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Abstract This paper presents a new method for quantifying vulnerability to natural

hazards in China. As an important area of vulnerability research, quantitative assessment of

vulnerability has raised much focus in academia. Presently, scholars have proposed a

variety of methods for quantitative assessment, which usually create an index of overall

vulnerability from a suite of indicators, based on the understanding of the cause or

mechanism of vulnerability. However, due to the complex nature of vulnerability, this

approach caused some arguments on the indicator selection and the weight set for sub-

indices. A data envelopment analysis–based model for the assessment of the regional

vulnerability to natural disasters is presented here to improve upon the traditional methods,

and a new approach for the classification of vulnerability is proposed. The vulnerability to

natural hazards in China’s mainland is illustrated as a case study. The result shows that the

overall level of vulnerability to natural hazards in mainland China is high. The geographic

pattern shows that vulnerability is highest in western China, followed by diminishing

vulnerability in central China, and lowest vulnerability levels in eastern China. There is a

negative correlation between the level of vulnerability and the level of regional economic

development.
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1 Introduction

Development process in human society, from various perspectives, is a continuing struggle

with natural hazards: successive dynasties and ruling regimes have always been preoc-

cupied with attempts to control disasters. In fact, as a hot issue within academia, scholars

have long been concerned with natural hazards (Montz and Tobin 2011), with early

research focusing on understanding physical processes, spatial distributions and patterns,

and, to some extent, the impacts of events and mitigation. However, the typical charac-

teristics of the studies in this period were mainly descriptive, rather than analytical, and

placed responsibility for catastrophe firmly on nature and not human endeavors, which can

be summarized as ‘‘hazards determinism’’ (Smith 1982; Mileti 1999). With in-depth study,

people have gradually recognized that natural hazards impacts are the joint product of

stress and exposure on the one hand and fragility and vulnerability on the other hand

(Blaikie et al. 1994a); in other words, if one place is not vulnerable to natural hazards

events, there will be no natural disaster loss. So the study on physical processes can only

explain who or which place may be exposed to the natural hazards. It is not sufficient to

understand just the degree to which people at a location are threatened by that exposure.

The natural hazards may produce significantly different impacts on people and places,

often not only depending on the severity of the hazard, but also on the physical attributes

and the socioeconomic characteristic of a locale. As a response to the deficiencies in early

studies, scholars proposed a new concept of vulnerability to address natural hazard-related

issues (White 1945).

Currently, the concept of vulnerability is used in many fields and for different spatial

scales. Although there have been several attempts at defining and capturing what is meant

by vulnerability, the term varies among disciplines and research areas (Liverman and

O’Brien 1991; Watts and Bohle 1993; Dow and Downing 1995; Cutter 1996; Fraser et al.

2006; Janssen et al. 2006; Metzger et al. 2006). Thywissen (2006) and Manyena et al.

(2008) carried out an extensive review of the terminology. The former includes a long list

of definitions used for the term vulnerability and the latter includes definitions of vul-

nerability and resilience and their relationship. Due to different conceptual frameworks and

definitions, as well as disciplinary views, approaches to address the causes of vulnerability

also differ. Four approaches to understanding vulnerability and its causes can be distin-

guished, rooted in political economy, social ecology, vulnerability, and disaster risk

assessment, as well as adaptation to climate change (Cardona et al. 2012):

1) The pressure and release (PAR) model (Blaikie et al. 1994b; Wisner et al. 2004) is

common to social science–related vulnerability research and emphasizes the social

conditions and root causes of exposure more than the hazard as generating unsafe

conditions. This approach links vulnerability to unsafe conditions in a continuum that

connects local vulnerability to wider national and global shifts in the political

economy of resources and political power.

2) The social ecology perspective emphasizes the need to focus on coupled human-

environmental systems (Hewitt et al. 1971; Turner et al. 2003a, b). This perspective

stresses the ability of societies to transform nature and also the implications of changes

in the environment for social and economic systems. It argues that the exposure and

susceptibility of a system can only be adequately understood if these coupling

processes and interactions are addressed.

3) Holistic perspectives on vulnerability aim to go beyond technical modeling to embrace

a wider and comprehensive explanation of vulnerability. These approaches
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differentiate exposure, susceptibility, and societal response capacities as causes or

factors of vulnerability (see Cardona 2004; IDEA 2005; Birkmann 2006; Birkmann

and Fernando 2008). A core element of these approaches is the feedback loop which

underlines that vulnerability is dynamic and is the main driver and determinant of

current or future risk.

4) In the context of climate change adaptation, different vulnerability definitions and

concepts have been developed and discussed. One of the most prominent definitions is

the one reflected in the IPCC Fourth Assessment Report, which describes vulnerability

as a function of exposure, sensitivity, and adaptive capacity. This approach differs

from the understanding of vulnerability in the disaster risk management perspective,

as the rate and magnitude of climate change are considered. The concept of

vulnerability here includes external environmental factors of shock or stress.

Therefore, in this view, the magnitude and frequency of potential hazard events are

to be considered in the vulnerability to climate change.

However, despite the differences in conceptualization and understanding, vulnerability

can be taken as the propensity or predisposition to be adversely affected (IPCC 2012). In

relation to the natural disaster research community, vulnerability is used to measure

capacity to withstand natural hazards in different regions with distinctive economies

(Timmerman 1981; Turner 2010), which can be seen as the characteristics and circum-

stances of a place that make it susceptible to the damaging effects of the natural hazard. In

this research, vulnerability refers to the propensity or predisposition of exposed elements

such as human beings, their livelihoods, and assets to suffer adverse effects when impacted

by hazard events. Specifically, vulnerability is the characteristic of a place to be wounded

and has little capacity to cope (defined as the ability to absorb the damaging impacts of a

hazard and continue functioning), without the consideration of resilience (the ability to

recover rapidly from disaster), for example, suppose there are two regions facing the same

severity of natural hazards events and exposure of regional socioeconomic systems. The

region which suffers more disaster loss has higher level of vulnerability.

Although the concept of vulnerability has been applied in many research fields,

approaches for analyzing and assessing vulnerability are still preliminary. Researchers

have proposed some frameworks and metrics for vulnerability assessment (Blaikie et al.

1994a; Klein and Nicholls 1999; Cutter et al. 2003; Boruff et al. 2005; Cutter and Finch

2008). The methods adopted by most current researchers are to establish an index of

vulnerability based on proxy datasets that indicate vulnerability (Cutter 2005; Eakin and

Luers 2006; Rygel et al. 2006). It is no doubt that these methods provide useful tools for

identifying and monitoring vulnerability over time and space, as well as introducing way to

understand the processes underlying vulnerability. However, this type of research has

generated additional questions. The first issue relates to the choice of proxies for vulner-

ability assessment. Because of the complexities involved in the concept of vulnerability,

researchers use different proxies to indicate vulnerability. For example, Alberini et al.

(2006) proposed six indices for vulnerability assessment: the fraction of people affected by

natural disasters, infant mortality, life expectancy at birth, average calorie supply per

person per day, percentage of people with access to improved sanitation, and percentage of

people with access to an improved source of drinking water. Cutter et al. (2003) identified a

set of 42 independent variables that influence vulnerability. The second issue relates to the

relative contributions of the variables used to define vulnerability. Some researchers

choose not to weight variables differentially to allow for dissimilar effects (Cutter et al.

2000), while others explore distinctive weighting schemes designed to reflect variations in
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importance, such as Factor analysis, Analytic hierarchy process, and Expert scoring

method (Brooks et al. 2005; Lazarus 2011). The mechanism explaining how these factors

influence the vulnerability and the associations among them are complicated and still not

clear. Thus, determining appropriate weighting is a challenge for this type of vulnerability

assessment method (Lazarus 2011). Some scholars have proved that the result of the

vulnerability assessment is very sensitive to both the proxy selection and the weighting

method based on a detail and quantitative analysis (Schmidtlein et al. 2008). The third

question is about the classification of the vulnerability, namely, which place is highly or

lowly vulnerable to natural hazards, based on value of the vulnerability index. It is a tough

and disputed issue to decide the threshold values for the category of different vulnerability

level (Uitto 1998; Mitchem 2004; Holand et al. 2011). Traditional methods for classifi-

cation of vulnerability mainly include cluster analysis, equal interval, quantile division,

standard deviation, and the subjective division based on empirical experience; however,

these methods for classification mostly are sensitive to the value variation of the computed

vulnerability index (Rygel et al. 2006); for the same value of the vulnerability index, it will

be classified into different vulnerable level according to the different classification method.

So these classification methods are more or less arbitrary.

Taking a different approach, a model based on a data envelopment analysis (DEA) is

proposed in an attempt to improve upon traditional methods because the DEA approach

does not require determining weight parameters and provides a new classification method.

In recent years, DEA modeling has been used to evaluate the performance of various

entities engaged in different activities in varied contexts, including benchmarking in health

care (hospitals, doctors), education (schools, universities), banks, manufacturing, and

management evaluation (Uitto 1998; Tongzon 2001; Anderson 2002). But only limited

DEA research in the field of natural disasters has occurred, some researchers have begun to

use DEA models to carry out preliminary studies (Wei et al. 2004; Zou and Wei 2009).

There are some shortcomings in their studies, including minimal discussion on the

applicability of the DEA model and inadequate consideration of the regional physical

context of natural hazards and vulnerability. This article first discusses the applicability of

DEA modeling to the natural hazard vulnerability assessment. It then constructs indices

that are used for vulnerability assessment based on a natural disaster system framework.

Finally, an analytical model is developed. Based on the annual governmental statistics data

from 2001 to 2008 (National Bureau of Statistics of China 2001–2008; Department of

Finance and Administration, Ministry of Civil Affairs of China 2001–2008), the vulner-

ability to natural hazards in China’s mainland area is assessed as a case study.

2 Methods

2.1 Study area

China has frequently suffered the ravages of natural disasters. According to government

statistics, during the 19 years from 1990 to 2008, on an annual average, natural disasters

affected approximately 300 million people, destroyed more than three million buildings,

and forced the evacuation of more than nine million people. The direct financial losses

exceeded 200 billion Yuan (Information Office of the State Council of the People’s

Republic of China 2009). Floods in the Yangtze, Songhua, and Nen river valleys in 1998,

serious droughts in Sichuan province and Chongqing municipality in 2006, devastating

floods in the Huai river valley in 2007, extreme cold weather and sleet in south China in
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early 2008, and the earthquake that shook Sichuan, Gansu, Shaanxi, and other regions on

May 12, 2008 all caused tremendous losses. Study of China’s vulnerability to natural

hazards can provide benefits if such research leads to the adoption of effective strategies

for future disaster mitigation.

2.2 The applicability of the DEA model for vulnerability assessment

Data envelopment analysis is an efficiency evaluation model based on mathematical pro-

gramming theory, which offers an alternative to classical statistics in extracting information

from sample observations (Bowlin et al. 1984). In the DEA model, the sectors being assessed

are decision-making units (DMUs), and each DMU is responsible for converting inputs into

outputs. In contrast to parametric approaches such as regression analysis which fit the data

through a single regression plane, DEA model optimizes each individual observation with the

objective of calculating a discrete piecewise frontier determined by the set of Pareto-efficient

DMUs (Charnes et al. 1978). In other words, DEA model is a methodology directed to

frontiers (envelope) rather than central tendencies (Fig. 1), the focal point of which is indi-

vidual observations as opposed to single optimization statistical approaches which focus on

averages of parameters. Furthermore, this method is flexible enough to assess both single

input–output systems and multi-input and multi-output systems. Unlike other assessing

methods, the producing functions are not required in DEA, and the outputs are not affected by

the dimensions of data (Ali et al. 1995). Additionally, it can be used to assess the relative

efficiencies between different units. Taking a system with one input and two outputs, for

example, Fig. 1 (I) contains a set of DMUs that use two outputs per unit of input. Compared

with other DMUs, the DMUs in this example (A, B, C, and D) represent the optimum mix of

outputs that system could be achieved. In the DEA model, these four DMUs are the most

efficient DMUs within the system and define an empirical efficient frontier, and the relative

efficiency of other DMUs can be calculated by these four efficient DMUs, namely on their

‘‘position’’ relative to the efficient frontier (Charnes 1995). Therefore, based on the concept of

relative efficiency, researchers take the DEA model as an excellent and easily used meth-

odology for modeling operational processes for performance evaluations, namely a useful

tool for the efficiency evaluation of an ‘‘input–output’’ system or a production process. A

more detailed introduction of DEA can be found in the handbook ‘‘Data Envelopment

Analysis: History, Models, and Interpretations’’ (Cooper et al. 2011).

Data envelopment analysis provides the flexibility to permit ‘‘unconventional’’ variables

such as the number of students graduated, the number of patients served, and even journal

ranking (Liner 2002) to be used for efficiency evaluation. This paper applies this method in
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Fig. 1 Comparison between the DEA model and the regression model
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the vulnerability assessment. In the context of natural hazards, the occurrence of disaster

loss from natural hazards events represents the product of interactions within the natural

disaster system, which can be considered as an ‘‘input–output’’ system. Specifically,

disaster losses (as output factors) are the products of interactions within the regional

natural disaster system whose input factors include hazards, environmental background

conditions, exposure units, and vulnerability (Shi 1996; Mileti 1999). Hazards are the

physical processes of the earth system that threaten human society. The hazard events can

be characterized by their magnitude or intensity, speed of onset, duration, and area of

extent. The hazards as described here are purely physically defined. The environmental

background condition is the context of the physical environment that aggravates or

decreases the effects of hazards events, such as slope, elevation, soil, and vegetation

condition ; some specific environmental conditions (such as low-lying islands, coastal

zones, mountain regions, dry lands, and floodplains) lead to the creation of hazards impacts

or an increase in the levels or damage potential of existing ones, for example, even a small

storm will cause the dangerous debris flow in the mountain areas that have the low

vegetation and loose soil. Exposure units mainly include all types of human activities, such

as the buildings, properties, and people. And the disaster loss as measured in human terms

(lives lost, people affected, and economic losses) is the outcome of the hazards, envi-

ronment background condition, and exposure units, mediated by the characteristics (the

vulnerability defined above) of the human system that is exposed to and affected by the

hazard. For example, flood as a hazard is dangerous only when a locale is near a river or

has a low elevation, which can be seen as the action of the environmental background

conditions; when a certain criticality level is exceeded, the hazard becomes a real threat.

Hazard and environmental background conditions are only external conditions for disaster

losses—the hazard danger is relative to human socioeconomic activities in a floodprone

place. These regional human activities are the internal reason for disaster losses. A place

devoid of human activity is not in danger, so the role of human activity is to create

exposure units that experience damage in a flood. While human activities and structures

constitute components that are the prerequisites for disaster losses, only the vulnerable

locales will suffer losses. The variable vulnerability is a hidden characteristic of regional

human activity, which is simply reflected in the differential severity of the disaster loss

sustained by different areas under the same natural hazards scenario, in other words, the

efficiency of the hazards events to produce disaster losses.

Regarding the process of disasters, the essence of relative efficiency in DEA model is

similar to the vulnerability.1 More generally, the vulnerability to natural hazards is

reflected in the production efficiency of loss caused by natural disasters. Usually, a region

with higher vulnerability, under the same level of natural hazard impact, will suffer more

severe damage. While on the other hand, for regions with low vulnerability, because of the

low efficiency in generating damages, the loss caused by natural disasters is usually rel-

atively light. However, the DEA method is usually used to assess the relative efficiency of

1 The vulnerability used here is different than the concept of risk. Risk is the likelihood over a specified
time period of severe alterations in the normal functioning of a community. In its simplest form, risk can be
seen as the product of the probability that some event (or sequence) will occur and the adverse consequences
of that event. The vulnerability is the likelihood of the consequence resulting from the event. For instance,
the risk a community faces from flooding from a nearby river might be calculated based on the likelihood
that the river floods the town, multiplied by the value people place on those casualties and economic
disruption, while the vulnerability refers to the propensity to suffer disaster loss. In short, risk depends on the
probability and impact which is also defined as severity of a scenario while vulnerability shows the sus-
ceptibility to that scenario.
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real-bodied producing sectors, such as factories, enterprises, and government departments.

To make it more convenient to be assessed, in this study, the 31 basic assessment units

(including 22 provinces, 5 autonomous regions, and 4 municipalities of China, except

Hong Kong, Macau, and Taiwan province) are taken as the virtual sector for ‘‘production

of losses.’’ The relative efficiency calculated by a DEA model is used to reflect the

vulnerability to natural hazards (Fig. 2).

Since the DEA method was developed, various DEA models have been proposed, such

as C2R, BC2, C2GS, C2WH, and C2W (Charnes et al. 1989). In this article, the classical

C2R model is adopted for analysis. The concept of DEA is developed around the basic idea

that the efficiency of a DMU is determined by its ability to transform inputs into the desired

outputs. This concept of efficiency was adopted from engineering, which defines the

efficiency of a machine/process as Output/Input B 1. DEA generalizes this single output/

input technical efficiency measure to multiple outputs/inputs by constructing a relative

efficiency measure based on a single ‘‘virtual’’ output and a single ‘‘virtual’’ input. The

efficient frontier is then determined by selecting DMUs that are most efficient in producing

the virtual output from the virtual input. Because DMUs on the efficient frontier have

efficiency score = 1, inefficient DMUs are measured relative to the efficient DMUs.

More formally, assume that there are n DMUs to be evaluated. Each DMU consumes

varying amounts of m different inputs to produce s different outputs. Specifically, DMUj

consumes amounts Xj = {xij} of inputs (i = 1, 2 … m) and produces amounts Yj = {yrj} of

inputs (r = 1, 2 … s). The s 9 n matrix of output measures is denoted by Y, and the m 9 n
matrix of input measures is denoted by X. Also, assume that xij [ 0 and yrj [ 0. Consider

the problem of evaluating the relative efficiency for any one of the n DMUs, which will be

identified as DMU0 Relative efficiency for DMU0 is calculated by forming the ratio of a

weighted sum of outputs to a weighted sum of inputs, subject to the constraint that no

DMU can have a relative efficiency score greater than unity. Symbolically:

max
u;v

P
r uryr0P
i viyi0

¼ uT Y0

vT X0

;

where u = (u1, … , us)
T, v = (u1, … , vs)

T

subject to

uT Yj

vTXj
¼
P

r uryrjP
i viyij

� 1;

for j = 1, 2 … n; ur, vi C 0 for r = 1, 2 … s and i = 1, 2 … n; where ur and vi are weights

assigned to output r and input i, respectively.

Calculate the 
efficiency of natural 

hazards system based 
on DEA model

Imitation Classification
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Fig. 2 Framework for the assessment of the vulnerability to natural hazards based on DEA models
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For this fractional programming problem with a potentially infinite number of optimal

solutions, Charnes et al. (1978) were able to specify an equivalent linear programming

problem (LP). This requires the introduction of a scalar quantity (h) to adjust the input and

output weights:

h ¼ 1

vT X0

; uT ¼ huT ;w ¼ hvT

Appropriate substitutions produce the CCR LP problem:

max
u;v

h0 ¼
X

r

urvro ¼ uT Y0

subject to

wTX0 ¼
X

i

wixi0 ¼ 1;
X

r

uryrj �
X

i

wixij� 0; ur;wi� e

where the value of h0 is the relative efficiency of DMU0 and e is a positive constant, called

the non-Archimedean infinitesimal, which is introduced to facilitate solving of the LP

problem, generally taking e = 10-6. In DEA model, this LP is known as the C2R model, as

it was developed by Charnes, Cooper, and Rhodes. In relation to the quantitative assess-

ment of vulnerability to natural hazards, the above formula can be transformed in a

compacted form as follows:

Consider that there are n decision-making units DMUj (j = 1, 2 … n) (the region prepared

for vulnerability assessment). In model (1), the objective is to assess the vulnerability to

natural hazards in each province, where the 31 provinces of China are taken as DMUs.

Parameters are presented as below, where h (0 \ h B 1) is the Efficiency in DEA terms––it

represents the relative severity of the impacts from natural disasters under certain regional

natural hazards system situations. If the h score of one DMU unit is closer to 1, it indicates that

this province has a high input–output ration, namely high efficiency for the production of

disaster loss, in other words, more vulnerable to natural hazards. When for a certain region,

h = 1 is the efficient DMUs in DEA term, while, under the circumstance of natural hazards, it

means that the region gets the relative severest impacts from natural hazards; thus, regional

vulnerability is the relative highest. Xj is the input indicators of the jth region. In this study,

they are the selected indicators for the hazards, environmental background conditions, and

exposed units; Yj is the output indicators of the jth region––they are the indicators for the

natural disaster losses. kj (j0) as weight variable, it is the weight value of the jth country when

the j0th country is evaluated, also(j0) C 0; S- is a slack variable, S? is the remnant variable; in

this programming, h, S?, S-, and kj (j0) are parameters to be estimated. In this research, the

free DEAP Version 2.1 software is used for computation (Coelli, 1996).

min½h� eðêTS� þ eT SþÞ�

s:t:
P31

j¼1

Xjkjðj0Þ þ S� ¼ hX0

Pn

j¼1

Yj � Sþ ¼ Y0

kjðj0Þ� 0;Xj� 0; Yj� 0

S� � 0; Sþ � 0

êT ¼ ð1; 1; . . .; 1Þm; eT ¼ ð1; 1; . . .; 1Þ 2 En

0

B
B
B
B
B
B
B
B
B
B
@

ð1Þ
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To assess the vulnerability to the natural hazards, a basic assumption in this study is

that, according to the essence of ‘‘propensity or predisposition to be impacted’’ under the

same natural hazards scenario, the vulnerability is proportional to the loss from disasters,

or in other words, they are positively correlated. Therefore, when measuring the vulner-

ability to natural hazards, it is reasonable to infer that the vulnerability will decrease when

the loss from disasters decreases and vice versa.

2.3 The classification of vulnerability to natural hazards

After the quantitative assessment of vulnerability, the next issue is how to classify vul-

nerability. Based on the efficient DMUs calculated by the DEA model, this paper presents

a new method for classification. To proceed, it is necessary to introduce the concept of non-

domination (Steuer 1989). In this paper, a non-dominated case is a case that has no other

cases in the dataset that are clearly more vulnerable than this particular case, by virtue of

scoring at least as high or higher on all components. A non-dominated set of cases is all the

non-dominated cases in the dataset. By determining the non-dominated set of cases in the

complete dataset, removing them from the dataset, determining the non-dominated cases

among the remaining cases, and then repeating this process, the investigator can make the

vulnerability ranking in the dataset. The non-dominated set of cases at each repetition of

this process is called the Pareto-optimal front or Pareto ranking (Goldberg 1989), a term

referring to the notion of Pareto optimality from welfare economics (Pareto 1896;

Johansson 1991). In fact, DEA (Charnes et al. 1978) is an alternative approach from

econometric analysis that relies on the same underlying concepts as Pareto ranking, but is a

conceptually and practically more complicated method, and the non-dominated sets of

cases are the same as the efficient DMUs (h = 1) which construct the efficient frontier in

the DEA model (Clark et al. 1998).

The process is illustrated in Fig. 3. Taking a simple supposed case of DEA model, for

example, if we still consider a case where there is only one input, but two heterogeneous

outputs, the classification method can be relatively easily visualized. For each DMU, we can

calculate the output for each unit of input and then plot the relative outputs on a two-

dimensional graph, as the first panel shows. The second panel shows a non-dominated set of

DMUs (note that these points are the efficient DMUs and form the production frontier, in

DEA terms), from the perspective of vulnerability assessment, which can be considered as the

most vulnerable DMUs. With the first Pareto rank of the efficient DMUs removed from the

dataset, a new set of non-dominated block groups is identified in panel 3. This process

continues with each rank being ‘‘peeled away’’ like the layers of an onion until all the DMUs

have been assigned a vulnerability ranking, as shown by the lines in the final panel. Finally,

we can make the classification of vulnerability to the natural hazards based on the division of

different ranking. While these illustrations are in two dimensions for clarity, precisely the

same logic and procedure can be applied to higher-dimensional data. Differing from the

traditional classification methods which need to specify the classification criteria or thresh-

old, DEA makes classification easier and more realistic because it enables derivation of an

efficiency envelope (efficient frontier), which contains the most vulnerable provinces of the

group analyzed, against which all other provinces are compared.

2.4 Index construction and data processing

As discussed above, disaster loss is the synergic action of the natural disaster system.

Specifically, the regional natural hazards system can be considered as negative ‘‘production
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activities,’’ and the ‘‘input’’ factors include the dangerousness of the natural hazards,

namely the combination of the magnitude and frequency of regional natural hazards and

the conditions of the natural environment, such as the elevation, the slope, the geological

conditions, the vegetation, and so on, as well as the exposure of the socioeconomic system,

such as the area planted with crops, the total population size, the level of economic activity,

the existing infrastructure, and other similar variables. The ‘‘output’’ elements are the

disaster losses, such as the size of the affected area, the number of people impacted, the

scale of economic losses, and the extent of casualties. Efficiency of the ‘‘production of

disaster losses’’ can be taken as a reflection of vulnerability, the higher the efficiency, the

higher the vulnerability of the region.

This research builds the input and output factors for the DEA model of regional natural

hazards from three aspects: (1) the dangerousness of regional hazards (DI), an input factor;

(2) the exposure of the regional socioeconomic system (EI), an input factor; and (3) the

regional natural disaster losses (LI), an output factor. The efficiency calculated by the DEA

model can be used as a surrogate by which to assess regional vulnerability to natural

hazards. Considering the availability and representativeness of data, we made a selection of

the following indicators for each index (Table 1). Because disaster losses fluctuate greatly

over the years, single-year disaster loss data are unsuitable for vulnerability analysis. We

use the average of disaster losses over multiple years (2001–2008) instead. Correspond-

ingly, in order to keep consistency between the model input and output, we also take the

average value of indicators of exposure of regional socioeconomic system (Table 1) for

analysis.

Although the DEA model can be used to assess the relative efficiency of the DMUs with

multiple inputs and outputs, the number of the inputs and outputs is not unlimited. There is

an important rule of thumb that the number of DMUs must be no less than the number of

inputs and outputs, and the variables must have low correlation, or the capacity of DEA

model to calculate efficiency will be reduced (Anderson 2002). So it is better to reduce the

Efficient frontier

Output1/Input 

Output2/Input 

Fig. 3 The illustration on the process of vulnerability classification
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number of inputs and outputs when the number of DMUs is limited, although it is also

important to maintain the original information represented by the input and output vari-

ables. Factor analysis is a useful tool for reducing the number of variables while mini-

mizing the information loss of the original variables. Because the factor analysis is a

beneficial method to reduce correlated variables, the extracted principal components have

Table 1 Indicator system and data for vulnerability assessment

Description of index Indicator selection Data processing Data source

Dangerousness
of regional
hazards (DI)

The reflection of the
comprehensive
action of hazards and
environmental
background
conditions, decided
by the magnitude
and frequency of
regional natural
hazards and natural
environmental
conditions

The five main types of
natural hazards in
China, including
earthquakes;
meteorological
hazards such as hail,
frost, sandstorm;
drought; flood; and
geological hazards

Using the
dangerousness
score of the
natural hazards, as
the input factor of
the DEA modela

Ma (1994)

Exposure of
regional
socioeconomic
system (EI)

The assessment of
lives and property
threatened by natural
disasters in the
region. Usually, the
higher the degree of
exposure, the greater
the potential losses

Regional total
population, GDP, per
capita GDP,
population density,
cultivated areas,
GDP km-2, regional
urbanization level,
total fixed
investment in
construction

Factor analysisb,
using the
extracted
principal
components as the
DEA model input

China
Statistical
Yearbook
2001–2008

Regional natural
disaster losses
(LI)

The assessment of
regional losses
caused by natural
disasters, such as
casualties, crop yield
reduction or total
loss of harvest,
building damage,
and other losses

Disaster-affected area,
area with total loss of
harvest, proportion
of farmland with
total loss of harvest,
affected population,
number of deaths
from disasters,
population with
drinking water
problems, number of
collapsed or
damaged building
units, direct
economic losses

Factor analysis,
using the
extracted
principal
components as the
DEA model
output

China Civil
Affairs
Statistical
Yearbook
2001–2008

a To make a quantitative assessment of the dangerousness of natural hazards, as a point of departure, this
article relies on the research work of Ma (Ma 1994), which makes a quantitative assessment of the danger
posed by various natural hazards in China. This assessment is based on the record of the frequency and
intensity of the historical natural hazards, as well as the consideration of the environmental background
condition. It is an assessment of the physical context condition for the natural hazards, namely the areas that
are more easily affected by the natural hazards and the severity of these threats. The natural hazard risk
assessment is different, focusing on the probability of the threat happening in the future
b The factor analysis is a main component analysis, can ensure that the data are independent, and can
minimize the number of indicators, and the varimax rotation is used in the factor analysis
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low correlation (Wood 2008). This research uses factor analysis to process the indicators

by using the extracted principal components as the input and output variables. Because the

principal components extracted will have negative values that are prohibited in the DEA

model, data transformation is needed. We make a linear stretch of the data to a new data

range of 1–5 by using the minimum–maximum standardization method. The transforma-

tion is performed as follows:

V 0 ¼ V �minA

maxA�minA
ðnew max

A
�new min

A
Þ þ new min

A
ð2Þ

where the v0 is the new data after normalization, v is the original data, maxA and minA

represent the maximum and minimum of original datasets, respectively, while new_maxA

and new_minA taken as the maximum and minimum value of new dataset correspondingly.

3 Results and analysis

3.1 The result of factor analysis

We first perform a factor analysis of the DEA model input and output factors. Two

principle factors are extracted from the indicators of exposure of regional socioeconomic

system, and two other principle factors are extracted from regional natural disaster losses

(Table 2). From the loadings of each principal component, we can see that the principal

exposure factors of the regional socioeconomic system largely describe the density (factor

1) and the total amount (factor 2) characteristics of regional exposure. The principal factors

of regional natural disaster losses reflect human and economic losses (factor 1) and agri-

cultural losses (factor 2). We use these four new principle factors as the final variables of

the DEA model to calculate the efficiency of each DMU.

Table 2 The extracted principal components based on factor analysis

Exposure of regional socioeconomic system Regional disaster losses

Indicators Factor
1

Factor
2

Indicators Factor
1

Factor
2

Total GDP 0.794 Disaster-affected area 0.921

Total population 0.948 Area with total loss of harvest 0.963

Population density 0.921 Proportion of farmland with total
loss of harvest

0.736

GDP km-2 0.887 Affected population 0.842

Cultivated areas 0.686 Number of deaths from disasters 0.849

Per capita GDP 0.961 Population with drinking water
problem

0.616

Urbanization level 0.876 Number of collapsed building units 0.871

Total fixed investment in
construction

0.862 Number of damaged building units 0.947

Direct economic losses 0.650

Factor loadings smaller than 0.6 are not listed. Factors selected have [ 1 eigenvalue and the contribution of
the cumulative variance is more than 80 percent
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3.2 The vulnerability assessment based on production efficiency of disaster loss

After data processing, we obtained the production efficiency of natural disaster losses of

the 31 DMUs using the DEAP Version 2.1 software (Table 3), which can be used for the

analysis of vulnerability. The efficiency of Inner Mongolia, Heilongjiang, Jiangxi, Hunan,

Hainan, Chongqing, Sichuan, Guizhou, Yunnan, and Ningxia provinces are all highest

(h = 1), which means that the relative production efficiency of natural disaster losses is

highest in all these DMUs. From a vulnerability perspective, these regions are more easily

Table 3 The vulnerability assessment for regional natural disasters in China

EI DI LI Production
efficiency
of hazards lossDensity

exposure
Total
exposure

Population
economy loss

Agricultural
loss

Beijing 3.12 1.73 3.6 1.25 1.22 0.463

Tianjin 2.87 1.60 3.4 1.17 1.55 0.555

Hebei 1.40 3.53 3.8 2.28 3.45 0.749

Shanxi 1.38 2.20 3.4 2.12 3.20 0.872

Inner Mongolia 1.34 2.50 2.2 1.46 5.00 1.000

Liaoning 1.84 2.86 3.2 1.56 3.20 0.611

Jilin 1.48 2.32 2.4 1.62 3.32 0.790

Heilongjiang 1.24 3.00 2.0 1.51 4.49 1.000

Shanghai 5.00 2.03 2.2 1.45 1.00 0.438

Jiangsu 2.15 4.51 3.2 2.72 2.14 0.561

Zhejiang 2.22 3.15 3.0 3.25 1.97 0.658

Anhui 1.25 2.81 3.2 3.40 3.38 0.947

Fujian 1.81 2.31 3.6 4.12 1.87 0.920

Jiangxi 1.32 2.18 2.2 3.62 2.23 1.000

Shandong 1.77 5.00 3.6 3.09 3.56 0.686

Henan 1.25 4.29 2.8 3.00 3.83 0.983

Hubei 1.43 2.90 3.2 3.59 2.97 0.820

Hunan 1.33 2.89 3.2 5.00 3.02 1.000

Guangdong 2.20 4.42 3.6 3.39 1.94 0.572

Guangxi 1.19 2.46 3.2 3.74 2.33 0.877

Hainan 1.55 1.16 3.8 1.54 2.11 1.000

Chongqing 1.52 1.88 3.0 3.47 2.32 1.000

Sichuan 1.09 3.42 3.6 4.68 2.64 1.000

Guizhou 1.00 1.99 2.8 3.39 2.26 1.000

Yunnan 1.00 2.39 3.2 4.73 1.74 1.000

Tibet 1.19 1.00 2.6 1.53 1.43 0.951

Shaanxi 1.27 2.27 4.0 3.19 2.75 0.925

Gansu 1.04 1.83 3.6 1.80 2.85 0.934

Qinghai 1.36 1.08 2.2 1.35 1.57 0.883

Ningxia 1.41 1.16 2.6 1.00 2.49 1.000

Xinjiang 1.26 1.80 2.0 1.99 1.96 0.795
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affected by the natural hazards and thus have higher vulnerability. As a result, for the same

natural hazards (with the same model inputs), more disaster losses are suffered as com-

pared with other regions. In fact, these regions are the ones typically vulnerable to natural

hazards. For example, the Hainan province suffers from typhoons every year, and the

Yunnan province experienced a severe drought 3 years ago. Generally, these places often

suffer great economic losses due to the disastrous consequences of these events. The four

regions that have the lowest efficiencies are Shanghai (0.438), Beijing (0.463), Jiangsu

(0.561), and Guangdong (0.572). These places are the most economically and socially

developed regions in mainland China and have a greater capacity to invest in disaster

prevention. Even if natural disasters caused great damage to these places, compared to the

huge size of the regional economy, the disaster losses would be relatively modest. As a

consequence, these regions have a low vulnerability to natural hazards. The vulnerability

as explained by the efficiency of DEA model is consistent with the actual vulnerability

situation in China, so this method produces a good analytical result.

3.3 Social factors are the main reason for the vulnerability

Vulnerability to natural hazards has a close relationship with the physical and social envi-

ronments of a region. To determine the key factor that causes vulnerability, a correlation

analysis was carried out in this research. Three indicators were selected as independent

variables in the correlation analysis with the production efficiency of natural disaster losses:

(1) the proportion of primary industry in GDP; (2) per capita GDP; and (3) the dangerousness

index of regional hazards (Table 4). The results show that among the three indicators, the

ratio of the primary industry has a predominant positive correlation with vulnerability. The

reason for this correlation is the high sensitivity of the agricultural sector to the impacts of

natural hazards. Per capita GDP as the representative of regional economic capacity has a

significant negative relationship with vulnerability, because the more developed an area is,

the higher is the level of preventative measures deployed to mitigate the impact of natural

hazards. The danger index of regional hazards does not have a significant correlation with

vulnerability. It is even slightly negatively related to vulnerability, which is contrary to

common sense. This is because some regions in the high natural hazard danger areas may have

low vulnerability due to a strong regional economic capacity, such as Guangdong, Jiangsu,

and Zhejiang provinces, which are the most developed areas of China. These regions suffered

the severest typhoons every year, but the disaster losses are much lower than in the neigh-

boring undeveloped provinces where the degree of typhoon is much lower. In fact, the first

two variables can be taken as representatives of the socioeconomic situation, while the third

variable acts largely as the deputy of the physical factors. We conclude that the social

environment is the main factor affecting regional vulnerability to natural hazards. That is,

disasters are not caused by natural hazards, but by the social systems that make people or

regions vulnerable (Cutter 2010).

Table 4 The correlation analy-
sis of the vulnerability with the
physical and societal environ-
ment indicators

** Correlation is significant at the
0.01 level (2-tailed)

Ratio of the
primary industry

Per
capita
GDP

The danger index of
regional hazards

Pearson
correlation

0.670** -705** -210
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3.4 The classification and mapping for vulnerability

Based on the approach of Pareto ranking proposed above, four production frontiers can be

extracted from the 31 DMUs; the efficient DMUs of each production frontier are listed as

follows (Table 5). According to the order of the production frontier excluded from Pareto

ranking, this paper makes a classification of the 31 DMU units for four levels, which range

from high vulnerability to low vulnerability, and the levels are defined as severe vulner-

ability, high vulnerability, medium vulnerability, and slight vulnerability.

To illustrate the geographic patterns of vulnerability to natural hazards, we created a

map of vulnerability to natural hazards (Fig. 4), which shows the geographic distribution of

Table 5 The result of the vulnerability classification

The DMU units on the production frontier (h = 1)

First ranking Inner Mongolia, Heilongjiang, Jiangxi, Hunan, Hainan, Chongqing, Sichuan, Guizhou,
Yunnan, and Ningxia

Second
ranking

Anhui, Gansu, Henan, Hubei, Jilin, Fujian, Qinghai, Shaanxi, Shanxi, Guangxi, Tibet

Third
ranking

Hubei, Liaoning, Shandong, Tianjin, Xinjiang

Fourth
ranking

Beijing, Shanghai, Zhejiang, Guangdong, Jiangsu

Fig. 4 The geographic pattern of the regional vulnerability to natural hazards of mainland China
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vulnerability in mainland China. Regions with slight vulnerability are concentrated in the

developed eastern coastal areas of China, while regions with severe vulnerability are

mainly located in the central and western areas of China. Most of the regions in the central

and western areas have medium or high vulnerability. Therefore, the overall vulnerability

level of China decreases from west to east. This trend has a close relationship with the

characteristics of the natural environment and the country’s level of development. This

result may provide some useful input to the natural hazards mitigation work of the gov-

ernment. In fact, the Chinese government’s current policies for disaster relief are directly

opposite to what this research has suggested. For disaster relief purposes, provinces in

mainland China are divided into three regional groups: eastern, central, and western.

Provinces in western China, though underdeveloped, receive fewer central government

relief funds compared with provinces in well-developed eastern China. Relief funds dis-

tributed to provinces in central China are at an intermediate level. In fact, the present

Chinese government relief funds mainly consider the total loss, as shown in Table 6.

However, the difference of the direct economic losses among the three major districts is

not significant, but the gap in the relative disaster losses is obvious. The rates of economic

losses in terms of total GDP in the central and the western district are much higher than in

the eastern district. Obviously, the present policy of relief funds is not suitable. Our

research proves this point from the perspective of vulnerability and suggests a totally

different approach than current practice. For future natural hazard prevention planning, the

government should increase the prevention and mitigation input into the central and

western parts in order to improve regional resilience and reduce vulnerability. This would

especially enhance the disaster prevention capacity of regions with severe vulnerability. It

should be emphasized that this is only the holistic perspective for the hazards mitigation

policy. Because the natural hazards tend to operate on much more localized scale, the

typical vulnerable regions of all districts should also be taken as the focal point of the

mitigation work. Additionally, considering that China has a large and critically important

agricultural sector but possesses weak and poorly resilient agricultural infrastructure,

sustained efforts should be made to increase the ability of the agricultural sector to fight

natural hazards.

4 Conclusions

Presently, the most often used metrics for quantitative vulnerability assessment emphasize

identifying suitable vulnerability indicators and constructing an overall vulnerability index

from those indicators. However, these methods have some constraints. Because of the

complexity of vulnerability, which has various tangible and intangible aspects and causes

in different dimensions, involving multiple variables (physical, social, cultural, economic,

institutional, and environmental), different people have different opinions. For instance,

vulnerability as a pre-existing condition and focuses on potential exposure to hazards

(Hewitt et al. 1971; Liverman and O’Brien 1991; Haque and Blair 1992; Alexander 1993),

Table 6 The average economic impact of natural hazards among the three major districts from 2001 to
2008

Eastern district Central district Western district

Direct economic losses (Billion Yuan) 768.53 668.77 576.99

Rate of economic losses to total GDP 0.008 0.017 0.020

130 Nat Hazards (2013) 65:115–134

123



or vulnerability depends on the coping ability of those affected (Anderson and Woodrow

1991; Downing 1991; Watts and Bohle 1993; Clark et al. 1998; Wu et al. 2002), suggesting

that not all individuals and groups exposed to a hazard are equally vulnerable; people

living at the margins, such as those without access to social services or political power, are

more vulnerable than those with better access to resources (Adger and Kelly 1999).

Finally, different composite indices and weighting measurements are proposed to capture

their own favorable qualities. In essence, these deficiencies can be ascribed to the fact that

the mechanism explaining how these factors influence the vulnerability and the associa-

tions amongst them are too complicated and still not clear.

This study proposes a new method of evaluating vulnerability to natural hazards from

different perspectives by using a DEA model. In contrast to previous quantitative vul-

nerability assessments, which emphasize understanding the causes or mechanism of vul-

nerability, this research has assessed vulnerability from the perspective of the ‘‘production

of disaster loss’’ in the natural disaster system. The production efficiency of natural disaster

losses is taken as a reflection of vulnerability, and a new method for classifying vulner-

ability is also proposed. DEA models provide a useful tool, due to its non-parametric

technique and accommodation of more than one output and input measure. In case of this

natural hazards vulnerability assessment, the ability to handle more than one input and

output and without supposing the production function is particularly appealing because the

natural hazards system is complicated with many factors. In fact, the goal for research of

the more often used metrics for the vulnerability assessment is to make a quantitative

assessment based on the understanding of the reasons and mechanism of vulnerability,

which can be seen as a direct method to study vulnerability. The purpose of this paper is to

assess vulnerability from a different perspective, namely taking the mechanism or cause of

vulnerability as a ‘‘black box’’ and finding something which can reflect vulnerability, not

the indicators which cause vulnerability themselves, which can be taken as an indirect

method. Additionally, it is clear that the two methods can supplement each other and help

people to have a deeper understanding of vulnerability.

Based on the DEA model, the vulnerability to natural hazards of China is analyzed; the

results show that the geographic pattern of vulnerability displays a decreasing trend from

western China through central China to eastern China. Compared with the physical context,

social context and in particular economic development have a much greater influence on

regional vulnerability. We have found a negative correlation between the level of vulnera-

bility and regional economic development level. The more economically developed regions

in China have relatively lower vulnerability, since these places have more capacity and

resources to prevent and resist, when natural hazards do happen. In fact, at a macroeconomic

level, low levels of income and GDP are usually key drivers of vulnerability to natural hazards

(Benson and Clay 2000; Mechler 2004). Besides, the structure of regional socioeconomic

systems also has a close relationship with vulnerability; for instance, the proportion of

primary industry in GDP has a significant positive correlation with vulnerability. These

results are relevant to disaster relief policy because they suggest that government should pay

more attention to underdeveloped and major agricultural areas of the country for disaster

prevention and reduction. While it would be of great practical value to analyze how the

vulnerability of different regions change over time, due to the limitations of our data, in this

study we could only make a static assessment of regional vulnerability. Studies identifying

changing vulnerability through time will be pursued in our future research.
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