

K X � Xið Þ þ b ð11Þ

where K Xi � Xj

� �
is the kernel function, penalty factor C is a constant that depends on the

algorithm of SVM. In this paper, sequential minimal optimization (SMO) was used to solve

the optimization problem described in Eqs. 9 and 10 (Platt 1998; Smola and Schoelkopf

1998).

The selection of SVM parameters has much influence on the performance of SVM. In

this paper, PSO was used to solve this problem. Compared to genetic algorithms, PSO is

more efficient in seeking optimal or near-optimal solutions in large search spaces (Shi and

Eberhart 1999; Kennedy and Eberhart 1995; Feng et al. 2006).

In this algorithm, f(X) is assumed to be the objective function, Xi = (xi1, xi2, …, xin) is

the current particle position, Vi = (vi1, vi2, …, vin) is the current particle speed, Pi = (pi1,

pi2, …, pin) is the best position where particle flied, then the best position of particle i may

be computed based on the following formula:

Pi t þ 1ð Þ ¼ Pi tð Þ if f xi t þ 1ð Þ� f Pi tð Þð Þð Þ
Xi t þ 1ð Þ if f xi t þ 1ð Þ\f Pi tð Þð Þð Þ

�
ð12Þ

If the population is s, and Pg(t) is the global best position where all particle flied then

Pg tð Þ 2 P0 tð Þ;P1 tð Þ; . . .; Ps tð Þf gjf Pg tð Þ
� �

¼ Min f P0 tð Þð Þ; f P1 tð Þð Þ; . . .; f Ps tð Þð Þf g ð13Þ

According to the theory of PSO, the following equation represents the evolutionary

process.

vi t þ 1ð Þ ¼ wvi tð Þ þ c1r1 tð Þ pij tð Þ � xi tð Þ
� �

þ c2r2 tð Þ pg tð Þ � xi tð Þ
� �

ð14Þ

xij t þ 1ð Þ ¼ xij tð Þ þ vij t þ 1ð Þ ð15Þ

where vi is the velocity for particle i, which represents the distance to be traveled by

this particle from its current position; xij represents the position of particle i; pij rep-

resents the best previous position of particle i; pg represents the best position among all

particles in the population; r1 and r2 are two independently uniformly distributed

random variables with range [0, 1]; c1 and c2 are positive constant parameters known

as acceleration coefficients, which control the maximum step size; and w is the inertia

weight, which controls the impact of the previous velocity of the particle on its current

one. In PSO algorithms, Eq. (14) is used to calculate the new velocity based on its

previous velocity, as well as the distance of its current position from both its own best

historical position and its neighbors’ best position. In general, the value of each

component in vi may be clamped to the range [-vmax, vmax] in order to control

excessive roaming of particles outside the search space. Then, the particle flies toward

a new position, as shown in Eq. (15). This process is repeated until a user-defined

stopping criterion is reached.
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2.3 Integration method of SVM and MCS to slope reliability analysis

2.3.1 Representation of FOS and random variables by SVM

The nonlinear relationship between slope FOS and random variables may be described

using a support vector machine SVM(X) as

SVM Xð Þ : Rn ! R ð16Þ

y ¼ SVM Xð Þ ð17Þ

X ¼ x1; x2; . . .; xnð Þ ð18Þ

where xi (i = 1, 2, …, n) are random variables in MCS, for example, Young’s modulus,

friction angle, geo-stress coefficients, etc., and y is the slope FOS.

In order to obtain SVM(X), a training process based on the known data set is required.

The training of SVM includes creation of training samples using numerical analysis and

the determination of training parameters of SVM. The former is performed by using

numerical analysis for the given set of tentative random variables to obtain the corre-

sponding slope FOS.

2.3.2 Determination of the parameters of SVM by PSO

Considering the influence of training parameters on the generalization performance of

SVM, PSO is adopted to search the training parameters in a global space. The algorithm is

described below.

Step 1: Estimate the valuing ranges of random variables to be recognized. A set of

tentative random variables is given in their valuing ranges. Numerical analysis is used to

calculate the corresponding slope FOS for every set of tentative random variables. Each set

of random variables with the corresponding FOS is considered as a training sample set. In

order to obtain the best generalization performance of SVMs, both for training samples and

new samples with similar conditions, another set of samples should be created to test the

applicability of the SVMs. This set of samples is known as the testing sample set.

Step 2: Initialize parameters of PSO such as number of evolutionary generation, pop-

ulation size, inertia weight, acceleration coefficients, range of kernel function, and its

parameters including C and r.

Step 3: Randomly select a kernel function of SVM from common examples of kernel

functions such as polynomials, Gaussian radial base, and Sigmoid. Randomly produce a set

of C and r in the given ranges. Each selected kernel function and its parameters such as

C and r is regarded as an individual of SVM.

Step 4: Use SMO algorithm to solve the quadratic programming problems including

each individual to obtain the values of the Lagrange multipliers and their support vectors.

Step 5: Use the selected parameters and the obtained support vectors to represent an

SVM model. The testing samples are used to test the prediction ability of the SVMs.

Applicability of the model is measured by fitness as follows:

Fitness ¼ Max ð yi � y0i
�� ��=yiÞ ð19Þ

where yi and yi

0
are the estimated FOS of tentative SVM and calculation of numerical

analysis for the slope.
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Step 6: If the fitness is accepted, then the training procedure of SVM ends and the best

SVMs are determined. Otherwise, produce new particles of PSO as shown in Eqs. (14) and

(15).

Step 7: If all new individuals of population size are generated in the PSO algorithm,

refer to Step 4. Otherwise, refer to Step 6.

2.3.3 SVM-based MCS for slope reliability analysis

The slope stability analysis required by the MCS is performed by a support vector machine

prediction of the slope FOS. Using this method, the efficiency of slope reliability analysis

using MCS is greatly enhanced. The basic concept of the algorithm is shown in Fig. 1.

Start 

Determination of random variables  Input slope property and  

Analysis method

Build computing Scheme 

Slope stability analysis 

Build learning samples 

SVM algorithm PSO Optimization

Monte Carlo simulation SVM Model 

Computation of reliability index  

End 

SVM Model  

is OK? 

Arrive at the 

Iteration? 

No 

No 

Yes 

Optimization of SVM 
parameters by PSO 

Reliability analysis using 

SVM and MCS 

Yes 

Fig. 1 Flow chart of slope reliability analysis based on updated SVM and MCS
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The algorithm of the proposed method includes the three main contents: the first is to

prepare the parameters and learning samples via numerical analysis; the second part is the

algorithms of PSO-based SVM, as presented above; and the last part is using an updated

SVM to approximate the performance function of slope reliability analysis and enhance the

efficiency and problem scale of MCS.

3 Examples and results

In order to verify the proposed method of slope reliability analysis, it was applied to a

classic slope which includes three different soil layers (Chen 2003). The cross-section

of the slope is shown in Fig. 2, and the parameters of the soil are listed in Table 1.

First, learning samples for updated SVM were built using the orthogonal design

method, and the slope FOS of every sample was calculated using the Bishop and

Spencer method, respectively (see Table 2). The position of the potential critical slip

surface was searched using the Spencer method, as shown in Fig. 2. Then, the

parameters of SVM were optimally selected by PSO, and the relevant parameters of

PSO were set as follows:

Population size is 50, c1 = c2 = 2, the initial value of w is 1, then linear induce to 0.4.

The searching range of parameters of SVM is from 0 to 10,000.

Based on the algorithms described in the previous sections, the SVM model was

finally determined through the search using PSO. The convergence process of PSO is

shown in Fig. 3 and indicates that the PSO is capable of obtaining the expected

results in a very time-effective manner. The support vectors are obtained accordingly

and listed in Table 3, and the parameters of SVM are shown in Table 4. The per-

formance function of slope reliability analysis was determined in this way. The

comparisons of slope FOS between the predicted value by SVM model and that

calculated by the slope stability analysis method (Bishop and Spencer method) are

shown in Figs. 4 and 5. In addition, the mean value and standard deviation of the

random variables are shown in Table 5. Then, the reliability index was determined.

The results of the slope reliability analysis are shown in Table 5, and the compre-

hensive results of the number of MCS, reliability index, mean value and the standard

deviation are listed in Table 6.
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Fig. 2 The cross-section of the classic slope
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The design point was at the mean values in the point estimation method (PEM)

(Rosenbleuth 1975). For more random variables, it is difficult to calculate the reliability

index using PEM. The proposed method is faster and more applicable. It should also be

noted that the SVM model expresses the performance function of the slope very

accurately, as shown in Figs. 4 and 5. The results indicate that no variation in slope

FOS is found between the approaches of the Bishop method and SVM. However, a

slight variation is observed between the Spencer method and SVM (see Table 5). These

results show that uncertainty in the model will affect the slope reliability index.

Table 1 The parameters of soil and standard deviation of random variables (for each soil layer: c = 19.5
kN/m3, E = 1.0E4, m = 0.25, K0 = 0.65)

Soil layer c (kN/m2) u (�)

Mean SD Mean SD

I 0 0 38 4

II 5.3 0.7 23 3

III 7.2 0.2 20 3

Table 2 Learning samples

No Parameters of soil Factor of safety

Layer 1 Layer 2 Layer 3

u(�) c (kN/m2) u(�) c (kN/m2) u(�) Bishop Spencer

1 33 3.3 18 5.2 15 1.063 1.039

2 33 5.3 23 7.2 20 1.339 1.31

3 33 7.3 28 9.2 25 1.602 1.575

4 38 3.3 18 7.2 20 1.336 1.314

5 38 5.3 23 9.2 25 1.626 1.598

6 38 7.3 28 5.2 15 1.232 1.199

7 43 3.3 23 5.2 25 1.572 1.548

8 43 5.3 28 7.2 15 1.332 1.293

9 43 7.3 18 9.2 20 1.468 1.446

10 33 3.3 28 9.2 20 1.429 1.395

11 33 5.3 18 5.2 25 1.396 1.384

12 33 7.3 23 7.2 15 1.196 1.162

13 38 3.3 23 8.2 15 1.274 1.238

14 38 5.3 28 5.2 20 1.392 1.357

15 38 7.3 18 7.2 25 1.532 1.514

16 43 3.3 28 7.2 25 1.683 1.647

17 43 5.3 18 9.2 15 1.269 1.243

18 43 7.3 23 5.2 20 1.418 1.386

19 38 5.3 23 7.2 20 1.405 1.374
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Fig. 3 The convergence process of parameters search of SVM using PSO

Table 3 Support vector and the value of a and a*

No. Bishop Spencer

a a* a a*

1 0.0000 0.0000 0.0000 4,624.9145

2 1,121.6051 0.0000 116.1029 0.0000

3 4,103.6342 0.0000 0.0000 5,182.5086

4 327.9031 0.0000 1,878.2462 0.0000

5 0.0000 4,509.1595 2,968.1722 0.0000

6 0.0000 7,113.1195 0.0000 836.8315

7 5,680.2417 0.0000 2,476.8045 0.0000

8 428.7242 0.0000 0.0000 717.2721

9 493.5886 0.0000 0.0000 0.0000

10 0.0000 6,109.4975 791.3259 0.0000

11 0.0000 7,617.7009 0.0000 3,711.5065

12 10,000.0000 0.0000 10,000.0000 0.0000

13 10,000.0000 0.0000 7,760.1469 0.0000

14 0.0000 7,100.3125 0.0000 8,690.7464

15 3,864.3211 0.0000 4,314.6267 0.0000

16 3,283.4238 0.0000 3,019.4935 0.0000

17 0.0000 10,000.0000 0.0000 10,000.0000

18 2,183.9617 0.0000 3,457.2092 0.0000

19 962.3864 0.0000 0.0000 3,018.3483

Table 4 The learning parame-
ters of SVM (for each numerical
method, penalty factor
C = 10,000.0000)

Numerical method r b

Bishop 468.2583 0.5973

Spencer 566.1401 0.5293
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Fig. 5 Comparison of slope FOS between calculated by Spencer method and predicted by SVM

Table 5 Results of slope reli-
ability analysis

PEM method SVM-based
MCS method

Bishop

Mean value 1.4005 1.3884

Variance 0.0137 0.0121

Reliability index 3.4218 3.5325

Spencer

Mean value 1.3704 1.4032

Variance 0.0138 0.0124

Reliability index 3.1523 3.6231
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4 Discussions

4.1 Model performance

The parameters of SVM are acquired by PSO, and the convergence process is shown to be

satisfactory (Fig. 3). The SVM model effectively presents the complex nonlinear rela-

tionship between random variables and the slope FOS (Figs. 4, 5). The SVM model may be

used to predict the FOS in slope reliability analysis using the MCS method, substantially

enhancing the efficiency of the MCS method. The reliability index calculated by SVM-

based MCS agrees well with the PEM method, as shown in Table 5. This result indicates

the proposed method is feasible and effective. When the number of simulation is 500, the

result is satisfactory. When the number of simulation reaches 5,000, the value of reliability

index becomes stable, as shown in Table 6. Therefore, the proposed method may be

adopted for use in slope reliability analysis.

4.2 Effects of the parameter of random variables on reliability index

The variation coefficient of random variables influences the slope reliability index. In this

paper, different variation coefficients and distributions of random variables are analyzed

based on the Spencer and Bishop methods. The results show that the reliability index will

decrease with an increase of the variation coefficient of random variables, as shown in

Fig. 6. In order to verify the effects of non-normal distribution on the reliability index, the

lognormal distribution is analyzed. The mean and standard variation of random variables

agrees with normal distribution, as shown in Fig. 7.

4.3 Effects of the methods of slope stability analysis on reliability index

In slope stability analysis, the slope FOS is different when different analysis methods are

adopted. Different analysis methods will have a large influence on the results of the

reliability index (Fig. 6). The reliability index obtained using the Bishop method is more

conservative than the Spencer method under normal distribution (Fig. 6). However, the

reliability index remains almost the same between the Bishop and Spencer methods under

the lognormal distribution (Fig. 7). The probability density functions are shown in Figs. 8

Table 6 The relationship
between reliability index and the
numbers of MCS (for each line,
SD is the same: rF

2 = 0.01238)

Numbers of MCS Mean value lF Reliability index b

500 1.40393 3.63020

1,000 1.40369 3.62833

2,000 1.40360 3.62589

5,000 1.40315 3.62313

10,000 1.40313 3.62295

20,000 1.40319 3.62349

30,000 1.40320 3.62357

40,000 1.40320 3.62383

50,000 1.40320 3.62369

100,000 1.40319 3.62358

718 Nat Hazards (2013) 65:707–722

123



and 9. There is a large difference between the Bishop and Spencer methods in normal

distribution (Fig. 8), while they are very similar in lognormal distribution (Fig. 9). This

result shows that the selection of distribution function, which depends on the experimental

or test data, is important to the reliability analysis.

4.4 Effects of learning samples

In the proposed method, learning samples play an important role in model building. The

range of samples relevant to experiment or test data should agree with the variable range of

random variables, and the samples should cover the maximum and minimum value of soil

mechanical parameters. In addition, as many learning samples as possible should be col-

lected, in order to obtain more accurate solutions.
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5 Conclusions

This paper presents a new methodology for slope reliability analysis. The approximate

concepts that are inherent in reliability analysis, together with the time-consuming

requirements of repeated slope stability analyses involved in Monte Carlo Simulation,

motivated the use of support vector machine. Due to the enormous sample size and the

computing time consumption required for each Monte Carlo run, the computational effort

involved in the conventional Monte Carlo simulation in slope reliability analysis becomes

very excessive. The application of support vector machine is capable of effectively

eliminating any limitation on the problem scale and in the sample size of Monte Carlo

simulation, provided that the predicted slope FOS, corresponding to different simulations,

falls within acceptable tolerances.
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Fig. 8 The probability density functions obtained from SVM-based MCS method with normal distribution
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Fig. 9 The probability density functions obtained from SVM-based MCS method with lognormal
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SVM was successfully adopted to produce the approximate estimation of slope FOS,

regardless of the size or complexity of the problem, leading to very accurate predictions.

PSO was effectively verified to search the training parameters of SVM in a global space,

resulting in a satisfactory SVM model and high generalization performance. The proposed

methodology not only absorbs the merit of MCS in reliability analysis, but it also takes

advantage of the updated SVM to enhance the computing efficiency. The results of this

study indicate that the method integrating MCS and updated SVM is powerful and

effective in dealing with the problem of slope reliability analysis.
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