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Abstract The landslide studies can be categorized as pre- and postdisaster studies. The

predisaster studies include spatial prediction of potential landslide zones known as land-

slide susceptibility zonation (LSZ) mapping to identify the areas/locales susceptible to

landslide hazard. The LSZ maps provide an assessment of the safety of existing habitations

and infrastructural/functional elements and help plan further developmental activities in

the hilly regions. Landslides are one of the natural geohazards that affect at least 15% of

land area of India. Different types of landslides occur frequently in geodynamical active

domains of the Himalayas. In India, various techniques have been developed and adopted

for LSZ mapping of different regions. However, the technique for LSZ mapping is not yet

standardized. The present research is an attempt in this direction only. In our earlier work

(Kanungo et al. 2006), a detailed study on conventional, artificial neural network (ANN)-

black box-, fuzzy set-based and combined neural and fuzzy weighting techniques for LSZ

mapping in Darjeeling Himalayas has been documented. In this paper, other techniques

such as combined neural and certainty factor concept along with combined neural and

likelihood ratio techniques have been assessed in comparison with combined neural and

fuzzy technique for the preparation of LSZ maps of the same study area in parts of

Darjeeling Himalayas. It is observed from the present study that the LSZ map produced

using combined neural and fuzzy approach appears to be the most accurate one as in this

case only 2.3% of the total area is found to be categorized as very high susceptibility zone

and contains 30.1% of the existing landslide area. This approach can serve as one of the

key objective approaches for spatial prediction of landslide hazards in hilly terrain.

Keywords Landslide susceptibility zonation � ANN � Fuzzy � Certainty factor �
Likelihood ratio � Success rate

D. P. Kanungo (&) � S. Sarkar � S. Sharma
Geotechnical Engineering Division, CSIR-Central Building Research Institute, Roorkee, India
e-mail: debi.kanungo@gmail.com

S. Sarkar
e-mail: shantanu_cbri@yahoo.co.in

S. Sharma
e-mail: shaifalysharma1@gmail.com

123

Nat Hazards (2011) 59:1491–1512
DOI 10.1007/s11069-011-9847-z



1 Introduction

Disasters caused by landslides are common in mountainous regions such as the Himalayas.

Landslides are one of the most widespread and damaging natural hazards in the hilly

regions of India. The landslide incidences in a region have been of serious concern to the

society due to the loss of life, natural resources, infrastructural facilities, and also posing

problem for future urban development. The landslide disaster situation is further com-

pounded by increased vulnerabilities related to rapidly growing population, unplanned

urbanization, fast-paced industrialization, rapid development in high-risk areas, environ-

mental degradation, and climatic change. These are the reasons for which the study of

landslides has drawn global attention. It is further observed that the impact of landslide

disaster is felt more severely by socio-economically weaker sections of the people because

their habitats in vulnerable areas are not designed to withstand the impact of such a

disaster. Hence, landslide hazard studies are essential for an assessment of the safety of

existing habitations and infrastructural/functional elements and can help safer strategic

plans for further development activities in the hilly regions.

Landslide susceptibility zonation (LSZ) studies in the Himalayas have conventionally

been carried out based on the manual interpretation of a variety of thematic maps and their

superimposition (Anbalagan 1992; Pachauri and Pant 1992; Gupta et al. 1993; Sarkar et al.

1995; Mehrotra et al. 1996; Virdi et al. 1997). However, this approach is time consuming,

laborious, and uneconomical with data collected over long time intervals. In recent times,

due to the availability of a wide range of remote sensing data together with the data from

other sources in digital form and their analysis using Geographic Information System

(GIS), it has now become easy to prepare different thematic layers corresponding to the

causative factors that are responsible for the occurrence of landslides (Gupta and Joshi

1990; van Westen 1994; Nagarajan et al. 1998; Gupta 2003). The integration of these

thematic layers with weights assigned according to their relative importance in a GIS

environment leads to the generation of an LSZ map (Gupta et al. 1999; Saha et al. 2002,

2005; Sarkar and Kanungo 2004). However, in the studies cited above, the weights were

assigned on the basis of the experience of the experts about the subject and the area. The

weighting system in this condition is thus highly subjective and might therefore contain

some implicit biases toward the assumptions made.

For minimizing the subjectivity and bias in the weight assignment process, quantitative

methods such as statistical analysis, deterministic analysis, probabilistic models, distri-

bution-free approaches, and landslide frequency analysis may be utilized. During the last

5 years, bivariate statistical models (e.g., Lin and Tung 2003; He et al. 2003; Suzen and

Doyuran 2004; Saha et al. 2005), multivariate methods (e.g., Dhakal et al. 2000; Clerici

et al. 2002), and probabilistic prediction models (e.g., Lee et al. 2002a, b; Chi et al. 2002a;

Lan et al. 2004) have been implemented for LSZ studies. Apart from these methods, some

work on distribution-free approaches such as fuzzy set-based methods (Chi et al. 2002b;

Gorsevski et al. 2003; Tangestani 2003; Metternicht and Gonzalez 2005; Ercanoglu and

Gokceoglu 2004), artificial neural network (ANN) models (Arora et al. 2004; Gomez and

Kavzoglu 2005; Yesilnacar and Topal 2005), and neuro-fuzzy models (Elias and Bandis

2000; Lee et al. 2004; Kanungo et al. 2006) have recently been attempted for LSZ studies.

In the present study, an attempt has been made to implement an objective (quantitative)

technique for landslide hazard zonation mapping in the selected area of Darjeeling

Himalayas.

1492 Nat Hazards (2011) 59:1491–1512

123



2 Study area and data

The landslide incidences in Darjeeling Himalaya (parts of West Bengal State in India) have

been of serious concern to the preservation of natural landscape of the area, maintenance of

infrastructural facilities, and future urban development. Therefore, an area in the Darjee-

ling Himalaya, which covers a part of Darjeeling district, has been selected for this study.

This study focused on Darjeeling hill, which lies within the latitudes 26�560–27�80N and

longitudes 88�100–88�250E and covers an area of about 254 km2 (Fig. 1). The main

localities are Darjeeling, Sonada, and Sukhiapokhri. Darjeeling is located almost at the

center of the study area. The Darjeeling Himalaya lies within the Lesser and Sub-Hima-

layan belts. The valleys of Darjeeling hills are mainly drained by the Tista River and its

tributaries. The southerly flowing Tista River is on the eastern side of the study area, but

not falling within it. The hill portion is like a labyrinth of ridge and narrow valleys. Most of

the ridges are forest clad, and in the lower slopes, tea plantation and crop cultivation are

done. The main land use practice in the study area is tea plantation. The agriculture lands

are mostly present around the habited areas. The area is dominated by thick forest

particularly in the eastern part.

Data from different sources such as (a) remote sensing images from IRS-1C LISS-III

multi-spectral (acquired on March 22, 2000) and IRS-1D-PAN (acquired on April 3, 2000);

(b) Survey of India (SOI) topographic maps at 1:50,000 scale and 1:25,000 scale;

(c) published geological map; and (d) extensive field data on landslides and land use/land

cover have been collected to generate various thematic data layers.

The digital elevation model (DEM), which is an excellent source to derive topographic

attributes responsible for the landslide activity in the region, was generated by digitization

of contours on SOI topographic maps. The slope and aspect data layers were derived from

the DEM. The lithology data layer pertaining different rock types was derived from the

published geological map of Sikkim–Darjeeling area. The varied composition and structure
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of different rock types contribute to the strength of the material and in turn contribute to the

slope instability. Lineaments were interpreted from the PAN and LISS-III images. There is

no major thrust/fault reported in the study area, but major lineaments were identified. A

distance buffer map was generated to deduce the influence of lineaments on the occurrence

of landslide. Many landslides in hilly areas occur due to the erosional activity associated

with drainage. Therefore, a drainage data layer was prepared using the topographic maps

and LISS-III image. A distance buffer map with 25 m buffer zone around 1st and 2nd order

drainages only was generated for further analysis. Land use land cover is also a key factor

to be considered in landslide studies, as the incidence of landslide is inversely related to the

vegetation density. The four spectral bands of LISS-III image, DEM, and Normalized

Difference Vegetation Index (NDVI) image were digitally analyzed to prepare a land use

land cover map by a multisource classification process using the most widely adopted

maximum likelihood classifier. The mapping of existing landslides is essential to study the

relationship between the actual landslide distribution in the area and the causative factors.

High spatial resolution IRS-1C-PAN and PAN-sharpened LISS-III images were used to

produce an existing landslide distribution map, which was verified from field surveys. A

total of 101 landslides showing areas occupied by sliding activity were identified. The

majority of landslides have areal extent of 500–2,000 m2. Most of the observed landslides

fall in the category of rockslides. However, at some places, complex types of failure were

also observed.

These thematic data layers pertaining to causative factors for landslide occurrence form

the input layers for spatial modeling of landslide potential zones. The detailed description

of these is already available in Kanungo et al. (2009).

3 Methodology

In this study, spatial modeling of potential landslides (popularly known as landslide sus-

ceptibility zonation mapping) has been carried out using varied importance of causative

factors (i.e., weight) and their categories (i.e., rating) for landslide occurrences under the

domain of GIS. The weights for different causative factors have been determined using

ANN approach, and the ratings for different categories within each factor have been

determined using certainty factor, likelihood ratio, and fuzzy similarity concepts. Then, by

combining the ANN-derived weights with the ratings derived from each of the above

mentioned approaches, landslide susceptibility maps for the study area have been prepared.

A comparative evaluation of these LSZ maps has also been carried out. The overall

methodology of the present research is given in Fig. 2. The methodologies for weight and

rating determination are described below.

3.1 Weight determination using ANN approach

The ANN architectures with one input layer, two hidden layers, and one output layer have

been considered. The input layer contains six neurons corresponding to six different

causative factors, and the output layer contains a single neuron corresponding to the

presence or absence of existing landslide. Three independent training, testing, and vali-

dation datasets are formed. Each dataset consists of 226 mutually exclusive pixels, which

correspond to 113 existing landslide pixels and remaining 113 landslide-free pixels. The

pixels in all the three datasets were mutually exclusive. The validation dataset has been

used to control the overtraining/overfitting of the networks.
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Data from input neurons are processed through hidden neurons to generate an output in

the output neuron. In this process, a feed-forward multilayer network is generally used.

Generally, the input that a single neuron j in the 1st hidden layer (HA) receives from the

neurons (i) in its preceding input layer (I) can be expressed as:

netj ¼
Xt

i¼1

cijpi ð1Þ

where cij represents the connection weight between input neuron i and hidden neuron j, pi

is the output from the input neuron i, and t is the number of input neurons (i.e., six different

thematic data layers in the present case). The output value produced by the hidden neuron

j, pj, is the transfer function, f, evaluated as the sum produced within neuron j, netj. Hence,

the transfer function f can be expressed as:
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pj ¼ f ðnetjÞ ð2Þ

The function f is usually a nonlinear function that is applied to the weighted sum of the

inputs, and then, the combined effect proceeds to the next layer. Any differentiable non-

linear function can be used as a transfer function, but a sigmoid function is generally used

(Schalkoff 1997). The sigmoid function constrains the outputs of a network between 0 and

1. As in this case of LSZ mapping, the desired output (do) is represented by the presence/

absence (1 or 0) of landslides the sigmoid transfer function has been used for input-hidden,

hidden-hidden, and hidden-output layers. The sigmoid function in case of LSZ mapping

can be expressed as:

pj ¼ f ðnetjÞ ¼
1

1þ e�netj
ð3Þ

In this feed-forward process of neural network, the network output value for the output

neuron o, po is obtained. The error is calculated as the difference between the desired

output (do) and the network output (po). The error function, e, is a measure of network’s

performance for the processing elements in the output layer and can be expressed as

follows:

e ¼ 0:5
Xs

o¼1

ðdo � poÞ2 ð4Þ

where do is the desired output vector, po is the network output vector, and s is the number

of training samples (Arora et al. 2004).

The error gets backpropagated through the neural network and is minimized by

changing the connection weights between neurons of different layers. This can be executed

through a number of learning algorithms based on backpropagation learning (Ripley 1996;

Haykin 1999; Zhou 1999; Arora et al. 2004; Lee et al. 2004; Gomez and Kavzoglu 2005;

Yesilnacar and Topal 2005). The most widely used backpropagation algorithms are gra-

dient descent and gradient descent with momentum. These are often too slow for the

solution of practical problems. The faster algorithms use standard numerical optimizers

such as conjugate gradient, quasi-Newton, and Levenberg–Marquardt approaches.

Levenberg–Marquardt algorithm was designed to approach the second-order training speed

like quasi-Newton methods without having to compute the Hessian matrix (i.e., the second

derivatives of the performance index of weights). This algorithm uses an approximation to

the Hessian matrix in the following manner:

cijþ1 ¼ cij � ½JT J þ lI��1 JT e ð5Þ

where cij is a vector of current connection weights, J is the Jacobian matrix, which contains

the first derivatives of the network errors with respect to connection weights, e is a vector

of network errors, and l is a scalar. Unlike gradient descent algorithms, the Levenberg–

Marquardt algorithm does not consider learning rate and momentum factor as its param-

eters. It takes into account important training parameters such as mu (l), mu_dec, and

mu_inc. The parameter mu(l) is decreased by multiplying it with mu_dec after each

successful step (reduction in error) and is increased only when the error is increased. The

main scalar parameter mu (l) is modified in an adaptive fashion after giving an initial

random value. In this study, Levenberg–Marquardt algorithm (implemented as TRAINLM

in MATLAB software) has been used for training the neural network. The details of this
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algorithm can be found in Hagan and Mehnaj (1994) and Hagan et al. (1996). The training

process is initiated by assigning arbitrary initial connection weights, which are constantly

updated until an acceptable training accuracy is reached. The adjusted weights obtained

from the trained network have been subsequently used to process the testing data to

evaluate the generalization capability and accuracy of the network. A total of 100 network

architectures were designed, trained, and tested to evaluate their generalization capabilities

and accuracies in the present case. The overall training accuracies observed for all the 100

networks are of the order of 75% to 90%, whereas the testing accuracies are of the order of

60–70%. The connection weights thus captured for each of the 100 networks are further

analyzed to determine the weights for the causative factors.

The connection weights of the neurons from input-hidden, hidden-hidden, and hidden-

output layers for each of the 100 networks are further analyzed to determine the weights of

the causative factors for each neural network. Thus, three different weight matrices are

obtained for the connection weights from input-hidden, hidden-hidden, and hidden-output

layers of each network. Simple matrix multiplication has been performed on these weight

matrices to obtain a final 6 9 1 weight matrix for each network, which represents the

weights of six causative factors in this study. These causative factors are ranked according

to the corresponding absolute weights for each network, which means higher is the value of

absolute weight of a factor, more crucial is that factor for the occurrence of landslide.

Considering all the 100 networks, the rank of a factor is decided based on the rank

observed by maximum number of networks (majority rule). Out of 100 networks, 41

networks categorize lithology as rank 1 (most important), 31 networks for lineament as

rank 2, 30 networks for slope as rank 3, 27 networks for aspect as rank 4, 33 networks for

land use land cover as rank 5, and 49 networks for drainage as rank 6 (least important).

Subsequently, the normalized average of the weights of these networks at a scale of 0–10

for a particular factor is calculated and assigned as the weight of that factor (Wl) for the

preparation of LSZ map. The weights thus obtained through ANN connection weight

approach for all the factors are listed in Table 1. It can be observed from Table 1 that

lithology is the most important (weight = 4.8), while drainage buffer is the least important

(weight = 0.2) causative factors for landslide occurrences in the area. The details of ANN-

based weight determination procedure are given in Kanungo et al. (2006).

3.2 Rating determination

The ratings for different categories under various causative factors were determined using

certainty factor-, likelihood ratio-, and fuzzy logic-based concepts, which are described in

the following section.

Table 1 Weights of thematic
layers derived through ANN

Thematic layers ANN-derived weights

Lithology 4.807

Lineament buffer 2.113

Slope 1.318

Aspect 1.065

Land use land cover 0.495

Drainage buffer 0.202

Nat Hazards (2011) 59:1491–1512 1497

123



3.2.1 Certainty factor concept

The certainty factor (CF) concept is one of the possible approaches to handle the problem

of combination of different data layers and the heterogeneity and uncertainty of the input

data. The CF, defined as a function of probability, was originally proposed by Shortliffe

and Buchanan (1975) and later modified by Heckerman (1986):

CF ¼

ppa � pps

ppað1� ppsÞ
if ppa� pps

ppa � pps

ppsð1� ppaÞ
if ppa\pps

8
><

>:
ð6Þ

where ppa is the conditional probability of having a number of landslide event occurring in

category a and pps is the prior probability of having the total number of landslide events

occurring in the study area. The range of variation of the CF is [-1.1]: positive value

means an increasing certainty in landslide occurrence, while negative value corresponds to

a decreasing certainty in landslide occurrence. A value close to 0 means that the prior

probability is very similar to the conditional one, so it is difficult to give any indication

about the certainty of the landslide occurrence.

The favorability values (ppa, pps) are derived from overlaying each data layer with the

existing landslide distribution layer in GIS and calculating the landslide occurrence fre-

quency. CF values are then calculated for each layer. For example, the ratio of the area of

landslide falling in a particular category and the total area of this category gives the

favorability value ppa. Likely, the value of pps can be calculated by dividing the total area

of landslide with the total study area. Inputting the ppa and pps into expression (6), the CF

value of the particular category can be finally calculated.

The landslide distribution and different categories of thematic layers taken one at a time

have been considered as two datasets for the computation of certainty factor (rating). The

number of pixels and the number of landslide pixels in each category of thematic data

layers (Table 2) have been determined using these layers. With the help of these data,

ratings for all the 35 categories (Table 2) have been calculated using the Eq. 6. The

graphical representation of these ratings is given in Fig. 3.

It can be observed from Table 2 that the highest certainty factor rating (0.797) has been

attributed to the barren land category of land use land cover and the lowest (-.749) to the

lineament buffer category given as [500 m. The categories namely water bodies, river

sand, and flat areas have rating -1.0. This is true also since usually landslides will not

occur in these areas. This also proves the performance of certainty factor-based approach.

The 25 m buffers along 1st and 2nd order drainage categories have ratings of 0.053 and

0.477, respectively. Within the lineament buffer categories, 0–125 m buffer has the highest

rating of 0.498 and[500 m buffer has the lowest rating of -0.749. This indicates that the

probability of landslide occurrences is high at locations that are closer to lineaments.

Further, within the slope categories, 35�–45� slopes have the highest rating of 0.28 and

0�–15� slopes have the lowest rating of -0.462. This indicates that steeper slopes are more

prone to landslide occurrences in the area. Among the lithology categories, Paro quartzites

have the highest rating of 0.785 and Paro gneiss has the lowest rating of -0.232. In this

case, quartzitic rocks have higher ratings than other rocks as they are highly jointed and

fractured and more prone to landslide occurrences. Within the land use land cover cate-

gories, barren land has the highest rating of 0.797, and thick and sparse forests have the

lowest ratings of -0.371 and -0.404. This reflects that the incidence of landslide is

inversely related to the vegetation density. Hence, barren slopes are more prone to

1498 Nat Hazards (2011) 59:1491–1512

123



Table 2 Ratings for different categories of causative factors

Thematic layers
(causative factors)

Categories Number
of
pixels

Number
of
landslide
pixels

Certainty
factor
rating

Likelyhood
ratio rating

Fuzzy
rating

Drainage buffer 25 m along 1st order
drainage

116,168 102 0.053 0.865 0.030

25 m along 2nd order
drainage

27,690 44 0.477 1.567 0.040

Lineament buffer 0–125 m along a lineament 146,761 243 0.498 1.993 0.041

125–250 m along a
lineament

108,929 35 -0.614 0.386 0.018

250–375 m along a
lineament

72,380 36 -0.402 0.598 0.022

375–500 m along a
lineament

41,360 17 -0.506 0.494 0.020

[500 m along a lineament 38,317 8 -0.749 0.251 0.014

Slope 0�–15� 51,380 23 -0.462 0.538 0.021

15�–25� 146,974 117 -0.042 0.957 0.028

25�–35� 144,495 131 0.083 1.090 0.030

35�–45� 50,246 58 0.280 1.388 0.034

[45� 14,329 10 -0.161 0.839 0.026

Lithology Darjeeling gneiss 73,371 77 0.208 1.262 0.032

Feldspathic graywacke 45,938 61 0.374 1.598 0.036

Paro gneiss 247,242 158 -0.232 0.768 0.025

Lingtse granite gneiss 20,926 15 -0.138 0.862 0.027

Paro quartzite 12,154 14 0.785 1.386 0.034

Reyang quartzite 8,089 14 0.520 2.083 0.042

Land use land
cover

Agriculture land 35,692 85 0.651 2.875 0.049

Tea plantation 142,541 84 -0.291 0.710 0.024

Thick forest 72,685 38 -0.371 0.630 0.023

Sparse forest 131,088 65 -0.404 0.597 0.022

Barren land 14,237 58 0.797 4.926 0.064

Habitation 10,341 9 0.045 1.049 0.029

Water 970 0 -1.000 0.000 0.000

River sand 1,005 0 -1.000 0.000 0.000

Aspect Flat 2,072 0 -1.000 0.000 0.000

North (N) 59,880 22 -0.558 0.441 0.019

Northeast (NE) 45,077 32 -0.146 0.853 0.027

East (E) 52,868 73 0.398 1.660 0.037

Southeast (SE) 45,689 77 0.507 2.027 0.041

South (S) 37,630 49 0.362 1.565 0.036

Southwest (SW) 29,860 20 -0.194 0.805 0.026

West (W) 55,132 26 -0.433 0.566 0.022

Northwest (NW) 79,148 40 -0.392 0.607 0.022
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landslide activity as compared to the forest areas. Among the aspect categories, southeast

(SE)-facing slopes have the highest rating of 0.507 and north (N)-facing slopes have the

lowest rating of -0.558. It is observed from the ratings of aspect categories that the south-

facing slopes have higher ratings than the north-facing slopes. This also supports the fact

that the south-facing slopes have lesser vegetation density as compared to the north-facing

slopes; hence, the landslide activity is relatively more in former case (Sinha et al. 1975).

3.2.2 Likelihood ratio concept

A probability method known as likelihood ratio (LR) approach (Lee and Min 2001) has

been used as one of the approaches for the determination of the observed relationship (i.e.,

rating) between the causative factors and landslide occurrences. Likelihood ratio for a

particular category within a particular factor is defined as the ratio between the percent

landslide occurrence and percent landslide nonoccurrence in that category.

The number of pixels and the number of landslide pixels in each category of the

causative factors (Table 2) have been determined using the thematic data layers and the

landslide distribution layer. With the help of these data, likelihood ratios (i.e., ratings) for

all the 35 categories (Table 2) have been calculated. The graphical representation of these

ratings is given in Fig. 3.

It can be observed from Table 2 that the highest likelihood ratio (4.926) has been

attributed to the barren land category of land use land cover and the lowest (0.250) to the

lineament buffer category given as [500 m. The categories namely water bodies, river

sand, and flat areas have likelihood ratios of 0.0. This is true also since usually landslides

will not occur in these areas. The 25 m buffers along 1st and 2nd order drainage categories

have ratings of 0.865 and 1.567, respectively. Within the lineament buffer categories,

0–125 m buffer has the highest rating of 1.993 and[500 m buffer has the lowest rating of
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0.250. This indicates that the probability of landslide occurrences is high at locations that

are closer to lineaments.

Further, within the slope categories, 35�–45� slopes have the highest rating of 1.388 and

0�–15� slopes have the lowest rating of 0.538. This indicates that steeper slopes are more

prone to landslide occurrences in the area. Among the lithology categories, Reyang

quartzites have the highest rating of 2.083 and Paro gneiss has the lowest rating of 0.768. In

this case, quartzitic rocks have higher ratings than other rocks as they are highly jointed

and fractured and more prone to landslide occurrences. Within the land use land cover

categories, barren land has the highest rating of 4.926, and thick and sparse forests have the

lowest ratings of 0.630 and 0.597. This reflects that the incidence of landslide is inversely

related to the vegetation density. Hence, barren slopes are more prone to landslide activity

as compared to the forest areas. Among the aspect categories, southeast (SE)-facing slopes

have the highest rating of 2.027 and north (N)-facing slopes have the lowest rating of

0.441. It is observed from the ratings of aspect categories that the south-facing slopes have

higher ratings than the north-facing slopes. This also supports the fact that the south-facing

slopes have lesser vegetation density as compared to the north-facing slopes; hence, the

landslide activity is relatively more in former case (Sinha et al. 1975).

It is also observed that the likelihood ratios for different categories of the factors have a

similar trend as of certainty factor ratings.

3.2.3 Fuzzy similarity concept

In this research, one of the well-known fuzzy similarity methods, cosine amplitude method,

has been used to determine the relationship between the landslide occurrence and the

factors responsible for such activity. The membership values (ratings) of the categories of

each factor are calculated by the strength of the relationship (rij) between the existing

landslides and the factors and can be computed by the following equation with its values

ranging from 0 to 1 (0 B rij B 1).

rij ¼
Pp

k¼1 xik � xjk

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

k¼1 x2
ik

� �
�

Pp
k¼1 x2

jk

� �r ð7Þ

where xi represents a category of a thematic layer (i.e., layer corresponding to a causative

factor), xj represents the existing landslide distribution layer, k is a particular pixel in the

study area, and p is the total number of pixels in the area.

The landslide distribution and different categories of thematic layers taken one at a time

have been considered as two datasets for the computation of rating or strength of rela-

tionship (rij). The pixels in the landslide areas are assigned a value of 1, whereas rest of the

pixels are assigned a value of 0 in the landslide distribution layer. Similarly, a value of 1 is

assigned to a particular category of a thematic layer and a value of 0 to rest of the pixels.

The number of pixels and the number of landslide pixels in each category of thematic data

layers are listed in Table 2. With the help of these data, ratings for all the 35 categories

(Table 2) have been calculated. The graphical representation of these ratings is given in

Fig. 3.

It can be observed from Table 4 that the highest fuzzy rating (0.064) has been attributed

to the barren land category of land use land cover and the lowest (0.014) to the lineament

buffer category given as[500 m. The categories namely water bodies, river sand, and flat

areas have zero fuzzy rating zero. This is true also since usually landslides will not occur in
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these areas. The 25 m buffers along 1st and 2nd order drainage categories have fuzzy

ratings of 0.030 and 0.040, respectively. Within the lineament buffer categories, 0–125 m

buffer has the highest rating of 0.041 and [500 m buffer has the lowest rating of 0.014.

This indicates that the probability of landslide occurrences is high at locations that are

closer to lineaments. Further, within the slope categories, 35�–45� slopes have the highest

rating of 0.034 and 0�–15� slopes have the lowest rating of 0.021. This indicates that

steeper slopes are more prone to landslide occurrences in the area. Among the lithology

categories, Reyang quartzites have the highest rating of 0.042 and Paro gneiss has the

lowest rating of 0.025. In this case, quartzitic rocks have higher ratings than other rocks as

they are highly jointed and fractures and more prone to landslide occurrences. Within the

land use land cover categories, barren land has the highest rating of 0.064, and thick and

sparse forests have the lowest ratings of 0.023 and 0.022. This reflects that the incidence of

landslide is inversely related to the vegetation density. Hence, barren slopes are more prone

to landslide activity as compared to the forest areas. Among the aspect categories,

southeast (SE)-facing slopes have the highest rating of 0.041 and north (N)-facing slopes

have the lowest rating of 0.019. It is observed from the ratings of aspect categories that the

south-facing slopes have higher ratings than the north-facing slopes. This also supports the

fact that the south-facing slopes have less vegetation density as compared to the north-

facing slopes; hence, the landslide activity is relatively more in former case (Sinha et al.

1975).

4 Landslide susceptibility mapping

The weights for the causative factors determined through ANN approach and the ratings

for the categories determined through three different approaches have been integrated

separately to produce the LSZ maps.

4.1 Combined neural and CF approach

In this approach, the weights for factors determined through ANN and the ratings for the

categories determined through certainty factor approach have been considered in the

integration process to prepare the LSZ map. The integration of six thematic data layers

representing the ratings for the categories (Rl) of the factors and weights for the factors

(Wl) has been performed by using simple arithmetic overlay operation in GIS. The land-

slide susceptibility index (LSI) for each pixel of the study area is obtained by using the

following equation:

LSI ¼
Xt

l¼1

ðWl � RlÞ ð8Þ

where t is the number of thematic data layers (i.e., six causative factors in this case).

The LSI values have been found to lie in the range from -4.553 to 6.128. This range of

LSI values has been divided into five different susceptibility zones (i.e., VHS, HS, MS, LS,

and VLS) with boundaries located at (lo - 1.5 mro), (lo - 0.5 mro), (lo ? 0.5 mro),

and (lo ? 1.5 mro) values, where observed mean (lo) is -0.775, standard deviation (ro) is

1.754, and m is a positive, nonzero value (Saha et al. 2005; Kanungo et al. 2006). This

classification is adopted to fix the boundaries of classes statistically and to avoid the

subjectivity in arbitrarily selecting the boundaries of classes. Several LSZ maps have been
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prepared, and different success rate curves have been plotted for various values of m. The

suitability of any LSZ map can be judged by the fact that more percentage of landslides

must occur in VHS zone as compared to other zones. Therefore, the cumulative percentage

of landslide occurrences in various susceptibility zones ordered from very high suscepti-

bility (VHS) to very low susceptibility (VLS) have been plotted against the cumulative

percentage of area of the susceptibility zones for LSZ maps with different values of

m. These curves have been defined as the success rate curves (Chung and Fabbri 1999; Lu

and An 1999; Lee et al. 2002b) and have been used to select the appropriate value of m to

decide the suitability of an LSZ map. Five representative success rate curves corresponding

to m = 1.0, 1.1, 1.2, 1.3, and 1.4 are shown in Fig. 4. It can be observed from Fig. 4 that

for 10% of the area in very high susceptibility zone, the curves corresponding to m = 1.0,

1.1, 1.2, 1.3, and 1.4 show the landslide occurrences of 39.0, 39.9, 42.0, 41.6, and 40.0%,

respectively. Hence, for the first 10% area, the curve corresponding to m = 1.2 shows

the highest success rate, and the corresponding LSZ map appears to be the most appro-

priate one. Accordingly, putting the values of lo as -0.775, ro as 1.754, and m as 1.2,

the landslide susceptibility zone boundaries have been fixed at LSI values of -3.932

(lo - 1.5 mro), -1.827 (lo - 0.5 mro), 0.277 (lo ? 0.5 mro), and 2.382 (lo ?

1.5 mro), and five different susceptibility zones have been categorized. The LSZ map thus

produced is shown in Fig. 5.

The area covered by different landslide susceptibility zones, the area of landslides

occupied per class, and the landslide densities of different zones have been determined and

listed in Table 3. It is observed from Table 3 that 5.9% of the total area have been

occupied by VHS zone, while 17.7, 42.8, 33.4, and 0.2% area have been occupied by HS,

MS, LS, and VLS zones, respectively. This shows that the area wise coverage of different

susceptibility zones is normally distributed, which should be the case. The distribution of

landslides in different susceptibility zones has been compared. It has been found that

33.9% of landslide area is predicted over VHS zone, while 23.3, 28.0, 14.8, and 0.0% of
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landslide area are predicted over HS, MS, LS, and VLS zones, respectively. These results

show that 23.6% area of VHS and HS zones could predict 57.2% landslide area.

4.2 Combined neural and LR approach

In this approach, the weights for factors determined through ANN and the ratings for the

categories determined through likelihood ratio approach have been integrated to prepare

the LSZ map. The integration of the ratings for the categories of the factors and weights for

27º08′N

88º10′E 88º25′E

26º56′N

27º08′N

26º56′N

88º25′E88º10′E

N

LSZ Classes
VLS
LS
MS
HS
VHS

1 0 1 Kilometers

Fig. 5 LSZ map produced from combined neural and CF approach

Table 3 Landslide distribution in landslide susceptibility zones of different LSZ maps

Landslide susceptibility zones Combined neural and
CF approach

Combined neural and
LR approach

Combined neural and
fuzzy approach

Percent
area (%)

Percent
landslide
area (%)

Percent
area (%)

Percent
landslide
area (%)

Percent
area (%)

Percent
landslide
area (%)

VHS 5.9 33.9 3.6 31.3 2.3 30.1

HS 17.7 23.3 19.8 30.7 20.2 31.9

MS 42.8 28.0 45.1 24.2 48.4 26.5

LS 33.4 14.8 31.3 13.8 28.8 11.5

VLS 0.2 0.0 0.2 0.0 0.3 0.0
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the factors has been performed by using simple arithmetic overlay operation in GIS as per

the Eq. 8. The LSI values have been found to lie in the range from 0.530 to 20.652. The

range of LSI values has been categorized into five susceptible zones such as VHS, HS, MS,

LS and VLS with boundaries fixed by using success rate curves method. The observed

mean (lo) and standard deviation (ro) from the probability distribution curve of these LSI

values are 9.857 and 2.314 respectively. Using these values, several LSZ maps of the study

area have been prepared for different values of m. Five representative success rate curves

corresponding to m = 1.1, 1.2, 1.3, 1.4 and 1.5 are shown in Fig. 6. It can be seen that for

10% of the area in VHS zone the curves corresponding to m = 1.1, 1.2, 1.3, 1.4 and 1.5

show the landslide occurrences of 41.6, 43.4, 45.2, 45.15 and 44.1% respectively. Hence,

for the first 10% area, the curve corresponding to m = 1.3 has the highest success rate.

Based on this analysis, the LSZ map corresponding to m = 1.3 appears to be the most

appropriate one for the study area. Accordingly, putting the values of lo as 9.857, ro as

2.314 and m as 1.3, the landslide susceptibility zone boundaries have been fixed at LSI

values of 5.345 (lo - 1.5 mro), 8.352 (lo - 0.5 mro), 11.360 (lo ? 0.5 mro) and 14.368

(lo ? 1.5 mro) and the five different susceptibility zones have been categorized. The LSZ

map thus produced is shown in Fig. 7.

The area covered by different landslide susceptibility zones, the area of landslides

occupied per class and the landslide densities of different zones have been determined and

listed in Table 3. It is observed from Table 3 that 3.6% of the total area have been

occupied by VHS zone while 19.8, 45.1, 31.3 and 0.2% area have been occupied by HS,

MS, LS and VLS zones respectively. This shows that the area wise coverage of different

susceptibility zones is normally distributed, which should be the case. The distribution of

landslides in different susceptibility zones has been compared. It has been found that

31.3% of landslide area is predicted over VHS zone while 30.7, 24.2, 13.8 and 0.0% of

landslide area are predicted over HS, MS, LS and VLS zones respectively. These results

show that 23.4% area of VHS and HS zones could predict 62.0% landslide area. Further,
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the distribution of landslides over VHS to VLS zones is skewed toward the higher sus-

ceptibility zones, which should in fact be the case.

4.3 Combined neural and fuzzy approach

In this approach, the weights for factors determined through ANN and the ratings for the

categories determined through fuzzy approach have been integrated to prepare the LSZ

map. The integration of the ratings for the categories of the factors and weights for the

factors has been performed by using simple arithmetic overlay operation in GIS as per the

Eq. 8. The LSI values have been found to lie in the range from 0.030 to 0.408. The range of

LSI values has been categorized into five susceptible zones such as VHS, HS, MS, LS, and

VLS with boundaries fixed by using success rate curves method (see Sect. 4.1). The

observed mean (lo) and standard deviation (ro) from the probability distribution curve of

these LSI values are 0.276 and 0.032, respectively. Using these values, several LSZ maps

of the study area have been prepared for different values of m. Five representative success

rate curves corresponding to m = 1.2, 1.3, 1.4, 1.5, and 1.6 are shown in Fig. 8. It can be

seen that for 10% of the area in VHS zone, the curves corresponding to m = 1.2, 1.3, 1.4,

1.5, and 1.6 show the landslide occurrences of 43.9, 45.6, 46.7, 43.3, and 43.9%,

respectively. Hence, for the first 10% area, the curve corresponding to m = 1.4 has the

highest success rate. Based on this analysis, the LSZ map corresponding to m = 1.4

appears to be the most appropriate one for the study area. Accordingly, putting the values

of lo as 0.276, ro as 0.032, and m as 1.4, the landslide susceptibility zone boundaries have
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Fig. 7 LSZ map produced from combined neural and LR approach
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been fixed at LSI values of 0.208 (lo - 1.5 mro), 0.253 (lo - 0.5 mro), 0.299

(lo ? 0.5 mro), and 0.344 (lo ? 1.5 mro), and the five different susceptibility zones have

been categorized. The LSZ map thus produced is shown in Fig. 9.

The area covered by different landslide susceptibility zones, the area of landslides

occupied per class, and the landslide densities of different zones have been determined

(Table 3). It is observed from Table 3 that 2.3% of the total area have been occupied by

VHS zone, while 20.2, 48.4, 28.8, and 0.3% area have been occupied by HS, MS, LS, and

VLS zones, respectively. This shows that the area wise coverage of different susceptibility

zones is normally distributed, which should be the case. The distribution of landslides in

different susceptibility zones has been compared. It has been found that 30.1% of landslide

area is predicted over VHS zone, while 31.9, 26.5, 11.5, and 0.0% of landslide area are

predicted over HS, MS, LS, and VLS zones, respectively. These results show that 22.5%

area of VHS and HS zones could predict 62.0% landslide area. Further, the distribution of

landslides over VHS to VLS zones is skewed toward the higher susceptibility zones, which

should in fact be the case.

5 Interpretations and evaluation of approaches

The interpretations and comparative evaluation of three different LSZ maps prepared using

combined neural and CF, combined neural and LR, and combined neural and fuzzy

approaches throw interesting light on their relative efficacy. This has now been discussed

using three different approaches:
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(a) Visual Interpretation.

(b) Landslide Density Analysis.

(c) Success Rate Curves Method.

5.1 Visual interpretation

Visual inspection of LSZ maps prepared using three different approaches reflected a

preferential distribution of higher landslide susceptibility zones along structural disconti-

nuities (lineaments), which should indeed be the case. The buffer zones of lineaments have

clearly indicated the VHS and HS zones in the north and southeast parts of the area.

Therefore, it indicates the ‘‘ghost-effect’’ of lineaments on LSZ maps as stated by Saha

et al. (2005). Also, the Darjeeling gneiss rock type in south-eastern part, feldspathic

graywacke and Reyang quartzite in the northern part of the study area indicated moderate

to very high susceptibility zones. However, in case of the LSZ map prepared using

combined neural and CF approach, Paro quartzites in the south-western and north-eastern

part of the study area indicated mostly very high susceptible zones in comparison with

other LSZ maps.

5.2 Landslide density analysis

Landslide density is defined as the ratio of the existing landslide area in percent to the area

of each landslide susceptibility zone in percent and is computed here on the basis of the
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Fig. 9 LSZ map produced from combined neural and fuzzy approach
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number of pixels in the image. Landslide density values for each susceptibility zone for

different LSZ maps have been computed separately (Table 4). Usually, an ideal LSZ map

should have the highest landslide density for VHS zone, as compared to other zones and

there ought to be a decreasing trend of landslide density values successively from VHS to

VLS zone.

It is observed from Table 4 that the landslide densities for VHS zone of all the three

LSZ maps are significantly higher than those obtained for other susceptibility zones. There

is also a decreasing trend of landslide density values from VHS zone to VLS zone for all

the LSZ maps. As far as the landslide density in VHS zone is concerned, it is observed that

the LSZ map prepared using combined neural and fuzzy approach has a markedly higher

landslide density (i.e., 13.09) for this zone than that observed in other LSZ maps (5.74 for

combined neural and CF approach and 8.69 for combined neural and LR approach). This

may be due to more efficient rating determination process through fuzzy set-based

approach. Thus, based on the landslide density values of different landslide susceptibility

zones and their trend from VHS to VLS zones for all the LSZ maps, it can be inferred that

the combined neural and fuzzy approach developed and implemented for LSZ mapping

appears to be significantly better than other approaches used here, and the corresponding

LSZ map may be considered as the best LSZ map of the area.

5.3 Success rate curves method

The success rate curves for different LSZ maps prepared using three different approaches

are given in Fig. 10. It can be seen from the figure that for 10% of the area in VHS zone,

the curve corresponding to the LSZ map prepared using combined neural and fuzzy

approach shows the maximum landslide occurrences of 46.6% in comparison with 45.2%

and 42.0% of landslide occurrences for the LSZ maps prepared using combined neural and

LR approach and combined neural and CF approach, respectively. Hence, for the first 10%

area, the curve corresponding to the LSZ map prepared using combined neural and fuzzy

approach has the highest success rate, and this LSZ map appears to be the most appropriate

one for the study area.

6 Conclusions

In this study, two different weighting and rating approaches, viz. combined neural and

certainty factor and combined neural and likelihood ratio along with one already developed

Table 4 Landslide densities of
different susceptibility zones for
various LSZ maps

Landslide
susceptibility
zones

Landslide density (computation based on pixel
numbers)

Combined
neural and CF
approach

Combined
neural and LR
approach

Combined
neural and fuzzy
approach

VHS 5.74 8.69 13.09

HS 1.32 1.55 1.58

MS 0.65 0.54 0.55

LS 0.44 0.44 0.40

VLS 0.00 0.00 0
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combined neural and fuzzy approach (Kanungo et al. 2006), were applied for LSZ mapping

in the part of Darjeeling Himalayas. A comparative evaluation of these approaches was

also carried out. The combined neural and fuzzy weighting integration produced the most

accurate LSZ map. Previous comparative evaluation of combined neural and fuzzy

weighting approach with subjective weighting-, ANN black box-, and fuzzy logic-based

approaches (Kanungo et al. 2006) also witnessed the similar result of the LSZ map pre-

pared using the combined neural and fuzzy approach being the most accurate one. This

LSZ map delineates a relatively small area (only 2.3% of total area) for VHS zone, which

can be more meaningful for practical applications. Therefore, the integration of different

factors in GIS environment using the combined neural and fuzzy weighting procedure may

serve as one of the key objective approaches in this direction because of the fact that it can

narrow down the potential susceptibility zones in a meaningful way for planning future

developmental activities and the implementation of disaster management programmes in

hilly terrains.
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