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Abstract This study aimed to investigate the parameter effects in preparing landslide

susceptibility maps with a data-driven approach and to adapt this approach to analytical

hierarchy process (AHP). For this purpose, at the first stage, landslide inventory of an area

located in the Western Black Sea region of Turkey covering approximately 567 km2 was

prepared, and a total of 101 landslides were mapped. In order to assess the landslide

susceptibility, a total of 13 parameters were considered as the input parameters: slope,

aspect, plan curvature, topographical elevation, vegetation cover index, land use, distance

to drainage, distance to roads, distance to structural elements, distance to ridges, stream

power index, sediment transport capacity index, and wetness index. AHP was selected as

the major assessment methodology since the adapted approach and AHP work in data

pairs. Adapted to AHP, a similarity relation–based approach, namely landslide relation

indicator (LRI) for parameter selection method, was also proposed. AHP and parametric

effect analyses were performed by the proposed approach, and seven landslide suscepti-

bility maps were produced. Among these maps, the best performance was gathered from

the landslide susceptibility map produced by 9 parameter combinations using area under

curve (AUC) approach. For this map, the AUC value was calculated as 0.797, while the

others ranged between 0.686 and 0.771. According to this map, 38.3 % of the study area

was classified as having very low, 8.5 % as low, 15.0 % as moderate, 20.3 % as high, and

17.9 % as very high landslide susceptibility, respectively. Based on the overall assess-

ments, the proposed approach in this study was concluded as objective and applicable and

yielded reasonable results.
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1 Introduction

A natural disaster can be defined as some rapid, instantaneous, or profound impact of the

natural environment upon the socio-economic system (Alexander 1993). In the last dec-

ades, there has been a dramatic increase in loss of lives and properties, as well as injuries

and damages to the environment, as a result of natural disasters. In addition to increase in

population, rapid and unconscious urbanization has also played an important role in these

losses. Turkey, a country ranked among the most affected by natural disasters worldwide,

has frequently witnessed the dreadful consequences of natural disasters such as earth-

quakes, landslides, floods, avalanches, and so on. Of these, landslides are the second

destructive natural disaster in the country and constitute approximately 30 % of the whole

damage. Therefore, it becomes necessary to assess landslides in order to mitigate landslide

consequences by preparing landslide inventory, susceptibility, and hazard or risk maps.

Landslide inventory and susceptibility maps, in particular, are of great importance since

they provide important information for decision makers and planners and constitute the

basic information for hazard and risk maps. In addition, effective utilization of these maps

can considerably reduce damages and losses (Ercanoglu 2005). Although the hazard and

risk concepts are very important, it is not usually possible to obtain required data for

landslide hazard or risk assessment parameters. Thus, in this study, landslide susceptibility

assessment is preferred in a landslide-prone area in Turkey.

Landslide susceptibility is defined as a quantitative or qualitative assessment of the

classification, volume (or area), and spatial distribution of landslides that exist or poten-

tially may occur in an area. Although it is expected that landsliding will occur more

frequently in the most susceptible areas, in the susceptibility analysis, time frame is

explicitly not taken into account (Fell et al. 2008). In other words, landslide susceptibility

analysis involves developing an inventory of landslides that have occurred in the past

together with an assessment of the frequency (annual probability) of the occurrence of

landslides (Cascini 2008). In order to assess landslide susceptibility, there are qualitative

and quantitative methods such as heuristic analysis (geomorphic analysis and qualitative

map combination), knowledge-based analysis (based on a learning process), statistical

analysis (discriminant analysis, factor analysis, logistic regression, and so on), and

deterministic analysis (classical slope stability theory and factor of safety approach) (So-

eters and Van Westen 1996; Fell et al. 2008). In a different study, Ayalew et al. (2005)

categorized these methods into three groups such as semi-qualitative (simple ranking and

rating and analytical hierarchy process), quantitative (bivariate, multivariate statistical

analyses, neural networks and fuzzy approaches), and hybrid methods (index based and

training based). To add another viewpoint, recent developments in geographic information

system (GIS), remote sensing, and computer technologies allowed users to perform

landslide susceptibility assessments in more feasible ways. Nowadays, practically all

research on landslide susceptibility and hazard mapping makes use of digital tools for

handling spatial data such as GIS, global positioning systems (GPS), and remote sensing

(Van Westen et al. 2008). Thus, utilization of the quantitative methods has enormously

increased and has become much more common than the qualitative ones. As for the

landslide susceptibility assessment parameters (i.e., the causal or conditioning factors),

users have a multitude of options to produce different input data layers based on geo-

logical, topographical, land use, and geomorphological features of the area concerned.

Regardless of the assessment method, the input data for landslide susceptibility assessment

should be selected on a basis of causes of actual and past instabilities. However, analysis of

cause–effect relationship is not always simple, as a landslide is seldom linked to a single
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cause (Aleotti and Chowdhury 1999). Therefore, it becomes important to make a selection

of the significant input parameters in landslide susceptibility assessments and modeling to

obtain more reliable results. This selection depends usually upon experience, size of the

area, time, scale, landslide type, methodology to be applied, project budget, data avail-

ability, and reliability (Glade and Crozier 2005). The crucial stage of this process is the

selection of reliable data from what may be available (Aleotti and Chowdhury 1999).

In this study, taking into consideration the above-mentioned issues, the major objectives

for selecting parameters and assessing landslide susceptibility were twofold: firstly,

selecting or ordering the effects of input parameters on landslide occurrences and secondly,

evaluating the landslide susceptibility by Analytical Hierarchy Process (AHP) based on the

first stage. In order to achieve the first objective, the max–min (MM) method, one of the

similarity methods in fuzzy logic (Ross 1995), was considered to represent the input

parameter effects on landslide occurrences. A new index, namely landslide relation indi-

cator (LRI), was proposed for the landslide susceptibility assessments. It depicts the

parameter effect on landslide occurrences and allows users to order the parametric weights.

In addition, the proposed index was adapted to AHP method. By doing so, it was thought

that the subjectivity concept in AHP was alloyed by the proposed methodology in the

present study.

2 Characteristics of the study area

The study area is located in the Western Black Sea region of Turkey (Fig. 1) and is known

as one of the most landslide-prone areas in the country. It encompasses four 1/25,000

quadrangles and covers approximately 567 km2, located in the west of Karabuk City. The

digital elevation model (DEM) was obtained from the 1/25,000 scale topographical maps

provided from the General Command of Mapping of Turkey. The DEM of the study area,

containing 1418975 pixels with 20 m 9 20 m resolution, represents that the topographical

elevations range from 95 m to 1,736 m. Slope angle values vary between 0� and 59�. In the

region, typical Black Sea climate prevails, and annual average rainfall is 518.2 mm (http://

tumas.meteoroloji.gov.tr). The biggest residential location in the study area is the Yenice

District of Karabuk City. There are also small scattered villages such as Döngeller,

Kadıköy, Akmanlar, Keyfaller, and Güney. The main stream is the Yenice River, which

passes through the study area approximately in its east–west direction. There are also

Kelemen, Simsir, Pazarlı, and Güney Rivers, which form a dentritic drainage system in the

study area.

There are eight different lithological units in the study area, ranging from Precambrian

to Quaternary ages (Fig. 2). The oldest lithological units are metagranitoid, marble, and

granite of Precambrian age. These units are covered by massive Jurassic limestones out-

cropped at highly steep slopes (Tuysuz et al. 2004). Jurassic limestones are overlaid by

Lower Cretaceous conglomerates and sandstone–mudstone–limestone alternations. Upper

Cretaceous age unit, known as Ulus formation, comprises of sandstone, claystone, and

siltstone and represents turbiditic flysch character. This unit is very dominant in the Black

Sea region, and its areal extent starts from south of Yenice and goes through in NW

direction toward the Eastern Black Sea region. It is highly susceptible to weathering and

has a weak structure. There is no landslide evidence in the resistant part of this unit (i.e.,

rock materials), while the non-resistant soil parts (i.e., weathering products of rocks) are

highly prone to landslide occurrences, particularly in gentle slopes (Ercanoglu 2005).

Quaternary alluvial deposits (Qal and Qy) are the youngest units and are generally
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Fig. 1 Location map of the study area
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observed along the beds of the rivers and talus of slopes, respectively. Structural elements

in the study area were obtained from the digital map prepared by MTA (2002) in vector

format. However, no data exist regarding the type of structural elements in this map

whether they are faults or folds.

Fig. 2 Geological map of the study area and mapped landslides
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To prepare landslide inventory map, at the first stage, landslide locations were deter-

mined by air photograph interpretations. Then, during the field studies, these locations

were verified and mapped. In addition, landslide inventories of the previous works carried

out in some parts of the study area (e.g., Ercanoglu and Gökçeoglu 2002; Ercanoglu et al.

2004; Can et al. 2005) were also confirmed and updated during the field studies to fulfill

the actual landslide inventory. Totally, 101 landslide locations covering approximately

8.6 % of the study area were mapped based on these studies. Of these, 86 landslides were

classified as rotational earth slides, while 15 landslides were classified as earth flow based

on the landslide classification system proposed by Cruden and Varnes (1996) (Fig. 3). The

largest landslide in the study area covers an area of 1.94 km2, and the smallest one

encompasses 7,655 m2. Based on the information gathered from the local people, most of

the landslides occurred after heavy rainfall and snowmelt events in different periods in the

region. However, it was not possible to obtain much reliable data for each landslide from

the records or people. But, it could be concluded that the main triggering factor of the

landslide events was completely a result of the meteorological peaks.

3 Methodology

The first step in every landslide assessment includes the collection of available information

and data related to the area concerned. Based on the purpose of mapping (i.e., suscepti-

bility, hazard, or risk), these data can be subdivided into four groups such as landslide

inventory data, environmental (causal) factors, triggering factors, and elements at risk (Van

Westen et al. 2008). Of these, landslide inventory and environmental factors such as DEM,

slope angle, aspect, lithology, land use, faults, and hydrological features are essential to

landslide susceptibility mapping. However, there are no universal guidelines for selecting

the parameters that influence landslides in susceptibility mapping (Ayalew et al. 2005).

Thus, establishment of a link between causal parameters and landslides becomes a very

important and a problematic issue.

The users have a lot of options to model landslide susceptibility, taking into consid-

eration different data layers. The number of data layers in landslide susceptibility mapping

may range from only a few parameters (e.g., Corominas et al. 2003; Moreiras 2005) to

several parameters (Yesilnacar and Topal 2005 (17 parameters); Meusburger and Alewell

2008 (15 parameters)). A detailed study regarding the considered causal parameters in

landslide susceptibility modeling was carried out by Hasekiogullari (2010). It was based on

114 scientific studies that were indexed in science citation index (SCI) and published in the

period between 2000 and 2010 in different scientific journals. One of the major goals of

that study was to evaluate the parametric preferences of the researchers when preparing

landslide susceptibility maps. Based on the results of the study carried out by Hasekio-

gullari (2010), slope angle was the most commonly preferred causal parameter among the

scientists. The other considered parameters and their utilization frequencies used in these

studies are shown in Fig. 4. The question herein comes to mind why slope angle, lithology,

aspect, topographical elevation, curvature, land use, and so on are much more preferred

than the other parameters among the scientists. Of course, there is a theoretical background

when selecting these parameters. For example, slope angle is the most important parameter

in gravitational movements, while slope aspect might reflect differences in soil moisture

and vegetation. Similarly, lithology controls the type of movement, and land-use/land-

cover characteristics are one of the main components in stability analyses (Van Westen

et al. 2008). In addition to the theoretical relationships with experience and data
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availability, there are also technical reasons to use some other parameters. For example, if

there is a module, let us say drainage density, in the GIS code used in a study, the user may

want to use this feature as an input parameter in the landslide susceptibility analyses since

the user may think a logical relationship between the drainage density and landslides. The

development of a clear hierarchical methodology in landslide assessments is necessary to

obtain an acceptable cost-benefit ratio and to ensure the practical applicability of the

Fig. 3 Some views from the landslides: a rotational slide; b earth flow; and c typical hummocky
topography for rotational slides
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assessment (Soeters and Van Westen 1996). The scale parameter is also important for these

studies and selecting landslide-related parameters. The working scale for a slope instability

analysis is determined by the requirements of the user for whom the survey is executed.

Although the selection of the scale of analysis is usually determined by the intended

application of mapping results, the choice of a mapping technique remains open. This

choice depends upon type of problem and availability of data, financial resources, and time

for the investigation, as well as the professional experience of those involved in the survey

(Soeters and Van Westen 1996). In this study, 1/25,000 scale maps such as topographical

and land-use maps and their derivatives were used, based on the data at hand and data

availability. Another aspect is that there are no fixed or standard value of weight and rating

for landslide-related features. Furthermore, the determination of the weight and rating

values are very important to landslide susceptibility analyses (Lee et al. 2004). This could

be done by several methods such as statistical analyses (e.g., Ercanoglu et al. 2004; Ayalew

and Yamagishi 2005; Guzzetti et al. 2008; Thiery et al. 2007; Nefeslioglu et al. 2008; Bai

et al. 2009; Nandi and Shakoor 2009; Poudyal et al. 2010; Pradhan and Lee 2010), artificial

intelligence techniques (e.g., Ercanoglu and Gökçeoglu 2002, 2004; Ercanoglu 2005;

Ermini et al. 2005; Gomez and Kavzoglu 2005; Yesilnacar and Topal 2005; Kanungo et al.

2006; Pradhan et al. 2009; Yılmaz 2010), and expert opinion approaches (e.g., Barredo

et al. 2000; Abella and Van Westen 2008; Ercanoglu et al. 2008; Ruff and Czurda 2008).

The users have also a lot of options to produce landslide susceptibility maps using different

methodologies such as artificial intelligence techniques (fuzzy logic, artificial neural net-

works, neurofuzzy), statistical methods (logistic regression, multivariate statistics, etc.),

and combination and/or comparison of these methods. For example, some recent appli-

cations for artificial intelligence techniques can be found in Pradhan (2010a, 2011),

Pradhan and Buchroithner (2010), Bui et al. (2011), Oh and Pradhan (2011), Sezer et al.

(2011), and Akgun et al. (2012). For statistical applications and comparative studies, the

details can be found in Yılmaz (2009, 2010), Pradhan (2010b, c), Pradhan and Pirasteh

(2010), Pradhan et al. (2010a, b), Ercanoglu and Temiz (2011), and Akgun (2012).

Fig. 4 Distribution of the causal parameters considered in landslide susceptibility studies
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This study attempted to evaluate landslide susceptibility by AHP, which can be con-

sidered in the expert opinion approaches. Generally, following steps are essential to per-

form AHP: (1) to break a complex unstructured problem down into its components; (2) to

arrange the factors in a hierarchic order; (3) to assign numerical values to subjective

judgment on the relative importance of each factor; and (4) to analyze the judgments to

determine priorities to be assigned to these factors (Saaty and Vargas 2001). Perhaps, the

most discussed step in this approach is the third step since it contains subjectivity with its

general form. Although subjectivity is not necessarily bad when it is based on an expert

opinion (Van Westen 2000), a new index, namely LRI, was adapted to overcome this

problematic issue with this study. It is based on the ‘‘max–min’’ (MM) method, one of the

similarity methods in fuzzy logic (Ross 1995). Similar to AHP, the MM method works on

establishing relationships between elements of two or more data sets and operates on pairs

of the data points. Although the name sounds similar to the fuzzy ‘‘max–min composition’’

method (Ercanoglu and Gökçeoglu 2004), it is different from the fuzzy composition

operation. The MM method is expressed in the following equation:

rij ¼
Pm

k¼1 minðxik; xjkÞPm
k¼1 max(xik; xjkÞ

i; j ¼ 1; 2; . . .; n ð1Þ

where rij is the similarity relation value, xik and xjk are the members of the different data

sets, and min and max are the minimum and the maximum values of the two data sets,

respectively. Close values of rij to 1 indicate the similarity of the two data sets, while close

values of rij to 0 show dissimilarity. The proposed LRI is based on the calculation of two

different rij values, depicting the parameter effect on landslide occurrences by considering

the parameters and landslide locations. It also allows users to order parameters based on

the calculated LRI values, particularly for selecting the effective parameter combinations

in the landslide susceptibility analyses. It is expressed in the following equation:

LRI ¼
X

rijðPRÞ � rijðLSÞ ð2Þ

where rij(PR) is the total calculated rij values of all the considered parameters with each

other, rij(LS) is the rij value of any parameter with landslide locations, and LRI is the

landslide relation indicator.

In order to calculate the LRI values for each parameter, 13 input parameter maps were

prepared from different data sources (Table 1). As it is clear from Table 1, lithology

parameter was not considered in the analyses. The main reason was that the mapped

landslides were only located in the Upper Cretaceous flysch unit in the study area (see

Fig. 2). Those parameters were almost compatible with the ‘‘top parameters’’ given in

Fig. 4, frequently used in landslide susceptibility analyses. However, it should be noted

that these parameters were gathered by the data availability and possibilities at hand in this

study. Then, all vector-type parametric data were converted to raster files including the

landslide inventory. Frequency ratio (FR) model proposed by Lee and Talib (2005) was

used to associate these parameter maps with landslide locations. FR is the ratio of where

landslides occurred in the total study area and also is the ratio of the probability of a

landslide occurrence to a non-occurrence for a given attribute (Lee and Talib 2005). FR for

each parameter was calculated in the GIS environment, considering randomly selected

70 % of overall data for modeling and 30 % for validation stages, respectively.

The calculated FR values were tabulated in Table 2. Also, these values were normalized

(NFR) to express landslide susceptibility in [0, 1] interval, and the NFR values were

assigned to the input parameter maps (Fig. 5). The next stage was to evaluate the LRI
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Table 2 Distribution of parameter subgroups in landslide locations and in the study area

Parameter LSA (%) Grid (%) FR NFR

Land use (LUS)

Forest 13.33 60.34 0.22 0.10

Barren land 2.89 1.42 2.04 0.93

Water 0.00 0.01 0.00 0.00

Agriculture 83.78 38.23 2.19 1.00

Aspect (ASP)

Flat 0.00 0.71 0.00 0.00

N 12.62 11.97 1.05 0.81

NE 13.45 12.84 1.05 0.81

E 13.13 12.16 1.08 0.83

SE 14.12 10.87 1.30 1.00

S 16.08 12.55 1.28 0.99

SW 13.03 13.72 0.95 0.73

W 9.94 13.90 0.71 0.55

NW 7.63 11.28 0.68 0.52

Plan curvature (PLC)

PLC B -2 0.00 0.01 0.00 0.00

-2 \ PLC B -1 0.60 1.04 0.58 0.52

-1 \ PLC B 0 48.24 43.77 1.10 1.00

0 \ PL B 1 50.93 54.49 0.93 0.85

1 \ PLC B 2 0.22 0.69 0.31 0.28

2 \ PLC 0.00 0.02 0.00 0.00

Distance to stream(m) (DTS)

DTS B 250 22.57 19.91 1.13 1.00

250 \ DTS B 500 24.60 22.06 1.12 0.98

500 \ DTS B 750 21.04 19.49 1.08 0.95

750 \ DTS B 1,000 17.58 15.87 1.11 0.98

1,000 \ DTS B 1,250 14.21 18.91 0.75 0.66

1,250 \ DTS 0.00 3.76 0.00 0.00

Normalized difference vegetation index (NDVI)

NDVI B -0.1 0.00 0.04 0.00 0.00

-0.1 \ NDVI B 0 0.06 0.16 0.37 0.18

0 \ NDVI B 0.1 1.58 1.27 1.24 0.62

0.1 \ NDVI B 0.2 9.05 4.87 1.86 0.93

0.2 \ NDVI B 0.3 20.51 10.30 1.99 1.00

0.3 \ NDVI B 0.4 24.84 13.29 1.87 0.94

0.4 \ NDVI B 0.5 22.03 14.36 1.53 0.77

0.5 \ NDVI B 0.6 15.09 25.44 0.59 0.30

0.6 \ NDVI B 0.7 6.75 29.62 0.23 0.11

0.7 \ NDVI 0.09 0.65 0.13 0.07

Slope angle (�) (SLP)

SLP B 10 5.22 8.42 0.62 0.46

10 \ SLP B 20 60.34 44.92 1.34 1.00

Nat Hazards (2012) 63:1157–1179 1167

123



Table 2 continued

Parameter LSA (%) Grid (%) FR NFR

20 \ SLP B 30 32.26 37.39 0.86 0.64

30 \ SLP B 40 2.17 8.99 0.24 0.18

40 \ SLP B 50 0.01 0.28 0.03 0.02

50 \ SLP 0.00 0.00 0.00 0.00

Topographical elevation (m) (TEL)

TEL B 250 4.56 5.28 6.32 3.79

250 \ TEL B 500 56.13 33.60 12.25 7.33

500 \ TEL B 750 38.65 38.97 7.27 4.35

750 \ TEL B 1,000 0.59 12.69 0.34 0.20

1,000 \ TEL B 1,250 0.07 7.48 0.07 0.04

1,250 \ TEL B 1,500 0.00 1.82 0.00 0.00

1,500 \ TEL 0.00 0.16 0.00 0.00

Wetness index (WIN)

WIN B 3 0.00 0.00 0.00 0.00

3 \ WIN B 6 36.71 52.90 0.69 0.48

6 \ WIN B 9 56.89 42.55 1.34 0.92

9 \ WIN B 12 5.74 3.93 1.46 1.00

12 \ WIN 0.66 0.62 1.07 0.73

Stream power index (SPI)

0 B SPI B 200 49.91 58.93 0.85 0.50

200 \ SPI B 400 40.57 34.39 1.18 0.70

400 \ SPI B 600 7.20 4.56 1.58 0.94

600 \ SPI B 800 2.32 1.38 1.68 1.00

800 \ SPI 0.00 0.74 0.00 0.00

Sediment transport capacity index (STC)

0 B STC B 25 65.18 67.55 0.96 0.46

25 \ STC B 50 24.96 23.75 1.05 0.50

50 \ STC B 100 7.04 6.22 1.13 0.54

100 \ STC B 150 2.82 1.34 2.11 1.00

150 \ STC 0.00 1.14 0.00 0.00

Distance to ridges (m) (DTRI)

0 \ DTRI B 500 95.11 94.84 1.00 0.92

500 \ DTRI B 1000 4.71 4.35 1.08 1.00

1,000 \ DTRI B 1,500 0.18 0.70 0.25 0.23

1,500 \ DTRI 0.00 0.11 0.00 0.00

Distance to roads (m) (DTR)

0 \ DTR B 250 32.04 22.04 1.45 0.88

250 \ DTR B 500 26.88 16.28 1.65 1.00

500 \ DTR B 750 18.44 11.71 1.57 0.95

750 \ DTR B 1,000 11.56 8.69 1.33 0.81

1,000 \ DTR B 1,250 11.08 31.23 0.35 0.21

1,250 \ DTR 0.00 10.05 0.00 0.00
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values of the input parameters. Thus, all input parameter and landslide inventory maps

(including 0 for non-landslide and 1 for landslide locations) were converted to the data files

(‘‘*.dat’’). To perform these analyses and to calculate LRI values for each parameter, a

computer code, ‘‘LRI. bas’’, was written using the Q-Basic programming language. The

work-flow diagram was given in Fig. 6. In order to calculate LRI value, two rij values such

as rij(PR) and rij(LS) are needed, as stated in Eq. 2. The first one (i.e., rij(PR)) defines the

landslide susceptibility relationship between the parameter pairs, while the second one

(i.e., rij(LS)) reflects the relationship between the considered parameter and landslide

locations. This was needed because of the fact that two parameters could be compatible

with each other but could not be consistent with the landslide locations, or vice versa.

Thus, rij(PR) and rij(LS) values were calculated separately using ‘‘LRI.bas’’ and are given in

Table 3. As can be seen from Table 3, the highest LRI value was obtained from slope

angle (SLP) parameter as 2.716, and its order was the first. This means that the slope angle

(SLP) and distance to streams (DTS) are the first two effective parameters on landslide

occurrences in the study area, while the distance to ridges (DTRI) parameter has the lowest

effect based on the LRI values. Thus, evaluation of the relative importance of the con-

sidered parameters with respect to the LRI values allowed selecting in which order the

considered parameters contributed to landslide occurrences objectively.

In order to produce landslide susceptibility maps, AHP method was chosen since it

considers parameter pairs similar to the LRI approach explained above. It is a multicriteria

decision-making process using the relative importance of the parameters contributing to

the event to produce parameter weights and evaluates the consistency of pairwise com-

parison parameter (Barredo et al. 2000). To date, AHP was successfully applied in many

studies (e.g., Ayalew et al. 2005; Komac 2006; Yalçin and Bulut 2007; Akgün et al. 2008;

Ercanoglu et al. 2008; Yalçin 2008; Wang et al. 2009; Akgün and Türk 2010; Huang et al.

2010). Generally, an expert rates the considered parameters based on a scale proposed by

Saaty (1977) (Table 4). Pairwise importance of the parameters for an event is assessed by

an expert, based on the values given in Table 4. These values are placed in an ‘‘n 9 n’’

matrix (n: the number of parameters) in the form of rows-to-columns order. To perform

AHP analyses, WEIGHT and Multi-Criteria/Multi-Objective Decision Wizard (MCE)

modules of Idrisi Taiga were used. The first module develops a set of relative weights for a

group of parameters in a multicriteria evaluation. The weights generated by this module are

produced by means of the principal eigenvector of the pairwise comparison matrix

(Eastman 2009). This module also calculates the consistency ratio (CR), which shows the

considered weights consistent or not. CR values less than 0.1 indicate a good consistency,

Table 2 continued

Parameter LSA (%) Grid (%) FR NFR

Distance to structural elements (m) (DSE)

0 \ DSE B 250 11.74 18.33 0.64 0.30

250 \ DSE B 500 17.19 19.03 0.90 0.42

500 \ DSE B 750 17.90 17.28 1.04 0.48

750 \ DSE B 1,000 17.79 14.57 1.22 0.56

1,000 \ DSE B 1,250 35.38 16.35 2.16 1.00

1,250 \ DSE 0.00 14.44 0.00 0.00

LSA landslide-affected grid percentage; Grid (%) percentage of grids in domain, FR frequency ratio, NFR
normalized frequency ratio
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while CR value exceeding 0.1 shows an inconsistent matrix and should be reevaluated. The

MCE module provides a process in which multiple layers are aggregated to yield a single

output map. It has three different procedures such as Boolean intersection, order weighted

average (OWA), and weighted linear combination (WLC). Of these, the WLC was chosen

to produce landslide susceptibility maps. It is a procedure of multiplying each factor by its

factor weight and adding the results (Eastman 2009).

Fig. 5 Considered input parameters: a slope; b aspect; c plan curvature; d topographical elevation;
e NDVI; f land use; g distance to streams; h distance to roads; i distance to structural elements; j distance to
ridges; k stream power index; l sediment transport capacity index; and m wetness index

1170 Nat Hazards (2012) 63:1157–1179

123



In this study, instead of using an expert opinion to fulfill the parametric pairwise

matrices, we made use of the calculated rij(PR) and LRI values. This procedure allowed

using a data-driven approach when assigning the parametric pairwise values. In order to

achieve this, rij(PR) values ranging in [0, 1] interval were adapted to the scale provided by

Saaty (1977) (Table 5). The main idea herein is to build a logical connection between

Fig. 6 Flowchart of the ‘‘LRI.bas’’ computer code

Table 3 LRI, rij(PR), and rij(LS) values of the considered parameters

Parameter
P

rij (PR) rij (LS) LRI Order

Land use 6.061 0.266 1.612 9

Distance to roads 7.491 0.143 1.071 12

NDVI 9.143 0.232 2.121 3

Topographical elevation 7.402 0.248 1.836 4

Slope angle 9.914 0.274 2.716 1

Distance to ridges 6.963 0.087 0.606 13

Wetness index 8.131 0.199 1.618 8

Plan curvature 8.122 0.212 1.722 5

Sediment transport capacity index 7.196 0.157 1.129 11

Distance to streams 8.112 0.269 2.182 2

Aspect 8.152 0.209 1.663 6

Stream power index 7.992 0.205 1.638 7

Distance to structural elements 7.351 0.165 1.213 10
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rij(PR) and relative importance values. This is realized by considering the relationship

between the two parameter pairs with low rij(PR) values (e.g., 0 B rij(PR) B 0.2) should

have the highest intensity of importance (e.g., 9 or 1/9 in the AHP scale) since one of the

parameters dominates the landslide process and has absolute effect on landslide occurrence

than the other one. Similarly, if the two parameters have almost the same effect (i.e.,

together contributing or not) on landslide occurrence or non-occurrence, rij(PR) value

between the two parameters must be high and has almost equal importance on the event

(e.g., 1 in the AHP scale).

Given the above-mentioned issues, intensity of importance values among the parameter

pairs were filled out in the matrices with the corresponding rij(PR) values in Table 5. An

example of a completed matrix with nine input parameters (selected by the orders given in

Table 3) is given in Table 6. It should be noted that the intensity of importance values may

be fractional or integer (ranging from 1/9 to 9) based on the location of parameter either in

row or in column. For example, if the rij(PR) value was calculated as 0.725 between the SLP

and ASP parameters, the intensity of importance value would be 3 or 1/3 based on the

values tabulated in Table 5. In this condition, the user could make a decision according to

the LRI values of the considered parameters (LRISLP: 2.716; LRIASP: 1.663). If the SLP is

in the row location and the ASP is in the column location (as in the case in Table 6), the

importance value will be 3 since the SLP has higher effect on landslide occurrence due to

Table 4 Scale of relative importance between parameter pairs suggested by Saaty (1977)

Intensity of
importance

Definition Explanation

1 Equal importance Two activities contribute equally to objective

3 Weak importance of one over
another

Experience and judgment slightly favor one activity
over another

5 Essential or strong importance Experience and judgment strongly favor one activity
over another

7 Demonstrated importance An activity is strongly favored and its dominance
demonstrated in practice

9 Absolute importance The evidence favoring one activity over another is the
highest possible order of affirmation

2, 4, 6, 8 Intermediate values between the
two adjacent judgments

When compromise is needed

Table 5 rij(PR) values corre-
sponding the relative importance
values in AHP

a If the
rij(LS)Parameter1 [ rij(LS)Parameter2

b If the
rij(LS)Parameter1 \ rij(LS)Parameter2

rij(PR) Intensity of
importancea

Intensity of
importanceb

0 B rij(PR) B 0.2 9 1/9

0.2 \ rij(PR) B 0.3 8 1/8

0.3 \ rij(PR) B 0.4 7 1/7

0.4 \ rij(PR) B 0.5 6 1/6

0.5 \ rij(PR) B 0.6 5 1/5

0.6 \ rij(PR) B 0.7 4 1/4

0.7 \ rij(PR) B 0.8 3 1/3

0.8 \ rij(PR) B 0.9 2 1/2

0.9 \ rij(PR) B 1.0 1 1
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its higher LRI value. In contrast, if the ASP had been located in the row and the SLP had

been located in the column of the matrix, the importance value would have been 1/3

(reciprocal value in the matrix) because of LRISLP: 2.716 [ LRIASP: 1.663. Eventually,

taking into consideration these assignments, a total of 11 matrices starting from first 3

parameters (SLP, DTS, and NDVI) with the highest LRI values to 13 parameter combi-

nations (i.e., all parameters) were prepared. In other words, there were 11 different

landslide susceptibility maps to be produced. Of these, three landslide susceptibility maps

were shown in Fig. 7 in order to save space. Based on the CR values, except for 4

parameter combinations of 10, 11, 12, and 13, the CR values of 3–9 parameter combi-

nations were obtained below 0.1. In other words, the parameter combinations ranging from

3 to 9 indicated the compatibility, while the others were not acceptable because of their CR

values (Fig. 8). Thus, the maps produced by 10–13 parameters were not taken into con-

sideration for the validation process. In addition, calculated weights for each parameter

combinations were also shown in Fig. 8.

4 Results and validation

In the present study, landslide susceptibility was assessed in a landslide-prone area cov-

ering approximately 567 km2 in the Western Black Sea region of Turkey. A total of 101

Table 6 Comparison matrix for the nine parameters

LUS ASP PLC DTS NDVI SLP TEL WIN SPI

LUS 1

ASP 1/2 1

PLC 1/2 1 1

DTS 3 3 3 1

NDVI 1/2 4 2 1/2 1

SLP 4 3 4 2 3 1

TEL 1/2 2 2 1/3 1/2 1/3 1

WIN 1/2 2 1 1/2 1/2 1/4 1/2 1

SPI 1/3 1/2 1/2 1/3 1/2 1/4 1/2 1 1

Fig. 7 Landslide susceptibility maps produced by: a 3 parameters; b 6 parameters; and c 9 parameters
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landslides were mapped in the study area. In order to assess landslide susceptibility,

basically, AHP model was considered. As mentioned before, 13 different parameter maps

were used to produce landslide susceptibility maps. A total of 11 landslide susceptibility

maps were produced for the study area using different parameter combinations, based on

LRI concept and AHP. Of these, four landslide susceptibility maps were omitted because

of the limitation related to CR values explained in the previous chapter. For these sus-

ceptibility maps, different susceptibility levels were obtained. In order to express spatial

distribution or variability of landslide susceptibility, there are several ways such as

quantiles, natural breaks, equal intervals, and standard deviations (Ayalew and Yamagishi

2005; Pradhan and Lee 2010). In this study, equal area division approach was followed to

represent spatial variations in landslide susceptibility values varying from ‘‘very low’’ to

‘‘very high’’, dividing the [0, 1] interval by five classes with a unit of 0.2 increment. For all

considered landslide susceptibility maps, spatial distributions of susceptibility levels are

given in Table 7.

In order to validate the produced landslide susceptibility maps, Relative Operating

Characteristics (ROC) module of Idrisi Taiga was applied using the validation data. This

module evaluates the validity of a model that predicts the location of the occurrence of a

class by comparing a suitability image depicting the likelihood of that class (i.e., the input

image) and a Boolean image showing where that class actually exists (i.e., the reference

image) (Eastman 2009). The module calculates the area under curve (AUC) value with the

defined threshold (selected as 100 in the analyses). The value of 1 indicates that there is a

perfect spatial agreement between the reference image and the input image, while the value

of 0.5 is the agreement that would be expected due to chance. The ROC module also

produces the true-positive (TP) % and false-positive (FP) % values for each threshold that

constitute the curve from which the AUC is calculated. Based on the module results

Fig. 8 CR values’ parametric weights of the AHP models
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(Table 7), the best performance was gathered from the 9-parameter-combination landslide

susceptibility map with the AUC value of 79.7 % (Fig. 9) using the validation data.

5 Conclusions and discussion

AHP model is conventionally based on a rating system provided by expert opinion. In fact,

expert opinion is very useful in solving complex problems like landslides. However, to

some extent, opinions may change for every individual expert and thus may be subjected to

cognitive limitations with uncertainty and subjectivity. Another aspect is that data-driven

methods are also powerful in landslide susceptibility mapping and contain less subjectivity.

In order to minimize these drawbacks both in selecting parameters and in applying

methodology, LRI, a new index, was proposed in this study. The LRI is applicable in any

landslide susceptibility assessment method and allows users to order parametric impor-

tance before the landslide susceptibility analyses application. It is based on two similarity

relation values depicting parametric relationships (by parametric pairwises) on landslide

occurrences and landslide locations individually (by each parameter and landslide loca-

tions). The first one defines the landslide susceptibility relationships between the parameter

Table 7 Areal coverages of landslide susceptibility for the maps and AUC values of the AHP models

AHP models Areal coverages of landslide susceptibility levels (%) AUC (%)

Very low Low Moderate High Very high

3 Parameters 37.5 1.7 10.6 25.9 24.3 68.6

4 Parameters 38.0 2.1 11.3 25.6 23.0 70.2

5 Parameters 38.1 3.7 19.9 26.0 12.3 71.9

6 Parameters 38.4 2.6 7.4 28.9 22.7 73.4

7 Parameters 38.2 2.5 8.0 31.2 20.1 75.3

8 Parameters 39.2 9.7 15.4 17.0 18.7 77.1

9 Parameters 38.3 8.5 15.0 20.3 17.9 79.7

Fig. 9 Performance of the landslide susceptibility map produced by 9 parameters
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pairs, while the second one reflects the relationship between the parameters and landslide

locations. The main idea in the proposed approach is to reflect the parameter effects on

landslide occurrences, considering the landslide system as a whole. In other words, two

considered parameters could be compatible with each other on landslide locations but

could not be consistent with landslide locations, or vice versa. For example, LUS (land use)

parameter has the ninth order with respect to LRI values in the whole system. However, it

is in the third order if only the landslide locations were considered. This means that LUS

parameter is compatible with the mapped landslide locations, while it is not in accordance

with the other parameters contributing the landslide system since most of the landslides

occur only in agricultural lands (83.78 % of the landslide locations). Based on the LRI

calculations, the parameter effects on landslide occurrences in order were the slope angle,

distance to streams, NDVI, topographical elevation, plan curvature, aspect, stream power

index, wetness index, land use, distance to structural elements, sediment transport capacity

index, distance to roads, and distance to ridges, respectively. Taking into consideration this

parametric order, different parameter combinations ranging from 3 to 13, a total of 11 AHP

assessments were performed. Based on the CR values, 7 landslide susceptibility maps were

produced since CR values of 10-11-12-13 parameter combinations were greater than 0.1.

Of these, landslide susceptibility map produced by 9 parameter combinations showed the

best performance with AUC value of 0.797 and was considered as satisfactory.

The difficulty in obtaining data and the issue of selecting independent data to analyze,

that is, the parameters that are thought to be causally related, remain challenges in

implementing more data-based approaches (Akgun 2012). Although the AHP method is

fundamentally based on expert opinion, it is thought that the selection of parameters on

landslide occurrences by LRI approach alloys the subjectivity concept in this method.

Furthermore, LRI approach can be used in any landslide susceptibility assessment what-

ever the methodology is conducted. However, it should be noted that the reliability of the

results is directly affected by the landslide location data, that is, the landslide inventory

map. Research results will be helpful in developing new regulations on territory protection

and facilities as well as land management purposes for local administrations, decision

makers, and planners.
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