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Abstract Gimbarzevsky (1988) collected an exceptional landsliding inventory for Haida

Gwaii, British Columbia that included over 8,000 landsliding vectors covering an area of

approximately 10,000 km2. This database was never published in the referred literature,

despite its regional significance. It was collected prior to widespread application of GIS

technologies in landsliding studies, limiting the analyses undertaken at the time. Gim-

barzevsky identified landslides using 1:50,000 aerial photographs, and transferred the

information to NTS map sheets. In our study, we digitized the landslide vectors from these

original map sheets and connected each landslide to a digital elevation model. Lengths of

landslide vectors are compared to the landsliding inventory for Haida Gwaii analyzed in

Rood (1984), Martin Y et al. BC Can J Earth Sci 39:289–305 (2002); the latter inventory is

based on larger-scale aerial photographs (*1:12,000). Rood’s database contains a more

complete record of smaller landslides, while the inventory of Gimbarzevsky provides

improved statistical representation of less frequent, medium to large landslides. It is

suggested that combined landslide delineation at different scales could provide a more

complete landslide record. Discriminant analysis was undertaken to assess which of nine

predictor variables, chosen on the basis of mechanical theory, best predict failed versus

unfailed locations. Seven of the nine variables were found to be statistically significant in

discriminating amongst failed and unfailed locations. Results show that 81.7% of original

grouped cases were correctly classified.
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1 Introduction

Landslide susceptibility analysis is important to researchers concerned with the contribu-

tion of hillslope processes to basin-wide sediment transfers over a variety of scales (e.g.,

Hovius et al. 2000; Martin 2000; Korup 2009) and those concerned with landslide hazard

and mitigation (e.g., Guzzetti et al. 1999; Huabin et al. 2005). Landslides involve the

downslope movement of rock and/or overlying weathered material (e.g., weathered reg-

olith, soil etc.), triggered by a variety of mechanisms including earthquake activity or high

rainfall intensities (Cruden 1991). Landslide analyses that assess safety factors, based on a

comparison of driving and resisting stresses, are a powerful approach for investigating

landslide susceptibility as their basis lies in mechanical theory. However, such approaches

are not generally feasible when assessing landslide susceptibility over large regional

landscapes (Baeza and Corominas 2001), as the necessary information for input/controlling

variables is most often not reasonable to obtain beyond the scale of individual landslides

and hillslopes. Therefore, the most common approach to investigate landslide suscepti-

bility over larger scales involves the collection of landslide inventories with large numbers

of events, and for which regional data for controlling variables are available. Such data sets

can then be evaluated using various geomorphic and statistical analyses to make inferences

about landsliding susceptibility across a region (e.g., Hovius et al. 1997; Martin et al. 2002;

Guzzetti et al. 2002; Malamud et al. 2004).

Since landslides most often occur in steep, rugged terrain, the acquisition of landslide

databases was difficult prior to the advent of remote sensing technologies. Since that time,

the collection and analysis of landslide inventories based on remote sensing and/or GIS

methodologies has been a focus of research by government agencies and university

researchers. Landslide identification can be undertaken by field survey, aerial photographic

interpretation and/or automated remote sensing approaches (e.g., Hovius et al. 1997;

Martin et al. 2002; Barlow et al. 2003; Brardinoni and Church 2004). The quality and

particular strength of a landslide inventory is affected by the operator’s expertise and

experience, and factors such as the scale of aerial photography. Landslide inventories are

often analyzed in conjunction with environmental variables to determine factors associated

with landslide initiation and landslide susceptibility. While some analyses of landslide

initiation and susceptibility have been undertaken without the use of rigorous statistics

(in particular, this was the case for databases collected and analyzed prior to major

advances in GIS technologies), many studies now make use of various multivariate sta-

tistical techniques, including logistic regression (e.g., Dai and Lee 2002; Ohlmacher

and Davis 2003) and discriminant function analysis (e.g., Baeza and Corominas 2001;

Jamaludin et al. 2006). Discriminant function analysis, the multivariate technique

employed herein, has been applied in a number of different studies, with variable success

in its application (e.g., Rice and Pillsbury 1982; Carrara 1983; Baeza and Corominas 2001;

Ardizzone et al. 2002; Santacana et al. 2003; Jamaludin et al. 2006). Discriminant analysis

explores the ability of combinations of variables to identify differences between the

grouping variable (i.e., failed vs. unfailed slopes). In particular, stepwise discriminant

analysis involves rigorous statistical assessment of variables as they are either added to or

removed from the analysis. The primary objective is identification of the optimal linear

combination of variables that best predicts the grouping of the dependent variable.
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The present study considers landslide susceptibility in Haida Gwaii (formerly known as

the Queen Charlotte Islands), British Columbia, Canada. Although this region has been

spared the devastation (ranging from loss of life, to effects on transportation routes, utilities

and other infrastructure) that often accompanies landsliding in other steep coastal moun-

tainous regions (Hungr 2004), landslide susceptibility is of central concern to maintaining

the ecological integrity and to understanding the nature of sediment transfers in both

natural and logged hillslopes in this region. Our analysis is based on the exceptional

landsliding inventory collected by Gimbarzevsky (1988) for the Canadian Forestry Ser-

vice. The original landsliding inventory covers an area of *10,000 km2, includes

approximately 8,300 landslides, and is based on 1:50,000 aerial photographs. Gim-

barzevsky did not distinguish mass movements by failure type, collectively referring to all

events as ‘‘landslides’’. The identified landslides include debris slides, debris flows, debris

avalanches, rockslides and avalanche tracks. Compared to other published landslide

inventories in coastal British Columbia, that typically utilize aerial photography at scales

ranging from 1:11,000 to 1: 20,000 (e.g., Rood 1984; Jakob 2000), the Gimbarzevsky

database is not expected to provide a comparable record of smaller, more frequently-

occurring landslides. However, given the large areal coverage of the Gimbarzevsky

database relative to other studies, which most often have areal coverages of order 102 km2,

this database provides an improved statistical representation of medium and large, less

frequent landslide events. Unfortunately, the original database was not published in the

refereed literature. For this reason, it did not receive the exposure that this work warrants,

despite representing a valuable contribution to the field of hillslope geomorphology and

being a key regional inventory of landsliding that provides a unique record of medium to

large landslides. GIS tools were not available to Gimbarzevsky (1988) and, therefore, we

digitized his original hand-mapped landslide inventory, connecting each landslide vector to

a 25-m DEM of Haida Gwaii. To undertake our discriminant function analysis, a number

of landscape and environmental variables associated with landsliding initiation were

converted into GIS coverages.

2 Study area

Haida Gwaii, a scimitar shaped archipelago, is located approximately 80 km west of the

central coast of British Columbia in western Canada (Fig. 1). Haida Gwaii covers an area

of approximately 10,000 km2, with Graham Island (6,671 km2) and Moresby Island

(2,405 km2), accounting for more then 90% of the total area. Three distinct physiographic

regions characterize the islands; (1) Queen Charlotte Ranges in the southwestern region,

consisting of steep, mountainous terrain; (2) Skidegate Plateau in the central region of

Graham Island, consisting of mountainous and hilly topography; and (3) Queen Charlotte

Lowlands in the northeastern portion of Graham Island, which are relatively flat. Low

elevations dominate the gently rolling hills in the northeastern lowlands, in contrast to the

rapid elevation gain on the western side, where the Queen Charlotte Ranges extend up to

roughly 1,160 masl in the southern portions of the islands.

Bedrock in Haida Gwaii is a mixture of sedimentary, volcanic and intrusive igneous

rocks, and is commonly overlain by glacial deposits of Pleistocene age (Sutherland Brown

1968). During the most recent Wisconsin glaciation, Haida Gwaii developed an inde-

pendent ice cap that deglaciated earlier than mainland British Columbia, beginning at

16,000 BP and finishing by about 13,500 BP (Barrie and Conway 2002). Glaciation
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resulted in abundant deposition of till and other glacial sediments (i.e., glacial lake sedi-

ments, alluvial fans, valley fill). The boundary between relatively impermeable till and the

surficial weathered till/soils is critical to instability on hillslopes in the region (Martin et al.

2002). Impermeable till layers prevent rain or snowmelt from infiltrating to depth and may

thus increase saturation levels of the overlying materials. Despite the significance of

glacially-emplaced sediments in the region, in some instances soil cover may be derived

from local bedrock. Of particular interest in this region are Folisols (upland organic soils;

see Soil Classification Working Group 1998 for further details) as these soils are often

found in the initiation zones of landslides (Campbell et al. 2010; Nagle 2000).

The diverse topography affects the distribution of precipitation, resulting in large dis-

parities between proximate regions. Generally, mean annual precipitation ranges from

about 1 200 to 1,500 mm a-1 for more easterly locations and can reach up to 4,000 mm

a-1 along the windward western coast. Temperate coniferous forests dominate, with tree

species including western hemlock, sitka spruce, western red cedar, yellow cedar and red

alder. Species are distributed throughout the landscape in four biogeoclimatic zones

including the western hemlock zone, coastal cedar-pine-hemlock zone, mountain hemlock

zone and alpine tundra zone (Banner and Pojar 1982).

According to the 2006 census, approximately 5,000 individuals reside in Haida Gwaii,

focused in several prominent centers. The economy of the region is largely resource driven,

with forestry accounting for the largest portion of the economic sector at 19%. With such a

large portion of the economy driven by resources of the island, there is a clear need for

Physiography
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Fig. 1 The three major
physiographic subdivisions for
Haida Gwaii, British Columbia.
Discriminant analysis was only
performed on data from Graham
Island. The area outlined by the
thick line represents the area
mapped in later figures and was
chosen to optimize the scale for
cartographic viewing. Source:
Gimbarzevsky (1988)
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improved understanding of the spatial extent and magnitude of landslide susceptibility in

the region.

3 Gimbarzevsky landsliding inventory

The database collected by Gimbarzevsky (1988) is remarkable in terms of its extensive

areal coverage and the large number of landslides identified. The original landsliding

inventory includes 8,328 landslides covering an area of about 9,946 km2. Landslides were

identified through visual analysis of 1:50,000 and 1: 60,000 aerial photography flown in

1979 and 1980. To fill a limited gap in the coverage, aerial photographs taken in 1976 at a

scale of 1:63,000 were also used. The landslides identified in this earlier study include

debris slides, debris flows, debris avalanches, rockslides and avalanche tracks. Movements

were not distinguished by failure type, and were collectively referred to as ‘‘landslides’’.

The events identified on the aerial photographs were plotted as vectors onto 1:50,000 NTS

maps (Fig. 2). The full areal extent of each landslide was not recorded; rather, the linear

extent of each landslide was recorded in vector format; such vectors could include the

initiation point, flow path and run out, although it is not always clear which zones were

included in each particular case. Gimbarzevsky estimated a threshold length of slope

failure able to be identified as *100 m, based on a minimal mappable unit of roughly

2 mm. This threshold is greater than for other regional landslide inventories that utilize

larger-scale aerial photographs. This mapping resolution will have resulted in under-

sampling of landslide scars having a magnitude below this critical threshold. In addition, as

is the case for other studies, underestimation of smaller landsliding events also likely exists

due to dense forest cover and shadows created by the steep mountainous topography

(Gimbarzevsky 1988). However, due to the less frequent temporal and spatial occurrence

of medium to large events, the large areal extent of this landslide inventory will help to

improve their statistical representation relative to many regional databases that rely on

larger-scale aerial photographs and cover a much reduced area.

Fig. 2 Example of an NTS map sheet with Gimbarzevsky’s original inventory used in this study
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When examining the original data set, it was found that several of the original NTS

maps of landslide vectors were missing for areas of notable extent on Moresby Island.

Hence, our final digital coverage for both islands contains 6,600 landslide vectors, rather

than the original 8,328 landslides identified in Gimbarzevsky (1988). The original map

sheets were scanned, georeferenced and then reprojected to the British Columbia gov-

ernment projection standard of Albers Conic Equal Area projection using PCI Geomatica.

The georeferenced files were then mosaiced and landslide scars were subsequently digi-

tized and saved as a shapefile.

The landslide vectors were segregated to identify ‘singular’ and ‘multiple’ initiations.

The former refers to an initiation that consists of a single vector that does not split or

converge with other initiations, and the latter refers to landslide initiations that either: (1)

separate into multiple paths from one initiation location; or (2) begin as multiple initiation

points that converge to form a single flow path. A total of 312 multiple path landslides

were identified for Graham Island and 416 multiple path landslides were identified for

Moresby Island. Based on the visual evidence of diverging flow paths, these features are

most often debris flows.

4 Landsliding frequencies and scaling effects

The landsliding data set of Gimbarzevsky best represents medium to large landslides,

because of the limitations associated with the relatively small scale of the aerial photo-

graphs used for landslide identification. The spatial coverage of studies utilizing larger-

scale aerial photographs is usually more restricted, thus limiting adequate statistical rep-

resentation of larger, more infrequent landslides. Therefore, the Gimbarzevsky database

represents a unique contribution to landslide inventories collected for the western coast of

North America.

Several approaches were followed by Gimbarzevsky (1988) to assess the magnitude

threshold for landslides that were identified and how this impacted his final database. To

test the amount of missing information in his landslide inventory (based on 1:50,000 scale

photographs), he further analyzed six watersheds using 1:10,000 scale panchromatic and

color-infrared photography (flown in 1981 with 300 mm focal length cameras) and

1:12,000 color-negative prints (obtained in 1982 using a 152 mm camera). Most magni-

tude-frequency curves for landslide databases show that small landslides constitute by far

the greatest numbers of landslides in the distribution. Therefore, it is not surprising that

Gimbarzevsky identified much higher numbers of total failures in this second analysis,

largely due to the significant number of smaller landslides. Gimbarzevsky also found that

color photography was preferred for identification of small failures, old revegetated debris

slides, and debris flows. On average, the number of slope failures identified on these

medium scale photographs was 27% higher than for 1:50,000 scale aerial photographs. The

failures most often missed on the smaller-scale photographs were numerous slides less than

100 m long (\2 mm on the photograph; 2 mm represents the lower limit of landslide

length for identification on the 1:50,000 aerial photographs), small debris flows, soil

slumps along logging roads, and portions of torrented streams obscured by vegetation.

Other existing regional landslide inventories for coastal British Columbia have gener-

ally used larger-scale aerial photographs for identification than the Gimbarzevsky study,

and generally cover smaller areas (e.g., Jakob 2000; Guthrie 2002; Martin et al. 2002;

Brardinoni and Church 2004; Guthrie and Evans 2004). Although such databases produce a

good sampling of small and medium landslides, they may not provide a solid statistical
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representation of either the very smallest or the larger landslides. For example, Brardinoni

and Church (2004) emphasize that databases relying on aerial photographs at these scales

do not consistently identify the full spectrum of the very smallest, most frequent landslides

(they considered debris slides and debris flows). They undertook field investigations to

quantify the numbers of smaller landslides missed by medium-scale aerial photograph

analysis (i.e., those having volumes \*2,000 m3). In particular, field identification was

much superior to aerial photographic analysis for events of magnitude less than about

400–500 m3. That being said, the exclusion of these very small events, which are only

consistently observable in the field, was not found to unduly affect total erosion values

given their small areal extent. In addition, Brardinoni and Church (2004) noted a break in

their power-law scaling for events greater than about 4,000 m3; they believed that this may

have resulted from inadequate representation of larger, rare events in a study of limited

areal extent.

Other landsliding inventories for Haida Gwaii include studies by Schwab (1983, 1988,

1998) and Rood (1984, 1990). A landsliding inventory undertaken for Haida Gwaii by

Rood (1984, 1990) involved compilation and analysis of 1,337 landslides (including both

debris slides and debris flows) (see also Martin et al. 2002 for analysis of this database).

The landslide inventory of Rood utilized larger-scale photographs (1:11,000–1:13,000 vs.

1:50,000 for Gimbarzevsky 1988), and covered a much-reduced area (*350 km2) relative

to Gimbarzevsky (*10,000 km2). While the Rood landsliding inventory contains more

detail about individual events due to the larger-scale aerial photographs used in the

analysis, the large number of identified failures and areal coverage of the Gimbarzevsky

database make it a powerful platform for the examination of medium to large landslides in

the region. The contrasting scale of the aerial photographs used in these two landsliding

databases for the same region introduces interesting questions about scaling effects of

landsliding identification. When making comparisons, it should be noted that in addition to

the differences in the scale of aerial photographs and areal coverage, Rood only identified

debris slides and debris flows, in contrast to the greater number of event types identified by

Gimbarzevsky (see earlier discussion).

For comparison, landsliding frequencies based on the original results of Gimbarzevsky

(1988) are compared to those of Rood (1984, 1990). Gimbarzevsky (1988) obtained a

landsliding value of 0.84 events km-2 if the entire area of Haida Gwaii is considered.

When the landslide events are attributed to only the ‘‘active’’ portion of the landscape

(based on UTM grid cells with identifiable landslide activity, or about 32% of total

landscape area), the value is 2.64 events km-2. It should be noted that within this ‘‘active’’

portion of the landscape (3,153 1-km2 grid cells), about 9–10% of these cells had been

disturbed by logging. For the combined unlogged and logged terrain in his study, Rood

(1984, 1990) obtained a landsliding frequency of 3.82 events km-2. When landslide

activity is attributed to only the ‘‘steepland’’ portion of his basins (slopes [ 20�), the value

becomes 7.23 events km-2. The logged portion of the landscape is about 13% for both the

entire landscape area and the steepland portions only; this is roughly comparable to the

amount of logging reported in Gimbarzevsky (1988). It should also be noted that Gim-

barzevsky’s ‘‘active’’ area is not equivalent in definition to Rood’s steepland area, but it

should provide at least somewhat comparable values. Rood estimated that landslide scars

remained visible on his aerial photographs for about 40 years, whereas Gimbarzevsky

(1988) did not address this issue directly in his report.

For comparative purposes, the frequency distributions of landslide lengths for the

Gimbarzevsky and Rood databases are shown in Fig. 3 and Table 1. The length values for

Rood include the transport and runout zones; the length values of Gimbarzevsky (1988)
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may also include some portions (or all) of the deposition zone (although no specific

information on this is available). These results demonstrate that Rood’s database is par-

ticularly effective at capturing the smaller landslides (0–100 m in length), whereas the

Gimbarzevsky database more adequately captures the less frequent landslides of greater

length.

Based on the above, Rood consistently obtained a higher landslide frequency than

Gimbarzevsky, despite the study being somewhat more restrictive in the types of failures

that were identified. The primary reason for these differences may be attributed to Rood’s

ability to identify the small, more frequent events using his scale of aerial photographs. The

smallest landslides identified by Rood had volumes of about 200 m3 (*10 m in length),

and his largest identified landslides were about 16,000 m3 (*750 m in length). Rood’s

inability to identify a full sampling of larger, infrequent failures is not expected to affect

his summary landsliding frequency rates significantly, as only numbers of events are

considered in these frequencies, not the magnitude of the events. If total area affected by

landslides is considered, then the poor spatial sampling of the largest landslides would be

more problematic. The fact that Gimbarzevsky identified a greater number of failure types

does not seem to counterbalance the lack of smaller events in his database.

5 Mechanical theory and variables for discriminant function analysis

5.1 Introduction

Landscape and environmental variables incorporated into discriminant function analysis

should be selected on the basis of a clearly stated rationale; careful consideration of the

variables in the development stages of a study allows for a more clear interpretation of

results. A well-developed body of mechanical theory exists for most of the landslide types

identified by Gimbarzevsky. Landslide initiation in all cases results from the interplay of

driving stresses and resisting stresses acting on a particular hillslope location, the net result

of which is defined by the safety factor:

Fig. 3 Landslide lengths for the Rood (1984, 1990) and Gimbarzevsky (1988) landslide inventories
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Safety Factor ¼ Shear Strength

Shear Stress
:

Unfortunately, it is often the case that the input variables required for mechanically-

based landslide equations are not available over the large spatial extents and resolution

associated with regional landsliding susceptibility. Hence, the actual variables incorporated

in GIS-based landsliding analyses are most often generalized variables that encapsulate

some aspect of mechanical theory, and that can be derived from existing digital elevation

models (DEMs) or from other existing data sources (e.g., geological databases, regional

climatological data).

The following variable coverages were selected as possibilities for incorporation in our

discriminant function analysis: slope, profile curvature, plan curvature, elevation, precip-

itation, specific catchment area, aspect, geology and distance to fault lines. We now

introduce basic mechanical theory for several landslide types, and discuss the variables

from this list that might be used to represent aspects of the underlying mechanical theory in

our regional analysis.

5.2 Debris slides

According to the Coulomb-Terzaghi criterion, slope instability for debris slides occurs

when shear stress (s) exceeds shear strength (S.S.) of the soil/regolith layer (Selby 1993).

Shear stress (N m-2) is given by the equation:

Table 1 Frequency distributions
of landslide lengths for the Gim-
barzevsky (1988) and Rood
(1984, 1990) databases

a The Gimbarzevsky database
provides important sampling of
large landslides; the low
percentages of the largest
landslide lengths do not show up
at the resolution of Fig. 3, so the
values are provided here

Bins for
landslide
length (m)

Rood (1984, 1990):
frequency
distribution (%)

Gimbarzevsky
(1988): frequency
distribution (%)a

0–100 68.29 0.27

100–200 17.72 29.60

200–300 8.62 32.69

300–400 3.59 16.12

400–500 0.98 8.80

500–600 0.49 4.78

600–700 0.16 3.23

700–800 0.16 1.95

800–900 1.00

900–1000 0.57

1,000–1,100 0.28

1,100–1,200 0.33

1,200–1,300 0.069

1,300–1,400 0.086

1,400–1,500 0.10

1,500–1,600 0.034

1,600–1,700 0.017

1,700–1,800 0.017

1,800–1,900 0.035

1,900–2,000 –

[2,000 0.017
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s ¼ qsg z sin h cos h

where qs is density of soil/regolith (kg m-3), g is gravitational acceleration (m s-2), z is

soil depth (m), and h is slope angle (�). The shear strength (N m-2) of the soil is defined as:

S:S: ¼ cS þ cR þ r0 tan /

where cS is soil cohesion (N m-2), cR is tree root cohesion (N m-2), r0 is effective normal

stress (N m-2) and tanu is angle of internal friction (dimensionless). The effective normal

stress (r0) in the above equation is:

r0 ¼ ðqS � qWMÞg z cos2 h

where qW is density of water (kg m-3), M is the ratio of the height of the piezometric

surface above the base of the soil (h) to the total vertical soil thickness (z).

Many of the variables required in these equations (i.e., angle of internal friction, height

of piezometric surface for specific triggering events) are not generally available at the

scales typical of landsliding inventories. However, it is possible to obtain coverages for

several variables that are related to various aspects of the mechanical theory, and that are

available at the regional scale.

Shear stress and normal stress are related to slope geometry. In particular, slope gra-

dient, readily obtainable from DEMs, is a major factor in determining which of these

stresses will be dominant over the other. Distance to fault lines may be an important

variable for landsliding analysis, as seismic shaking provides sudden increases in shear

stress through violent ground motion. While there are no direct variables to estimate depth

to the regolith layer and bulk density of the soil as found in both the shear stress and

normal stress equations, some other variables may partly contribute to the values for these

variables. For example, profile/plan curvature, elevation, gradient, aspect, contributing

area, geology and precipitation may affect the depth of the weathered profile and the

degree of weathering; however, it is not clear that such relations would be strong enough to

show up as significant contributors in statistical analysis.

A major trigger of landslides is the pore water pressure term found in the equation for

effective normal stress. The number and intensity of rainfall events triggering landslides

may have some relation to mean annual precipitation. The distribution of pore water

pressures across the landscape during rainfall events may be partly captured by a number

of variables (with some being more important than others): specific catchment area, and

slope geometry variables (slope gradient, profile/plan curvature, aspect).

Unfortunately, two key geotechnical properties in the shear strength equation, soil

cohesion and angle of internal friction, are not likely to be available over regional scales. In

our study area, overlying soil properties are not often expected to have any significant

relation to bedrock geology. Much of the bedrock is covered by various glacial and

postglacial deposits (i.e., glacial till, glacial lake sediment, alluvial fans, valley fill). A

large portion of the soil/regolith in Haida Gwaii consists of weathered glacial deposits,

such as till, and not bedrock weathered in situ (see Martin 2000; Martin et al. 2002). For

these reasons, bedrock geology may not be a significant factor affecting most debris slides

(or debris flows). That being said, in some instances soil cover may be derived from local

bedrock, and in such cases bedrock may have an influence. In particular, Folisols, derived

from local bedrock, may be found in the initiation zone of landslides (Campbell et al. 2010;

Nagle 2000).
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Factors that control the degree of weathering of either bedrock or glacially-emplaced

material (e.g., precipitation, elevation, aspect, slope geometry) may have some relation

with these soil properties.

Many of the predictor variables mentioned above affect more than just one aspect of the

underpinning mechanical theory, and many of the variables are themselves inter-related.

5.3 Rockslides

Rockslides initiate along planes of weakness; the properties of the latter are a major

component of mechanical theory for rock failures (Selby 1993). Shear stress is similar to

the equation given for debris slides:

s ¼ qRg z sin h cos h

where qR is density of rock (kg m-3), z is the depth to the plane of weakness (m) and the

other variables and units remain the same as defined for debris slides. The normal stress is

now given by:

r ¼ qRgz cos2 h

where the variables have all been defined previously. In addition to incorporating the

normal stress, the shear strength is dependent on the frictional properties along the plane of

weakness:

S:S: ¼ r tan /pw

where tanupw is total friction along the plane of weakness, which consists of basic fric-

tional properties along the plane and any large asperities that may contribute additional

resistance. If water exists along the plane of weakness, then this may influence the shear

strength along the plane of weakness.

Slope geometry variables are important in determining the value of both shear stress and

normal stress. Profile curvature may provide an indication of any support at the slope base.

Geological mapping may provide important information relating to several variables: rock

density; spacing of planes of weakness; and frictional properties along planes of weakness.

Water-related variables may play a role in the friction along the failure plane.

5.4 Debris flows

Takahashi (1981) outlines some of the conditions that must be met for the initiation of

debris flows. The tangent slope of the debris flow must exceed the following two

conditions:

c � ðqg � qfÞ
c � ðqg � qfÞ þ qfð1þ h0d�1Þ tan /

and

c � ðqg � qfÞ
c � ðqg � qfÞ þ qfð1þ j�1Þ tan /

where c* is grain concentration by volume in the static bed, qg is density of sediment

grains (kg m-3), qf is density of fluid (kg m-3), h0 is depth of water flow (m), d is diameter
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of grains (m), u is internal friction angle and j is a numerical coefficient (determined from

experiments to be about 0.7).

Based on the above mechanical theory, several variables related to slope geometry may

be important for debris flow initiation (e.g., slope gradient, profile curvature, plan curva-

ture), as well as several water-related variables (see section on debris slides for complete

list and details). Sediment that collects in gullies (which has the potential to be involved in

debris flow activity) may or may not show a relation to underlying geology, depending on

whether the bedrock has been scoured or not.

5.5 Debris avalanches

Debris avalanches involve the chaotic movement of rocks, soil and/or debris mixed with

water and/or ice on steep slopes, and the flow is largely unconfined. Earthquakes may be an

initial trigger of such events, and as material moves downslope, water and/or ice may be

incorporated into the mass. Saturation of the material by water independent of earthquake

activity may also be an important triggering mechanism. Mechanical theory of debris

avalanches is not as well developed as for other more common landslide types, given their

less frequent occurrence and often very unique situations. However, many of the same

mechanical variables noted for debris slide and debris flow initiation are expected to be

important. The variable coverages that might be significant are slope geometry and water-

related characteristics, such as those discussed in the above sections.

5.6 Final selection of variables

Based on the above discussion, the following variable coverages are selected for incor-

poration in our discriminant function analysis: slope, profile curvature, plan curvature,

elevation, precipitation, specific catchment area, aspect, bedrock geology and distance to

nearest fault line (Table 2). The abstraction process for these variables, during which

information is generalized into map coverages, may introduce errors, which can be further

perpetuated through GIS manipulation and analysis (Walsh et al. 1987; Guzzetti et al.

1999). The use of stepwise discriminant function analysis allows for identification of

variable combinations that are the best predictors of our grouping variable (failed vs.

unfailed locations).

6 Variable coverages

The digital elevation model (DEM) used in the analysis has 25 m postings and was derived

from 1:20,000 Terrain Resource Information Maps (TRIM) available from the British

Columbia government (http://archive.ilmb.gov.bc.ca/crgb/pba/trim/). Several of the topo-

graphic coverages for this study were derived from the DEM (Fig. 4). These derivatives

include slope, aspect, profile curvature, plan curvature, and specific catchment area. Slope

and aspect were generated in ArcView using the standard commands; a D-8 model

embedded within ArcView calculates slope gradient. The remaining derivatives, including

profile curvature, plan curvature and specific catchment area, were obtained using the

hydrological extension TarDEM� (Tarboton 2000). Profile and plan curvature are

expressed by derivatives of the dependence of the elevation z = f(x, y) on the coordinates

x and y (cf., Evans 1980). To determine the catchment area for a location, the first step is to

fill all pits in the DEM. Once pits in the DEM are filled, TarDEM� is used to calculate the
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number of grid cells draining through each downslope grid cell. Categorical data coverages

were reclassed to interval values for discriminant analysis. Aspect was reclassed based on

observed landslide frequencies of occurrence in a preliminary analysis.

In addition to the topographic variables, precipitation, bedrock geology and distance to

nearest fault line were also included in our analysis. The bedrock geology data is based on

geological maps having a scale of 1:125,000 and a UTM projection (Gimbarzevsky 1988

after Sutherland Brown 1968) (Fig. 5). The geological maps were scanned and imported

into PCI Geomatica, where they were georeferenced, mosaiced and reprojected to British

Columbia’s Albers Equal Area projection. These data consist of bedrock geology polygons

and fault lines (398 digitized fault line vectors). The geological coverage was reclassed

based on relative strengths (Sutherland Brown 1968; Gimbarzevsky 1988), and follows a

basic relative hardness classification. The precipitation data used in our analysis are based

on Hogan and Schwab (1990). This earlier study used two separate data sources in its

analysis of precipitation characteristics for Haida Gwaii. The first data source consisted of

5-year records from 8 weather stations regulated by the Atmospheric Environment Service

(AES). The second data source was from the British Columbia Ministry of Environment

Resource Analysis Branch (RAB) and consisted of monthly total precipitation values for

27 stations covering a record of 4 years. Unfortunately, the original source data could not

be located and are therefore not available (Hogan, personal communication 2004). The

four precipitation zones delineated in Hogan and Schwab (1990) were scanned, and this

image was rectified (Fig. 6).

Once all of the variable coverages were gathered, the values for each variable were

obtained for every landslide initiation point and for the random sample of locations rep-

resenting unfailed slopes (same number of data points as the landsliding group; these data

are required for the discriminant function analysis). This was accomplished in one of two

ways, depending on whether the coverage was in vector or grid format. For the vector

coverages, such as bedrock geology and precipitation, the attribute information was

attached using a spatial join feature in ArcView. This function prevents data redundancy;

instead of copying the information to the actual initiation point coverage, it associates the

two files together but keeps the information of the two coverages independent from one

another. For grid coverages such as elevation and slope, a ‘‘Get Grid Attribute’’ avenue

script was used to copy the grid variable information at each landslide initiation point. The

pooled within-group correlation matrix for the 9 variables is shown in Table 3. It should be

noted that the strongest correlations exist between the variables slope, elevation, precipi-

tation, geology and nearest fault distance.

Table 2 Controlling variables of
landslide initiation and format

Variable Format

Slope angle Grid

Slope aspect Grid

Elevation Grid

Precipitation Vector

Profile curvature Grid

Plan curvature Grid

Specific catchment area Grid

Bedrock geology Vector

Distance to fault line Vector
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Fig. 4 a Elevation values
(meters above sea level) for
Graham Island. b Hillshade
relief. Data source: British
Columbia Government TRIM
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Tabachnick and Fidell (2001, p. 462) explain that discriminant analysis ‘‘…is robust to

failures of normality if violation is caused by skewness rather than outliers.’’ Our data for

variable coverages were examined for normality, skewness and outliers. Even though there

is skewness associated with some of our variables (such as precipitation, catchment area,

nearest fault distance), outliers are minimized in our data as many of our variables were

extracted from information derived from DEMs for the Queen Charlotte Islands that has

been subject to careful prior analysis. Furthermore, several of our variables were reclassed,

during which any outliers (should they have existed) were recognized and removed.

7 Forward stepwise discriminant function analysis

7.1 Methods

Discriminant function analysis (DFA) is the statistical technique used in our study for

identifying the factors associated with landslide initiation (Carrara et al. 1991; Baeza and

Geology

Thick Quaternary

Sedimentary

Soft volcanics

Hard volcanics

Plutons

0 10 km

Fig. 5 Bedrock geology for
Graham Island. Source:
Gimbarzevsky (1988) after
Sutherland Brown (1968)
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Corominas 2001). In our analysis, two broad dependent groups are defined: (1) locations of

landsliding occurrence (Group 1) and (2) a random sample of locations that represents

unfailed slopes, having the same number of data points as the landsliding group (Group 0).

DFA optimizes a linear combination of predictor variables (i.e., in our study, those vari-

ables likely to be associated with landslide initiation) that are best suited for discriminating

amongst the categorical dependent variables. The discriminant score is calculated by the

equation:

Z ¼ a þ C1X1 þ C2X2 þ C3X3 þ � � � þ CnXn

where Z is the discriminant score, the number used to predict group membership of a case;

a is a coefficient that maximizes variability between failed and unfailed groups (while also

minimizing variability within groups); Xi refers to predictor variables (in our study,

variables conducive to landslide initiation), and Ci is the discriminant weight or coefficient,

a measure of the extent to which a variable Xi discriminates amongst the groups. The Z-

scores for failed and unfailed slopes should be as different as possible, highlighting the

separation between groups (Carrara et al. 1991).

Precipitation Zones

1 (1260 - 1370 mm/yr)

2 (1665 - 1765 mm/yr)

3 (2035 - 2225 mm/yr)

4 (3665 - 3775 mm/yr)

0 10 km

Fig. 6 Precipitation zones for
Graham Island. Source: Hogan
and Schwab (1990)
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In DFA, a key criterion is the optimization of the between-groups to within-groups sum

of squares (Huberty 1994), defined as:

TSS ¼
X

Zi � �Zð Þ2

WSS ¼
X

Zij � �Zj

� �2

BSS ¼
X

�Zj � �Z
� �2

where TSS is total sum of squares, WSS is within-group sum of squares, BSS is between-

group sum of squares, i is an individual case, j is a group, Zi and Zij are individual discriminant

scores, �Z is the grand mean of the discriminant scores, �Zj is the mean discriminant score for

Group j. The goal is to estimate parameters that minimize the within-group SS. Various

statistical measures are utilized in the analysis that are based on these equations.

The forward stepwise selection process requires that before a variable is retained for

further analysis, it must pass some minimum conditions as defined by a set of selection

criteria. These minimum conditions include a tolerance test, which assures computational

accuracy, and an F-statistic (see Table 4 for additional information on these criteria). The

F value for a variable indicates its statistical significance in the discrimination between

groups, and provides a measure of the unique contribution that a variable makes to the

prediction of group membership. In forward stepwise discriminant analysis, the variables

are entered in a stepwise fashion based on the Wilks’ lambda score. The Wilks’ lambda

score, K, represents a measure of the equality of group means, analyzed between groups:

K ¼WSS

TSS
:

This statistical test identifies if differences exist between group means, i.e. our random

locations and our failed locations (Groups 0 and 1 as defined earlier) for the dependent

variables. Wilks’ lambda is a measure ranging in value between 0 and 1, with a value of 0

representing complete group mean separation and a value of 1 indicating group means are

equal. Wilks’ lambda scores are used for two purposes in this analysis: the first is to assess

the amount of group separability between each variable; the second is the assessment of the

eigenvalue, a value that describes the reliability of the discriminant function.

Once the stepwise procedure begins, the predictor variable that best separates groups,

based on the lowest significant Wilks’ lambda score, is entered into the model and the

parameters for the resulting discriminant function are tested for group separation. Of the

remaining variables, the predictor that has the next lowest K (i.e., the next best separator) is

selected and entered into the model. It is then assessed if the addition of that variable was

meaningful; furthermore, the predictor variable(s) previously entered must be checked to

ensure that they remained significant. This procedure is repeated until all of the predictor

variables are entered into the model or until none of the variables outside the model have

meaningful K values; i.e., when none of our unselected variables meets the entry criterion.

It should be noted that as variables are entered, the multivariate dimensionality increases

and, thus, variables that on a univariate plane show good separation of group means may

not show the same separation of group means in a multivariate framework (Huberty 1994).

7.2 Results of discriminant analysis

Due to the significant areal extent of missing data for Moresby Island, we restricted the

discriminant analysis to Graham Island, involving a total of 3,466 landslides and covering
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Table 4 Results of the forward stepwise discriminant analysis

Step Variables Tolerancea F to Removeb Wilks’ Lambda (K)c

1 Slope 1.000 4052.955

2 Slope 0.861 1698.313 0.730

Elevation 0.861 528.135 0.631

3 Slope 0.752 876.946 0.633

Elevation 0.816 313.599 0.588

Precipitation 0.765 290.699 0.586

4 Slope 0.752 882.046 0.632

Elevation 0.816 315.486 0.586

Precipitation 0.764 285.466 0.584

Aspect 0.998 17.232 0.562

5 Slope 0.751 886.827 0.632

Elevation 0.801 294.786 0.584

Precipitation 0.763 288.573 0.583

Aspect 0.998 17.615 0.562

Profile curvature 0.982 8.729 0.561

6 Slope 0.750 889.491 0.632

Elevation 0.790 300.795 0.584

Precipitation 0.548 245.602 0.580

Aspect 0.998 17.370 0.561

Profile curvature 0.981 8.285 0.560

Nearest fault distance 0.617 6.012 0.560

7 Slope 0.739 851.048 0.628

Elevation 0.789 297.538 0.583

Precipitation 0.510 205.607 0.576

Aspect 0.998 17.000 0.560

Profile curvature 0.980 8.698 0.560

Nearest fault distance 0.588 8.872 0.560

Geology 0.688 7.268 0.560

a The tolerance test is designed to preserve computational accuracy. For example, a variable with a par-
ticularly low tolerance (\ 0.001) is likely to cause inaccuracies in the computation of the model
b The stepwise procedure is guided by the ‘‘F-to-remove’’ values. The significance is tested for the decrease
in discrimination should a particular variable be removed from the already selected list. When a new
variable is entered in the analysis, the ‘‘F-to-remove’’ values of the other variables generally change. This
test is performed at the beginning of each step to see if any variables no longer contribute significantly to
discrimination; if a variable drops below the ‘‘F-to-remove’’ threshold, then the worst of the variables is
removed before the analysis continues. A variable that was a good choice in an earlier step, may no longer
be a good choice because other variables entered duplicate its contribution. On the final step the variable
associated with the largest ‘‘F-to-remove’’ makes the greatest contribution to overall discrimination, and the
variable with the 2nd largest value is the second most important
c This column represents what the K value would be for the discriminant model, if that variable was
removed, leaving only the other variable(s) in the model. There is no entry in this column for Step 1, as
removal of the first variable means removing the only variable. The Step 2 results have two predictors (slope
and precipitation); the Wilks’ lambda coefficient in each case represents the model Wilks’ lambda if that
variable was dropped, leaving only the other variable
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an area of 6,671 km2. The order of variables entered into our forward stepwise discrimi-

nant analysis is shown in Table 4. When none of our unselected variables meets the entry

criterion, the forward selection process stops (note that plan curvature and catchment area

never entered into the analysis). Slope, elevation and precipitation are the three most

important discriminatory variables in our analysis. Aspect, profile curvature, nearest fault

distance and geology contribute the least to the discriminatory model. A number of

parameters can be examined to evaluate the strength of the discriminant model.

The discriminatory power of the model can be assessed by calculation of the

eigenvalue:

k ¼ BSS

WSS

where BSS is the between-group sum of squares and WSS is the within-group sum of

squares. The goal is to estimate parameters that minimize the WSS. An eigenvalue of 0

indicates that the model has no discriminatory power; the larger the value of k, the greater

the discriminatory power of the model. Summary results reveal a discriminant function

using 7 of the 9 available variables, with an encouraging eigenvalue of 0.789, indicating a

near 80% discriminatory power (Table 5a).

The discriminatory power of our model is further supported by the canonical correla-

tion, which is a measure of the association between groups formed by the predictor

variables(s) and the discriminant function:

g ¼
ffiffiffiffiffiffiffiffiffiffiffi

k
1þ k

r
¼ BSS

TSS
:

When g is zero, there is no relation between the groups and the discriminant function;

when the canonical correlation is large, there is a high correlation between the groups and

Table 5 a Eigenvalue for the discriminant function, b Wilks’ lambda score, c Classification results

(a)

Eigenvalue Canonical correlation

0.789a 0.664

(b)

Wilks’ Lambda Chi-square Degrees of freedom Significance

0.559 4021.111 7 0.000

(c)

Group Predicted group membershipb

0 1 Total

Count 0 2,648 818 3,466

1 448 3,018 3,466

Percent 0 76.4 23.6 100.0

1 12.9 87.1 100.0

a First canonical discriminant function was used in analysis
b 81.7% of original grouped cases correctly classified
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the discriminant function. Our results indicate a value of 66% for the canonical correlation

(Table 5a). This indicates that approximately 80% of landslides were discriminantly

separated from the random sample using 7 variables, and that these 7 predictor variables

display a 66% correlation amongst the grouped dependents (landslide initiations) and the

discriminant function.

The significance of the values in Table 5a is corroborated by the Wilks’ lambda score

(Table 5b), which indicates the reliability of the eigenvalue. The value of K in this case can

be converted to a Chi-square statistic distributed for df = (k - 1), where k is equal to the

number of parameters estimated. The lambda score in our model results in a significant

Chi-square (X2) test, indicating that differences in mean discriminant scores of the two

groups are greater than could be attributed to sampling error alone. Classification results

indicate 81.7% of the original grouped cases were correctly classified (Table 5c). The

value for correctly classified landslide locations (Group 1) is 87.1%, while the correctly

classified non-landslide locations (i.e., our random locations in Group 0) is 76.4%. Finally,

the standardized canonical discriminant function coefficients for the forward stepwise

analysis for the 7 remaining variables are shown in Table 6. Based on the three principal

variables found to explain the most variance, the discriminant function equation is given

as:

Z ¼ �2:988þ 0:05X1 þ 0:002X2 þ 0:407X3

where X1 is slope, X2 is elevation and X3 is precipitation.

8 Discussion and conclusions

The spatial coverage of the landslide inventory collected by Gimbarzevsky is remarkable,

providing perhaps the best record of medium to large landslides for coastal British

Columbia. The comparison of frequency distributions for landslide lengths found in the

Rood and Gimbarzevsky databases highlights how contrasting scales of aerial photogra-

phy can lead to very different results. The spatial distribution of landslide events in the

Gimbarzevsky landslide inventory results from the real-time interaction of a variety of

factors which, when combined with some triggering mechanism (i.e., high rainfall event,

earthquake activity), determine the ratio between the shear stress and shear strength acting

at any particular location. Researchers and land managers are also often concerned with

landslide susceptibility over larger, regional scales (102–104 km2). At these large scales, it

is not feasible to obtain the input information required for mechanical analysis. For this

reason, variables that may be related to pertinent aspects of the underlying mechanical

theory, but that are possible to obtain over larger spatial scales, are collected and then

analyzed in conjunction with a landsliding inventory using various statistical techniques.

Consideration of the mechanical theory as demonstrated herein shows that the various

predictor variables are often related to more than just one aspect of mechanical theory; for

example, slope geometry variables may affect shear stress, normal stress and pore water

pressure. Moreover, certain predictor variables may be related; for example, elevation and

precipitation often show a relation to one another. In regards to these various inter-

relationships, a particular strength of the forward stepwise analysis adopted in this study

is that as a new predictor variable enters the analysis, the relative contribution of other

variables previously entered into the analysis can change (in response to these multiple

roles).
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The forward stepwise approach adopted for the discriminant analysis of the Gim-

barzevsky landsliding inventory showed that seven of the nine possible predictor variables

were significant in separating the grouping variable. The relatively high eigenvalue of 0.79

indicates a strong ability of the final model to discriminate between failed and unfailed

locations (with a canonical correlation of 0.66 and a significant Wilks lambda score). The

predicted group membership shows that 76.4% of the unfailed locations were correctly

classified, while 87.1% of the failed locations were correctly classified; these are

encouraging results.

The variables with a relatively larger value of the standardized discriminant coefficient, in

either the positive or negative direction, are those having the most important role in dis-

criminating between the grouping variables (failed vs. unfailed locations). A positive coef-

ficient means that higher values of the variable have a tendency to be related to hillslope

failure, whereas a negative coefficient means that a higher value of the variable shows a

tendency towards non-failure; values closer to zero have a lesser role. The most important

variables for discriminating between failed and unfailed locations are slope gradient (coef-

ficient of ?0.580), elevation (?0.344) and precipitation (?0.358). The remaining variables

are less important in discriminating amongst these two groupings (Table 6).

Slope gradient is a notable predictor variable because it is a key variable in mechanical

theory, appearing in the calculation of both shear stress and normal stress. Higher slope

gradients lead to relatively greater shear stresses and lower values of resisting normal

stresses. Higher elevation is probably associated with many failed locations due to its

relation to several key mechanically-related variables (elevation in itself does not appear in

the underlying mechanical theory; see earlier discussion). In particular, higher elevations

often have steep slopes and are also subject to greater precipitation. Precipitation is a major

factor in landslide initiation, as it controls the pore water pressure that is a key component

of mechanical theory. The other remaining variables show much less contribution to the

discrimination of the grouping variable. Despite the lack of direct soil information included

in the discriminant function analysis, a good discrimination for the grouping variable was

possible. Soil-related variables are critical in the calculation of shear strength (soil cohe-

sion, angle of internal friction). It may be the case that the specific soil information

contained in such variables correlates to some of the other regional predictor variables used

in our analysis (elevation, slope gradient etc.).

Several other studies adopted a discriminant analysis approach to studying landsliding

occurrence and found different combinations of predictor variables to be the most

important. Baeza and Corominas (2001) found that slope gradient, watershed area and

land-use were the most important predictor variables, while Santacana et al. (2003)

identified slope gradient (easily derived from a DEM) and thickness of the superficial

Table 6 Standardized canonical
discriminant function coefficients

Variable Value

Slope 0.328

Elevation 0.344

Profile curvature -0.054

Aspect -0.075

Precipitation 0.358

Geology 0.059

Nearest fault distance -0.070
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deposits (obtained from field work, so not possible for larger, regional studies) as being the

most important variables.

Our analysis provides insights regarding the predictor variables that land managers and

other researchers may consider including in future landsliding analyses. That being said,

our landsliding inventory does focus on medium to large landslides, and on coastal British

Columbia. Therefore, the most important predictor variables may differ for other studies,

and our results should be used mainly for guidance purposes. Of particular note is that two

of the most significant three variables identified in our study are all readily retrieved from

standard DEM analyses; this is very encouraging from a feasibility perspective. Some of

the other variables that are less straightforward to obtain played a less important role in

discrimination of the grouping variables.
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