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Abstract. This paper demonstrates techniques for pre-eruption prediction of lahar-inundation
zones in areas where a volcano has not erupted within living memory and/or where baseline
geological information about past lahars could be scarce or investigations to delimit past

lahars might be incomplete. A lahar source (or proximal lahar-inundation) zone is predicted
based on ratio of vertical descent to horizontal run-out of eruptive deposits that spawn lahars.
Immediate post-eruption distal lahar-inundation zones are predicted based on ‘‘pre-eruption’’

distal lahar-inundation zones and on spatial factors derived from a digital elevation model.
Susceptibility to distal lahar-inundation is estimated by weights-of-evidence, by logistic
regression and by evidential belief functions. Predictive techniques are applied using a geo-
graphic information system and are tested in western part of Pinatubo volcano (Philippines).

Predictive maps are compared with a forecast volcanic-hazard map through validation against
a field-based volcanic-hazard map. The predictive model of proximal lahar-inundation zone
has ‘‘true positive’’ prediction accuracy, ‘‘true negative’’ prediction accuracy, ‘‘false positive’’

prediction error and ‘‘false negative’’ prediction error that are similar to those of the forecast
volcanic-hazard map. The predictive models of distal lahar inundation zones have higher ‘‘true
positive’’ prediction accuracy and lower ‘‘false negative’’ prediction error than the forecast

volcanic-hazard map, although the latter has higher ‘‘true negative’’ prediction accuracy and
lower ‘‘false positive’’ prediction error than the former. The results illustrate utility of pro-
posed predictive techniques in providing geo-information could be used, howbeit with caution,

for planning to mitigate potential lahar hazards well ahead of an eruption that could generate
substantial source materials for lahar formation.
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1. Introduction

On volcanic landscapes, lahars develop from mixtures of meteoric water
and rock debris (Vallance, 2000). Lahars are enormously destructive such
that mitigation of lahar hazards is a non-trivial task. In general, hazardous
conditions (e.g., volcanic eruptions, heavy rainfall) that favor lahar
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formation could be recognized and used as warnings that aid mitigation of
lahar hazards (e.g., Lecointre et al., 2004). However, time between occur-
rence of hazardous conditions that favor lahar formation and occurrence
of lahars could be insufficient to establish lahar mitigation plans (e.g.,
Newhall and Punongbayan, 1996). Thus, it is certainly more desirable to
develop lahar hazard mitigation plans well ahead of phenomena that favor
lahar formation. In such a case, maps depicting probable lahar-inundation
zones can be derived through various predictive techniques, which makes
use of geological knowledge or information as well as practical experiences
gained from previous lahar occurrences.

Knowledge of lahar rheology is essential in creating lahar flow-routing
models (e.g., Laenen and Hansen, 1988; Vignaux and Weir, 1990; Macedo-
nio and Pareschi, 1992; Costa, 1997). However, flow-routing models re-
quire that input parameters based on lahar rheology should be known in
advance to predict behavior of lahars (Pareschi, 1996). In addition, calibra-
tion of flow-routing models for efficient interpolation/extrapolation of la-
har prone areas requires detailed field data and laboratory analyses (e.g.,
Canuti et al., 2002). Hence, where data are inadequate to develop robust
flow-routing models, alternative methods are needed to predict lahar-inun-
dation zones.

Information about lahar geometry (i.e., cross-sectional areas, planimet-
ric areas, volumes) is useful in predicting lahar-inundation zones (Iverson
et al., 1998). Based on scaling and statistical analyses of geometry of 27
lahar paths at nine volcanoes, Iverson et al. (1998) derived empirical equa-
tions that estimate planimetric and cross-sectional areas of lahar-
inundation as functions of lahar volumes. These empirical equations were
used by Schilling (1998) to develop LAHARZ – a suite of geographic
information system (GIS) programs – for automated mapping of lahar-
inundation zones. Utility of LAHARZ for construction of lahar hazard
maps has been demonstrated widely in the U.S. (e.g., Scott et al., 1999;
Walder et al., 1999; Vallance et al., 2003) and in Central America (e.g.,
Major et al., 2001; Schilling et al., 2001; Vallance et al., 2001a, 2001b; Ca-
nuti et al., 2002). A drawback of LAHARZ modeling is that empirical
relationships between planimetric and cross-sectional areas and volumes of
lahars were derived specifically at nine volcanoes and that these empirical
relationships may not apply accurately to volcanoes in other areas.

In view of certain drawbacks of lahar flow-route and/or LAHARZ
modeling mentioned, pre-eruption prediction of lahar-inundation zones
pose specific challenges in areas where a volcano has not erupted within
living memory. This is because, in such areas, baseline geological informa-
tion about past lahars could be scarce or investigations to delimit past lah-
ars might be incomplete. The objective of this paper is, thus, to
demonstrate techniques to predict lahar-inundation zones prior to an erup-
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tion that could generate substantial source materials for lahar formation.
These techniques involve estimation, for any location around a volcano, of
relative susceptibility to inundation by lahars that (a) form initially within
a zone of source materials emplaced on volcano flanks due to an eruption
and (b) flow subsequently towards adjacent lowlands. The focus is to
predict zones that, in general, could be affected by multiple immediate
post-eruption lahars but not to predict inundation by single lahars.
Accordingly, predictive maps are validated with a map that depicts cumu-
lative effects of multiple immediate post-eruption lahars.

To predict lahar-inundation zones, we follow some tenets adhered to by
previous workers (e.g., Crandell and Mullineaux, 1975; Scott et al., 1995;
Iverson et al., 1998). First, knowledge or information of past lahar sources
and/or lahar-inundation zones (i.e., geologic precedence) provides basis for
predicting future lahar-inundation. Second, lahars follow certain paths and
a simplistic expectation is that lahars follow river channels that head on
volcano flanks, although complications (e.g., flow avulsion, stream piracy)
along lahar paths are not uncommon. Third, there is always uncertainty in
predictive modeling of lahar-inundation zones; that is, no one can foretell
exactly size of next lahar to descend a given drainage. In following these
tenets, however, spatial data concerning lahar rheology or lahar geometry
are not used. Of course, significance of such types of data to lahar hazard
assessment is not questioned. Rather, it is recognized that, in areas where a
volcano has not erupted within living memory, such types of data might be
lacking. In our proposed techniques, input spatial data to predictive mod-
eling of lahar-inundation zones were derived from a pre-eruption digital
elevation model (DEM), as topographic maps (from which a DEM could
be generated) are probably mostly available in situations where a volcano
has not erupted within living memory. We demonstrate the predictive tech-
niques in western part of Pinatubo volcano (Figure 1).

2. Test Area

Prior to 1991, Pinatubo volcano did not erupt for about 500 years
(Newhall et al., 1996). In early April 1991, several geologic indications
were recognized that Pinatubo volcano would erupt. These indications
prompted Pinatubo Volcano Observatory Team (1991) to prepare and then
release, in late May 1991, a forecast volcanic-hazard map (Figure 2).
Explosive eruptions in June 1991 resulted in emplacement of >5 km3 of
pyroclastic-flow deposits (Pierson et al., 1992; Scott et al., 1996) and
�0.2 km3 of tephra-fall deposits (Pierson et al., 1992; Paladio-Melosantos
et al., 1996) on the slopes of the volcano. About two-thirds of total esti-
mated volumes of pyroclastic-flows have been deposited in western part of
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Pinatubo volcano (Figure 3; Rodolfo et al., 1996). During and immediately
after the eruptions, heavy rainfalls have re-worked the pyroclastic deposits
into lahars (Major et al., 1996; Pierson et al., 1996; Rodolfo et al., 1996;
Umbal and Rodolfo, 1996).

In western part (as well as in eastern part) of Pinatubo volcano, most lah-
ars originated from pyroclastic-flow deposits while some lahars originated
from tephra-fall deposits (Pierson et al., 1992; Rodolfo et al., 1996; Umbal
and Rodolfo, 1996). Lahars in 1991 inundated mainly channels of Santo To-
mas, Bucao and Maloma river systems (Figure 3). Total volume of 1991 lah-
ars was about 4.6 · 108 m3 in an aggregate area of about 119 km2 (Rodolfo
et al., 1996). These estimates of planimetric area (B) and volume (V) of 1991
lahars match closely empirical relationship (i.e., B=200 V2/3) derived by Iv-
erson et al. (1998). However, Rodolfo et al. (1996) state that estimated vol-
ume of 1991 lahars is exclusive of lahars that reached the sea. This suggests
that empirical relationships derived by Iverson et al. (1998) may not apply
accurately to western part of Pinatubo volcano.

Figure 1. Location of test area in Luzon island, Philippines.
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3. Spatial Datasets

Digital capture of spatial data from analogue (i.e., paper) maps and sub-
sequent spatial data analyses were performed using ILWIS (Integrated
Land and Water Information System), a shareware GIS software devel-
oped by ITC (International Institute for Geo-Information Science and
Earth Observation). In ILWIS, spatial data analysis is carried out in raster
mode (i.e., pixel representation of spatial objects).

Spatial data used to predict lahar-inundation zones were derived from a
DEM (see Figures 2–4). This DEM was created from pre-eruption 1:50,000
scale analogue topographic maps (with mostly 20-m interval elevation
contours) produced by NAMRIA (National Mapping and Resources
Information Authority, Philippines) from 1976 air-photos of about
1:44,000 scale. Each topographic map was raster-scanned at 200 dpi reso-
lution, resulting in image pixel size of �6.3 m. Four corners of each image
of topographic map were used as control points in georeferencing to UTM
(zone 51) coordinate system, resulting in root mean square error (RMSE)
of <1 pixel per image (i.e., horizontal accuracy of �6 m). Contours in
images of topographic maps were digitized (i.e., ‘‘traced’’) on-screen as line
segments (i.e., vector format) and were assigned respective elevations as
spatial attributes. Digitized contours were rasterized using a pixel size of

Figure 2. Pre-June-1991 volcanic hazard map of western part of Pinatubo volcano
(adapted from Pinatubo Volcano Observatory Team, 1991) overlaid on a shaded-re-

lief image of pre-eruption DEM.
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20 m, which is roughly minimum horizontal distance between contours.
The DEM was created by linear interpolation between raster contours
(Gorte and Koolhoven, 1990).

For comparison and for validation of predicted zones that, in general,
could be inundated by multiple immediate post-eruption lahars, we used
spatial data shown in Figures 2 and 3, respectively. The pre-eruption vol-
canic hazards map (Figure 2) shows mudflow hazard zones, which proba-
bly represent predictions of immediate post-eruption inundation zones by
multiple distal lahars. The map of post-eruption deposits (Figure 3) shows
zones of lahar deposits and lahar-impacted channels, which represent zones
that were inundated by multiple lahars within about two and a half
months after the June 1991 eruptions. For example, lahar-inundation
zones along the Santo Tomas river system are cumulative effects of at least
30 lahars in August 1991 (Rodolfo et al., 1996, p. 995).

The analogue maps for comparison and for validation were each raster-
scanned at 1000 dpi resolution resulting in image pixel sizes of �17 and
�25 m, respectively. Each image of volcanic-hazard map was georefer-
enced to UTM (zone 51) coordinate system by using at least four control
points (e.g., river mouths/junctions, volcano summit) that are conspicuous
both in images of volcanic-hazard maps and in georeferenced images of
topographic maps. In GIS jargon, procedure to georeference an image
(‘‘slave’’) by using a georeferenced image (‘‘master’’) is called image-to-im-
age registration. The RMSE of georeferencing each image of volcanic-haz-
ard map was <1 pixel (i.e., horizontal accuracy of �17 and �25 m,

Figure 3. Field-based map of pyroclastic-flow deposits of June 1991 eruptions and la-
har deposits as of 1 September 1991 in western part of Pinatubo volcano (adapted

from Pierson et al., 1992) overlaid on a shaded-relief image of pre-eruption DEM.
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respectively). Pertinent spatial features depicted in images of volcanic-haz-
ard maps were digitized on-screen and then rasterized using a pixel size of
20 m.

It is assumed that image-to-image registration and use of the same pixel
size to rasterize spatial data captured digitally from analogue maps ensure
proper analysis (i.e., by overlay) of predictive maps against comparison
map and with validation map. However, large differences in scale exist
among analogue maps from which spatial data were captured. This could
result in biased comparison and validation of our predictive maps. How-
ever, this problem was alleviated by raster-scanning of maps for compari-
son and for validation at a pixel resolution 5 times higher than maps for
predictive modeling.

4. Predictive Modeling

We adopted from previous works (e.g., Iverson et al., 1998; Schilling, 1998;
Schilling et al., 2001; Vallance et al., 2001b) the following definitions and
assumptions about lahar-inundation zones in terms of proximity to a vol-
cano’s vent. Areas proximal to a volcano’s vent, which are subject to erup-
tive phenomena (e.g., pyroclastic flows, etc.), are collectively referred to as
proximal-hazard zone and comprise usually source zone of lahars. Areas of
lahar-inundation in a source zone can be considered to comprise a ‘‘proxi-
mal lahar-inundation’’ (hereafter denoted as PLI) zone. It is difficult, if not
implausible, to predict exactly where PLI would occur in a given source
zone. Thus, it is assumed that PLI zone match roughly with source zone
of lahars. As lahars travel away from boundary of source zone, they be-
come ‘‘distal’’ lahars and disperse towards adjacent lowlands along and
around drainage channels to form distal lahar-inundation (hereafter de-
noted as DLI) zones. Thus, boundary of source zone represent ‘‘end-
points’’ of PLI zone as well as ‘‘start-points’’ of DLI zones. Based on these
definitions/assumptions, DLI zones are predicted after delineation of lahar
source (or PLI) zone.

4.1. PREDICTION OF LAHAR SOURCE (OR PLI) ZONE

To predict PLI zone, we adopt technique of using a ratio of vertical des-
cent (H) to horizontal run-out (L) of eruptive deposits that spawn lahars
(Sheridan and Malin, 1983; Malin and Sheridan, 1982). In test area, pyro-
clastic-flow deposits are known source materials of most lahars (Newhall
et al., 1996). Hayashi and Self (1982) found that (a) pyroclastic-flow
deposits have typical H/L ratios of 0.1–0.3 and (b) H/L ratios and volumes
of pyroclastic-flow deposits are related inversely. Thus, a H map was cal-
culated using the pre-eruption DEM [i.e., H equals elevation of volcano
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summit minus elevation of each pixel] and a L map was calculated depict-
ing distances between each pixel and volcano summit in order to create a
H/L map. Assuming a worst-case eruption scenario resulting in volumi-
nous pyroclastic-flow deposits, pixels with H/L values ‡0.1 were considered
to represent a source zone (Figure 4). Given a source zone for lahar gener-
ation, probability of PLI in source zone can be estimated as equal to ratio
of area of PLI in a source zone to area of source zone. However, as PLI
zone is assumed to match roughly with source zone of lahars, probability
of PLI in source zone is estimated simply as equal to 1.

4.2. PREDICTION OF DLI ZONES

Degree of susceptibility (SDLI) to DLI can be defined as a function of a
number of Xi (i ¼ 1; 2; . . . ; n) spatial factors deemed relevant for DLI:

SDLI ¼ fðX1; . . . ;XnÞ: ð1Þ

Let map of test area be divided into square units (i.e., pixels). Let maps of
Xi spatial factors be partitioned into a number of Cij ðj ¼ 1; 2; . . . ;mÞ clas-
ses of attributes. For each pixel, SDLI is further defined further as

SDLI ¼ fðaCij
Þ; ð2Þ

where aCij represents a map depicting ‘‘weights’’ of Cij attributes of Xi spa-
tial factors with respect to map of past DLI. The ‘‘weights’’ relate to de-
gree of spatial coincidence of Cij attributes of Xi spatial factor with past

Figure 4. Predicted lahar source zone and calculated ‘‘pre-eruption’’ distal lahar-
inundation zones overlaid on a shaded-relief image of pre-eruption DEM.
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DLI. Suppose that aspect, i.e., azimuth of slope (with attributes measured
in degrees), controls DLI. Suppose also that past distal lahars inundated
mostly (or coincided spatially with) east-facing slopes. Thus, with respect
to DLI, east-facing slopes have more ‘‘weight’’ than other slopes. Values of
aCij, therefore, represent measures of spatial associations between DLI and
Cij attributes of Xi map, and these quantified spatial associations are used
to estimate SDLI. That is, several maps of aCij, each representing a factor,
are integrated (in similar fashion of stacking transparent maps over each
other on a light table) in order to delineate areas defined by intersections
of high values of aCij in most map layers. Areas defined by intersections of
high values of aCij in most map layers, thus, have spatial characteristics
similar to (in terms of spatial association with) areas of past DLI. The
concept of predicting DLI zones according to definition of SDLI depicted in
Equations (1) and (2), thus, involves interpolative/extrapolative delineation
of future (or unknown) DLI zones based on spatial associations of Cij

attributes of Xi spatial factors with past (or known) DLI zones.
To estimate values of aCij for Cij attributes in Xi spatial factor map, it is

necessary to have (as geologic precedence) training data concerning past
DLI zones. Certainly, mapped lahar deposits and lahar-impacted channels
shown in Figure 3 cannot be used as training data to predict DLI zones
before June 1991. Suppose further that baseline data concerning past DLI
zones, prior to June 1991, are lacking. Based on only a simplistic expecta-
tion (as it is also known more commonly) that distal lahars follow drain-
age channels that head on source zone, we created ‘‘pre-eruption’’ DLI
zones through an iterative spatial neighborhood algorithm (see Appendix
A). This algorithm uses a 3 · 3 kernel filter, which moves simultaneously
over DEM and map of ‘‘start-points’’ of DLI (i.e., pixels along boundary
of source zone). Using input map of ‘‘start-points’’ of DLI, the iterative
algorithm classifies central pixel of 3 · 3 kernel as part of a ‘‘pre-eruption’’
DLI zone if, and only if, its neighboring pixels (a) form part of a ‘‘pre-
eruption’’ DLI zone and (b) are topographically higher than central pixel.
Each iteration results in a temporary output raster map of ‘‘pre-eruption’’
DLI zones, which is used as input to next iteration. Iteration stops when
the two spatial neighborhood conditions (in a 3 · 3 kernel) are not met
anymore in penultimate temporary output map. Pixels classified as parts of
a ‘‘pre-eruption’’ DLI zone (Figure 4) were then used as training data for
estimation of SDLI.

Four spatial factors were deemed relevant controls of SDLI: (1) proxim-
ity to source zone; (2) proximity to drainage lines that head on source
zone; (3) elevations outside source zone; and (4) slopes outside source
zone. Logic behind first and second spatial factors is that, for any location
[topographically] below source zone, it could be expected that SDLI (a) de-
creases with decreasing proximity to boundary of source zone and (b)
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decreases with decreasing proximity to drainage lines that head on source
zone. Logic behind third and fourth spatial factors is based on a simplistic
expectation that, being saturated with water, lahars would (a) initially tra-
vel or flow from locations with higher elevations towards locations with
lower elevations and (b) then temporarily or finally deposited in zones with
gentle slopes rather than in zones with steep slopes.

Thus, four spatial factor maps were derived from pre-eruption DEM
(Figure 5): (1) map of proximity to source zone; (2) map of proximity to
drainage lines that head on source zone; (3) map of elevations outside
source zone; and (4) map of slopes outside source zone. Map of drainage
lines that head on source zone was created through another iterative spatial
neighborhood algorithm (see Appendix A). This algorithm also uses a 3 · 3
kernel filter, which moves simultaneously over DEM and map of ‘‘start-
points’’ of drainage lines (i.e., pixels along boundary of source zone). Using
input map of ‘‘start-points’’ of drainage lines, the iterative algorithm classi-
fies central pixel of 3 · 3 kernel as part of a drainage line if, and only if, its
neighboring pixel(s) (a) form part of drainage line and (b) flow direction(s)
from such pixel(s) is toward central pixel. Each iteration results in a tempo-
rary output raster map of drainage lines, which is used as input to next iter-
ation. Iteration stops only when the two spatial neighborhood conditions
(in a 3 · 3 kernel) are not satisfied anymore in penultimate temporary out-
put map. Procedures for creating proximity (distance) map or slope map
are basic GIS operations and are not described further.

In order to estimate values of aCij (Equation (2)) for a spatial factor
map of a test area T with N(T) total number of pixels, it is necessary to
first determine spatial coincidence between certain pixels in map of training
data and certain pixels in a spatial factor map. To do this, attributes of
spatial factor maps, which represent continuous variables (Figure 5), were
first categorized into classes (or ranges) of attributes because the intent is
to estimate values of aCij for certain classes of attributes rather than for
individual attributes. However, choice of intervals with which to classify a
spatial factor map of a continuous variable is arbitrary and, unfortunately,
there are no rules for this. Each Xi ði ¼ 1; 2; . . . ; nÞ spatial factor map was
classified into Cij ð j ¼ 1; 2; . . . ;mÞ classes using 5-percentile intervals for
two reasons. One reason is to make a uniform classification by using equal
intervals resulting in equal number of classes in each spatial factor map.
The other reason, which is more important, is to create narrow ranges of
spatial attributes and thus not a large number of Cij pixels (denoted as
N(Cij)) in Xi spatial factor map in order to optimize estimation of aCij as it
depends on N(Cij) (see later below). Unlike the spatial factor maps, map of
training data was classified simply into a binary map with N(DLI) and
NðDLIÞ number of pixels representing areas where ‘‘pre-eruption’’ DLI is
present and absent, respectively. Note that NðDLIÞ ¼ NðTÞ �NðDLIÞ. By
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overlaying binary map of training data on each multi-class Xi spatial fac-
tor map, number of Cij pixels overlapping spatially with DLI pixels [i.e.,
NðCij

T
DLIÞ] and number of Cij pixels not overlapping spatially with DLI

pixels [i.e., NðCijÞ �NðCij

T
DLIÞ] were determined. Subsequently, numbers

of pixels of certain map units and number of pixels in certain spatial over-
lap conditions were used to estimate aCij.

Values of aCij were calculated and then maps of aCij were integrated
by applications of three spatial modeling techniques: (1) weights-of-evi-
dence (or WofE); (2) logistic regression (or LR); and (3) evidential belief
functions (or EBF). These spatial modeling techniques (a) quantify spa-
tial associations (i.e., aCij) between training data and a spatial factor (or
a set of factors, in case of LR) and (b) estimate, for each location,

Figure 5. Spatial factors used in predictive modeling of distal lahar-inundation zones:
(a) proximity to lahar source zone; (b) proximity to drainage lines that head on lahar
source zone; (c) elevation outside lahar source zone; (d) slope outside lahar source

zone.
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values representing SDLI in Equation (2) by pixel-to-pixel integration of
aCij values between map layers. These spatial modeling techniques express
values of aCij and, thus, SDLI in terms of probability (i.e., within unit
interval [0,1]).

4.2.1. Weights-of-Evidence (WofE)

WofE is based upon a Bayesian probability framework (Bonham-Carter,
1994). Its application here involves a 3-stage process: (1) estimation of
prior probability (PPrior) of DLI; (2) estimation of WofE of spatial factor
with respect to DLI; and (3) updating of PPrior by WofE of spatial factors
to estimate posterior probabilities of DLI. The ‘‘gray-scale’’ WofE method,
which is used with multi-class spatial factor maps (Agterberg and Bonham-
Carter, 1990; An, 1992; Goodacre et al., 1993), is adopted here.

Prior probability of DLI can be estimated as

Pprior ¼
NðDLIÞ
NðTÞ : ð3Þ

WofE of Cij, in Xi spatial factor map, with respect to DLI pixels in map of
training data, is estimated as:

WCij ¼ loge
PðCij j DLIÞ
PðCij j DLIÞ

� �

¼ loge

NðCij

T
DLIÞ

NðDLIÞ
NðCijÞ�NðCij

T
DLIÞ

NðTÞ�NðDLIÞ

: ð4Þ

Estimates of WCij represent values of aCij in Equation (2). For spatial over-
lap conditions in which more DLI pixels occur in Cij than would be ex-
pected due to chance (i.e., prior probability), WCij is positive and implies
that Cij has positive spatial association with DLI. For spatial overlap con-
ditions in which less DLI pixels occur in Cij than would be expected due to
chance, WCij is negative and implies that Cij has negative spatial associa-
tion with DLI. Uncertainty (in terms of variance) associated with estimates
of WCij can be calculated as (Bishop et al., 1975):

s2ðWCijÞ ¼
1

NðCij

T
DLIÞ þ

1

NðCijÞ �NðCij

T
DLIÞ : ð5Þ

A map of WCij is created for each Xi spatial factor and all WCij maps are
integrated with loge prior odds (Oprior), which is related to Pprior (i.e.,
Oprior=Pprior /(1)Pprior)), in order to estimate loge posterior odds of DLI.
Integration of WCij maps results in so-called ‘‘unique-conditions’’, which
are pixels or groups of pixels having same combination of Cij classes of Xi

spatial factors. For k ðk ¼1; 2; . . . ; pÞ unique-conditions, estimates of loge
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posterior odds are converted to posterior probabilities (Ppost), which repre-
sent values of SDLI:

Ppost ¼
e
P

m
j¼1W

k
Cijþloge Oprior

1þ e

Pm

j¼1
Wk

Cij
þloge Oprior

; ð6Þ

where the term

Xm

j¼1
Wk

Cij þ loge Oprior

represents estimates of loge posterior odds of DLI, and Wk
Cij denotes

WofE contributed by Cij class of Xi spatial factor map to kth unique-con-
dition.

WofE method assumes that maps of Xi spatial factors are conditionally
independent of each other with respect to map of training data. Assump-
tion of conditional independence (CI) was tested using omnibus test or OT
(Bonham-Carter, 1994), which involves calculation of ratio number of
‘‘pre-eruption’’ DLI pixels, N(DLI), to number of predicted DLI pixels,
N(DLI)pred. The latter is estimated as (Bonham-Carter, 1994):

NðDLIÞpred ¼
Xp

k¼1
Pk
post �NðkÞ; ð7Þ

where N(k) is number of k ¼1; 2; . . . ; p unique-conditions pixels with poster-
ior probabilities Ppost. Ideally, if maps of Xi spatial factors are condition-
ally independent of each other with respect to map of training data, then
N(DLI)pred=N(DLI) and OT=1. If 1 ‡ OT ‡ 0.85, then assumption of CI
is not seriously violated (Bonham-Carter, 1994). Violation of assumption
of CI results in either over-estimation or under-estimation of probabilities,
which, however, is not a serious concern if prediction is used for relative
(e.g., ranking of SDLI) and not absolute purposes (Pan and Harris, 2000).

4.2.2. Logistic Regression (LR)

One alternative to address problem of lack of CI among maps of spatial
factors is to apply LR, whereby classes of spatial factors showing condi-
tional dependence among each other with respect to training data are elim-
inated automatically in the process of estimating posterior probabilities
(Agterberg et al., 1993; Agterberg and Bonham-Carter, 1999). LR is a mul-
tivariate technique that considers simultaneously several independent vari-
ables to estimate probability of a dichotomous or binary dependent
variable (Menard, 1995). We used SPSS v.10 statistical software package in
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LR modeling, although the spatial variables were derived using ILWIS
software. LR estimates of SDLI in SPSS v.10 were then exported back to
ILWIS for visualization and mapping of DLI.

Suppose that test area is further divided into t square cells and that mn
independent variables (i.e., Cij classes of all Xi spatial factors) are coded
for every tth cell (i.e., number of pixels of Cij classes is attributed to each
tth cell). To estimate SDLI in Equation (2), let DLI be a binary dependent
variable; that is, DLI=1 and DLI =0 if ‘‘pre-eruption’’ DLI pixels are,
respectively, present and absent in every tth cell. In order that estimates of
posterior probabilities (i.e., values of SDLI in Equation (2)) lie within unit
interval [0,1], the logistic form is postulated; thus,

SDLI ¼
eðaC

0
ijC
0
ijÞ

1þ eðaC
0
ijC
0
ijÞ

ð8Þ

where C0ij ¼ ðC11;C12; . . . ;CmnÞ is mn dimensional vector of Cij classes of Xi

spatial factors, and aC0
ij
is corresponding mn dimensional vector of un-

known LR coefficients to be determined for each Cij class.
The term aC0

ij
C0ij in Equation (8) represents values of aCij in Equation

(2). Cox and Snell (1989) suggest use of maximum likelihood method
to determine LR coefficients. A backward stepwise LR was also performed
to eliminate classes of spatial factors that do not contribute significantly to
LR; a 90% significance level was used as statistical criterion to retain a
class of spatial factor in final LR model. The Wald statistic is used to test
significance of a LR coefficient associated with a Cij class of Xi spatial fac-
tor (Menard, 1995). A goodness-of-fit statistic (pseudo-R2) was computed
to compare LR model with ‘‘pre-eruption’’ DLI model (i.e., training data),
defined as (Mark and Ellen, 1995):

pseudo� R2 ¼ 100�ð1� ½ðmodel� observedÞ2=ðmean� observedÞ2�Þ:
ð9Þ

where model is LR model (i.e., sum of estimated posterior probabilities in
all cells), observed is ‘‘pre-eruption’’ DLI model (i.e., number of cells with
DLI=1) and mean is average of observed probability for all cells. Esti-
mates of pseudo-R2 could range from 0 to 100 percent. As estimates of
pseudo-R2 depends on level of spatial aggregation (i.e., aggregation of pix-
els into tth cells), it is used only for relative comparison of models (Mark
and Ellen, 1995).

4.2.3. Evidential Belief Functions (EBF)

The Dempster–Shafer theory of evidence provides framework for estima-
tion of EBF (Dempster, 1967; Shafer, 1976), which are integrated accord-

EMMANUEL JOHN M. CARRANZA AND OFELIA T. CASTRO344



ing to Dempster’s (1968) rule of combination. Zadeh (1986) provides a
simplification of Dempster–Shafer theory of evidence and shows ability of
Dempster’s rule of combination to integrate evidences with distinct proba-
bility distributions. However, Walley (1987, p. 1460) concluded that ‘‘...
Dempster’s rule should not be used to combine evidence from statistically
independent observations ...’’. Thus, problem of lack of CI among spatial
factor maps can be alleviated by application Dempster–Shafer theory of
evidential belief. The following discussion for its application here is simpli-
fied and informal.

For each Cij class of attributes in Xi spatial factor maps, estimation of
EBF is always in relation to a proposition, which in this case is: ‘‘This pixel
(or location) is susceptible to DLI’’. The EBF to be estimated are Bel (de-
gree of belief), Dis (degree of disbelief), Unc (degree of uncertainty) and Pls
(degree of plausibility). Bel and Pls represent, respectively, lower and upper
probabilities that a spatial factor supports the proposition. Thus, Pls is usu-
ally greater but could be equal to Bel. Unc is equal to Pls–Bel and repre-
sents ignorance (or doubt) of one’s belief in the proposition given a spatial
factor; Unc = 0 when Bel=Pls. Dis is belief that the proposition is false gi-
ven a spatial factor; it is equal to 1)Pls. Thus, Bel + Unc + Dis = l. If
Unc = O, then Bel + Dis = 1, as in probability approach.

Estimates of EBF are usually knowledge-driven, i.e., based on expert
knowledge (e.g., Moon, 1989, 1990; An et al., 1992, 1994). Here, due to
‘‘lack’’ of expert knowledge, the following equations were used for data-
driven estimation of EBF (Carranza and Hale, 2003).

BelCij
¼

WCijDLI

Pn

i¼1
WCijDLI

ð10Þ

where

WCijDLI ¼
NðCij\DLIÞ

NðCijÞ
NðDLIÞ�NðCij\DLIÞ

NðTÞ�NðCijÞ

:

DisCk
¼

WCijDLI

Pn

k¼1
WCijDLI;

ð11Þ

where

WCijDLI ¼
NðCijÞ�NðCij\DLIÞ

NðCijÞ
NðTÞ�NðDLIÞ�½NðCijÞ�NðCij\DLIÞ�

NðTÞ�NðCijÞ

:
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UncCij
¼ 1� BelCij

�DisCij
: ð12Þ

PlsCij
¼ BelCij

þUncCij
or PlsCij

¼ 1�DisCij
: ð13Þ

Estimates of BelCij
are measures of spatial association between map of

training data and a spatial factor map and, thus, represent values of aCij in
Equation (2).

According to Dempster’s (1968) rule of combination, maps of EBF of
spatial factor X1 can be combined with maps of EBF of spatial factor X2

to generate an integrated map of EBF of two spatial factors X1 and X2.
Maps of EBF of two spatial factors are combined according to the follow-
ing equations (adopted from Wright and Bonham-Carter, 1996):

BelX1X2
¼ BelX1

BelX2
þ BelX1

UncX2
þ BelX2

UncX1

b:
ð14Þ

DisX1X2
¼ DisX1

DisX2
þDisX1

UncX2
þDisX2

UncX1

b:
ð15Þ

UncX1X2
¼ UncX1

UncX2

b;
ð16Þ

where b ¼ 1� BelX1
DisX2

þDisX1
BelX2

, which is a normalizing factor that
ensures Bel + Unc + Dis=1. Only maps of EBF of two spatial factors
can be combined each time; other maps of EBF representing X3; . . . ;Xn are
combined one after another by repeated applications of Equations (14)–
(16). Note that Equations (14)–(16) are both commutative and associative,
so that any group or order of evidential map combinations does not affect
the final output. Final combination of maps of EBF results in integrated
degrees of belief, degrees of disbelief, degrees of uncertainty and degrees of
plausibility for the proposition based on given spatial factors. As estimates
of BelCij

are here considered to represent values of aCij
in Equation (2),

final map of integrated degrees of belief ðBelX1;...;Xn
Þ is considered to repre-

sent values of SDLI in Equation (2).

4.3. CLASSIFICATION AND VALIDATION OF PREDICTIVE MAPS

Integration of maps depicting values of aCij
by each of above-described

techniques results in maps depicting values of SDLI (Equation (2)), which is
a continuous variable (i.e., posterior probabilities, degrees of belief) and
cumbersome to interpret unless classified. Classification of SDLI maps is
convenient because derived posterior probabilities or degrees of belief are
useful only in relative but not in absolute terms. That is, it is practically
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implausible to know absolutely probability of DLI. Predictive maps were
created by classification of SDLI values as ‘‘very low’’, ‘‘low’’, ‘‘moderate’’,
‘‘high’’ or ‘‘very high’’. ‘‘Very low’’ SDLI values are those less than esti-
mated prior probability. The other classes are defined by quartile classifica-
tion of SDLI values equal to or greater than estimated prior probability.

To validate predictive maps, it was convenient to create binary predic-
tive maps, because validation map is also binary. That is, for example, Fig-
ure 3 shows areas inundated and not inundated by lahars. Creation of
binary predictive map of lahar source (or PLI) zone is straightforward, be-
cause such zone is essentially binary. To create a binary DLI validation
map, zones mapped as lahar deposits and as lahar-impacted channels (Fig-
ure 3) are considered as mapped DLI zones; otherwise, they are considered
as mapped non-DLI zones. To create a binary DLI predictive map, zones
classified as having ‘‘moderate’’ to ‘‘very high’’ SDLI values were re-classi-
fied as predicted DLI zones, whereas zones classified as having ‘‘low’’ to
‘‘very low’’ SDLI values were re-classified as predicted non-DLI zones.

To validate a binary predictive map, it is overlaid on a binary valida-
tion map in order to determine number of pixels in overlap zones between
the units of the two binary maps (Figure 6). ‘‘True positive’’ prediction
accuracy is estimated as proportion (expressed as percentage) of number of
pixels in overlap between predicted DLI zones and mapped DLI zones to
total number of pixels in mapped DLI zones. ‘‘True negative’ prediction
accuracy is estimated as proportion (expressed as percentage) of 4 number
of pixels in overlap between predicted non-DLI zones and mapped non-
DLI zones to total number of pixels in mapped non-DLI zones, ‘‘False
negative’’ prediction error is estimated as proportion (expressed as percent-
age) of number of pixels in overlap between predicted non-DLI zones and
mapped DLI zones to total number of pixels in mapped DLI zones, ‘‘False
positive’’ prediction error is estimated as proportion (expressed as percent-
age) of number of pixels in overlap between predicted DLI zones and map-
ped non-DLI zones to total number of pixels in mapped non-DLI zones,

Figure 6. Error matrix for estimation of prediction accuracy and prediction error.
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‘‘False negative’ prediction error and ‘‘false positive’’ prediction error are,
respectively, called Type I error and Type II error in statistical hypothesis
testing. Type I prediction error represents under-estimation of lahar-inun-
dation hazard, whereas Type II prediction error represents over-estimation
of lahar-inundation hazard. It is, of course, desirable to have minimal
Type I and Type II prediction errors. It is, however, more desirable to
have Type I prediction error lower than Type II prediction error, because
it is conceivable that gross under-estimation of lahar-inundation hazard,
rather than gross over-estimation of lahar-inundation hazard, could poten-
tially result in higher damage to lives and properties.

5. Results

5.1. PREDICTED LAHAR SOURCE (OR PLI) ZONE

Prior to describing and validating results of predicting a lahar source (or
PLI) zone, it is imperative to describe pertinent spatial information about
test area, pre-eruption forecasted hazards (Figure 2) and mapped eruptive
deposits (Figure 3). Total number of (20 · 20 m) pixels in test area is
3,693,032 (�1,477 km2). Forecasted zone of pyroclastic-flow deposits (Fig-
ure 2) contains 808,729 pixels; whereas mapped pyroclastic-flow deposits
(Figure 3) consist of 388,552 pixels. Number of pixels in overlap between
forecasted PLI zone and mapped PLI zone is 375,638, whereas number of
pixels in overlap between forecasted non-PLI zone and mapped non-PLI
zone is 2,871,389 (Table I). The forecasted PLI zone has 96.7% ‘‘true posi-
tive’’ prediction accuracy and 86.9% ‘‘true negative’’ prediction accuracy.
In addition, the forecasted PLI zone has 3.3 Type I prediction error and
13.1% Type II prediction error. Thus, forecasted PLI zone of pyroclastic-
flow deposits has very high ‘‘true positive’’ prediction accuracy, high ‘‘true
negative’’ prediction accuracy, very low Type I error, and low Type II error.

Predicted lahar source (or PLI) zone (Figure 4) contains 822,471 pixels.
Number of pixels in overlap between mapped PLI zone and predicted PLI
zone is 378,224, whereas number of pixels in 6 overlap between mapped
non-PLI zone and predicted non-PLI zone is 2,860,223 (Table I). The pre-
dicted PLI zone has 97.3% ‘‘true positive’’ prediction accuracy and 86.6%
‘‘true negative’’ prediction accuracy. In addition, predicted PLI zone has
2.5% Type I prediction error and 13.4% Type II prediction error. Thus,
predicted PLI zone has very high ‘‘true positive’’ accuracy, high ‘‘true neg-
ative’’ accuracy, very low Type 1 error, and low Type II error. These show
that the forecasted PLI zone and the predicted PLI zone have similar
‘‘true negative’’ prediction accuracy and Type II error, although the latter
has slightly higher ‘‘true positive’’ prediction accuracy and slightly lower
Type I prediction error than the former.
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5.2. PREDICTED DLI ZONES

Procedures for predicting DLI zones were undertaken in area outside pre-
dicted PLI zone (see Figure 4 or 5), which contains 2,871,150 pixels (i.e.,
N(T)). Area outside predicted PLI zone is also used as reference area for
comparison between forecasted DLI zones and predicted DLI zones
through validation against mapped DLI zones. Number of ‘‘pre-eruption’’
DLI pixels (i.e., N(L)) of training data is 153,475. Thus, estimated prior
probability of DLI (Equation (3)) in every pixel is about 0.053.

Before describing and validating results of predicting DLI zones, it is
imperative to describe pertinent spatial information about (a) pre-erup-
tion forecasted DLI zones (i.e., mudflows; Figure 2) and (b) mapped DLI
zones (i.e., lahar deposits and lahar-impacted channels; Figure 3). Num-
ber of pixels of forecasted DLI zones is 235,281, whereas number of pix-
els of mapped DLI zones is 299,348. Number of pixels in overlap
between forecasted DLI zones and mapped DLI zones is 137,477,
whereas number of pixels in overlap between forecasted non-DLI zones
and mapped non-DLI zones is 2,474,048 (Table V). The forecasted DLI
zones have 45.9% ‘‘true positive’’ prediction accuracy and 96.2% ‘‘true
negative’’ prediction accuracy, In addition, the forecasted DLI zones have
54.1% Type I prediction error and 3.8% Type II prediction error. Thus,
forecasted DLI zones have low ‘‘true positive’’ accuracy, very high ‘‘true
negative’’ prediction accuracy, high Type I prediction error and very low
Type II prediction error.

5.2.1. WofE Model

For a multi-class spatial factor map representing a continuous variable
(e.g., distance, slope, elevation), WofE can be calculated via either a cumu-
lative increasing approach or a cumulative decreasing approach (Raines
et al., 2000). Cumulative increasing approach was used to calculate WofE

Table I. Error matrices for validation of forecasted PLI zone and predicted PLI zone

against field-based map of PLI zone.

Field-based map of PLI zone

(Figure 3)

PLI zone Non-PLI zone

Forecast map of PLI zone PLI zone 375,638 433,091

(Figure 2) Non-PLI zone 12,914 2,871,389

Predictive map of PLI zone PLI zone 378,224 444,247

(Figure 4) Non-PLI zone 10,328 3,304,480

Values in table are number of pixels.
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for proximity to lahar source (or PLI) zone and for proximity to drainage
lines that head on lahar source (or PLI) zone. This is because one would
expect that distal lahars travel away (i.e., increasing distance) from lahar
source (or PLI) zone or from drainage lines that head on lahar source (or
PLI) zone. Cumulative decreasing approach was used to calculate WofE for
elevations and slopes, as distal lahars, being saturated with water, generally
tend to flow from locations of higher elevations towards locations of lower
elevations (thus, decreasing elevation) and then deposited from locations of
steeper slopes towards locations of gentler slopes (thus, decreasing slope).

Table II shows variations in values of WCij
for classes of attributes of

spatial factors with respect to ‘‘pre-eruption’’ DLI zones. Proximity to
lahar source (or PLI) zone and proximity to drainage lines that head on
lahar source (or PLI) zone have positive spatial associations with ‘‘pre-
eruption’’ DLI zones. Values of WCij

indicate that areas within about 4 km
of lahar source (or PLI) zone and areas within about 2 km of drainage
lines that head on lahar source (or PLI) zone are highly susceptible to
DLI. Elevations and slopes have negative spatial associations with ‘‘pre-
eruption’’ DLI zones. This latter quantitative characterization is, in gen-
eral, consistent with how water-saturated materials follow a transportation
and deposition process on [topographic] surfaces. Values of WCij

indicate
that areas with elevations <200 m and areas with slopes <7� are suscep-
tible to DLI.

In posterior probability map resulting from integration of WCij
maps,

number of pixels in predicted DLI zones is 209,963 (i.e., N(L)pred in Equa-
tion (7)). Thus, OT is 0.73, which indicates lack of CI of among Cij classes
of Xi spatial factor maps with respect to ‘‘pre-eruption’’ DLI zones. This is
expected as spatial factor maps were all derived from DEM. However, esti-
mated posterior probabilities are interpreted only in relative terms and
were thus used to rank (i.e., classify) SDLI values. Figure 7 shows classified
map of SDLI values based on WofE modeling. Zones of ‘‘very low’’ SDLI

occupy about 69% of area outside zone of lahar source. Each of other
zones occupies about 7.7% of area outside lahar source (or PLI) zone.
(Reclassified binary predictive map of DLI zones based on WofE modeling
is not shown here because of space.)

Number of pixels in overlap between mapped DLI zones and predicted
DLI zones is 235,085, whereas number of pixels in overlap between map-
ped non-DLI zones and predicted non-DLI zones is 2,155,135 (Table V).
The WofE model has 78.5% ‘‘true positive’’ prediction accuracy and
83.8% ‘‘true negative’’ prediction accuracy. In addition, for the WofE
model has 21.5% Type I prediction error and 16.2% Type II prediction er-
ror. Thus, WofE model has fairly high ‘‘true positive’’ prediction accuracy,
high ‘‘true negative’’ prediction accuracy, fairly low Type I error and low
Type II error. These show that the WofE model of predicted DLI zones is
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superior to the forecasted DLI zones in terms of ‘‘true positive’’ prediction
accuracy and Type I prediction error, although it is inferior to the fore-
casted DLI zones in terms of ‘‘true negative’’ prediction accuracy and Type
II prediction error.

5.2.2. LR Model

Test area was further divided into 500-m square cells (i.e., each cell con-
tains 625 20 m · 20 m pixels) to estimate posterior probabilities of DLI
according to Equation (8). Table III shows regression coefficients of
classes of spatial factors remaining in final model achieved by backward
stepwise LR.

Classes of proximity to lahar source (or PLI) zone in final LR model
are those <6 km. Classes of proximity to drainage lines that head on la-
har source (or PLI) zone in final LR model are those <2 km. These indi-
cate that pixels <6 km of lahar source (or PLI) zone and pixels <2 km of
drainage lines that head on lahar source (or PLI) zone lack CI among
each other with respect to ‘‘pre-eruption’’ DLI zones. Exclusion of >6 km
classes of proximity to lahar source (or PLI) zone and inclusion of >2 km
classes of proximity to drainage lines that head on lahar source (or PLI)
zone in final LR model indicate the following. Proximity to drainage lines
that head on lahar source (or PLI) zone, rather than proximity to lahar
source (or PLI) zone, is a statistically significant predictor of DLI zones.
Coefficients for classes of proximity to lahar source (or PLI) zone in final
LR model are negative, which indicates negative spatial association be-
tween pixels of ‘‘pre-eruption’’ PLI zones and pixels at distances <6 km of

Figure 7. Probabilistic map of distal lahar-inundation zones derived by WofE modeling.
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Table III. LR coefficients of classes of spatial factors and their of indices of statistical sig-

nificance obtained by backward regression modeling.

Independent

variable class*

aC0ij Asymptotic

standard error

Wald-statistic Significance

level (a)

PS-035 )0.006 0.002 9.562 0.002

PS-040 )0.011 0.004 9.379 0.002

PS-045 0.009 0.002 13.645 0.000

PS-050 )0.006 0.003 6.211 0.013

PS-055 )0.004 0.002 6.114 0.013

PS-075 0.003 0.002 4.497 0.034

PS-080 )0.006 0.002 10.887 0.001

PS-085 )0.008 0.002 12.481 0.000

PS-100 )0.005 0.002 6.885 0.009

PD-005 0.066 0.009 50.688 0.000

PD-010 0.024 0.005 22.899 0.000

PD-015 0.023 0.003 41.877 0.000

PD-020 0.010 0.002 17.195 0.000

PD-025 0.018 0.003 46.472 0.000

PD-035 0.021 0.004 22.153 0.000

PD-040 )0.165 0.069 5.669 0.017

EL-010 )0.002 0.001 2.893 0.089

EL-040 0.005 0.002 9.958 0.002

EL-050 )0.003 0.001 4.937 0.026

EL-070 )0.012 0.004 9.415 0.002

EL-100 )0.008 0.004 4.707 0.030

SL-005 )0.008 0.002 14.181 0.000

SL-015 )0.009 0.003 12.599 0.000

SL-020 )0.009 0.002 14.522 0.000

SL-025 )0.012 0.002 25.215 0.000

SL-030 )0.012 0.002 25.246 0.000

SL-035 )0.017 0.003 350.001 0.000

SL-040 )0.010 0.004 70.099 0.008

SL-045 )0.032 0.007 19.203 0.000

SL-060 )0.069 0.013 27.996 0.000

SL-075 )0.051 0.012 18.181 0.000

SL-090 )0.053 0.011 22.773 0.000

*PS = proximity to lahar source zone; PD = proximity to drainage lines that head on lahar
source zone; EL = elevations outside lahar source zone; SL = slopes outside lahar source

zone; numbers indicate upper bounds of 5-percentile classes (see Tables II and/or IV).
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lahar source (or PLI) zone. This suggests that areas <6 km of lahar
source (or PLI) zone are less susceptible to DLI than areas <6 km of
lahar source (or PLI) zone. Coefficients for classes of proximity to drain-
age lines that head on lahar source (or PLI) zone in final LR model are
positive, which indicates positive spatial association between pixels of ‘‘pre-
eruption’’ DLI zones and pixels at distances <2 km of drainage lines that
head on lahar source (or PLI) zone. This suggests that areas <2 km of
drainage lines that head on lahar source (or PLI) zone are more suscepti-
ble to DLI than areas >2 km of drainage lines that head on lahar source
(or PLI) zone.

Only five out of 20 elevation classes remain in final LR model; these
elevation classes pertain to almost full range of elevations outside lahar
source (or PLI) zone and their coefficients are negative. These suggest that
(a) elevation is a minor factor of DLI or (b) DLI could occur in any eleva-
tion. Eleven out of 20 slope classes remain in final model; these slope clas-
ses are mostly <9� and their coefficients are negative. These suggest that
(a) slope is a non-trivial factor of DLI and (b) gentler slopes are generally
more susceptible to DLI than steeper slopes.

Final LR model has pseudo-R2 of >99%, which indicate a very satis-
factory goodness-of-fit with ‘‘pre-eruption’’ DLI zones. Figure 8 shows
classified map of SDLI values based on LR modeling. Zones of ‘‘very low’’
SDLI values occupy about 79% of area outside zone of lahar source. Each
of other zones occupies about 5.2% of area outside lahar source (or PLI)
zone. (Re-classified binary predictive map of DLI zones based on LR mod-
eling is not shown here because of space.)

Number of pixels in overlap between mapped DLI zones and predicted
DLI zones is 168,447, whereas number of pixels in overlap between map-
ped non-DLI zones and predicted non-DLI zones is 2,289,600 (Table V).
The LR model has 56.3% ‘‘true positive’’ prediction accuracy and 89.0%
‘‘true negative’’ prediction accuracy. In addition, the LR model has 43.7%
Type I prediction error and 11.0% Type II prediction error. Thus, the LR
model has low ‘‘true positive’’ prediction accuracy, high ‘‘true negative’’
prediction accuracy, high Type I prediction error, and low Type II predic-
tion error. These show, however, that the LR model of predicted DLI
zones is superior to the forecasted DLI zones in terms of ‘‘true positive’’
prediction accuracy and Type I prediction error, although it is inferior to
the forecasted DLI zones in terms of ‘‘true negative’’ prediction accuracy
and Type II prediction error.

5.2.3. Evidential Belief Model

Table IV shows variations of values of Bel, Dis and Unc for classes of spa-
tial factors with respect to ‘‘pre-eruption’’ DLI zones. Proximity classes
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<4 km of lahar source (or PLI) zone have higher Bel and lower Dis and
Unc than most proximity classes >4 km of lahar source (or PLI) zone.
Proximity classes <1.5 km of drainage lines that head on lahar source (or
PLI) zone have higher values of Bel and lower values of Dis and Unc than
proximity classes >1.5 km of drainage lines that head on lahar source (or
PLI) zone. These imply that areas proximal to lahar source (or PLI) zone
and to drainage lines that head on lahar source (or PLI) zone (a) have po-
sitive spatial associations with ‘‘pre-eruption’’ DLI zones and (b) are more
susceptible to DLI than areas that are distal. Values of Bel and Unc gener-
ally increase and decrease, respectively, with decreasing elevation and
decreasing slope. This suggests that (a) higher elevations and steeper slopes
have negative spatial associations with DLI zones and (b) lower elevations
and gentler slopes are more susceptible to DLI, respectively, than higher
elevation and steeper slopes. Overall, the maximum values of Bel and mini-
mum values of (Unc for each spatial factor indicate that the proximity
variables are more important spatial factors of DLI than the topographic
variables).

Classified map of SDLI values based on integrated values of Bel is dis-
played in Figure 9. Zones of ‘‘very low’’ susceptibility occupy about 28%
of area outside lahar source (or PLI) zone. Each of other zones occupies
about 18% of area outside lahar source (or PLI) zone. (Re-classified bin-
ary predictive map of DLI zones based on EBF modeling is not shown
here because of space.)

Number of pixels in overlap between mapped DLI zones and predicted
DLI zones is 279,680, whereas number of pixels in overlap between map-
ped non-DLI zones and predicted non-DLI zones is 1,308,194 (Table V).
The EBF model has ‘‘true positive’’ prediction accuracy of 93.4% and
‘‘true negative’’ prediction accuracy of 50.9%. In addition, the EBF model
has Type I prediction error of 6.6% and Type II error of 49.1%. Thus, the
EBF model has very high ‘‘true positive’’ accuracy, low ‘‘true negative’’
accuracy, very low Type I error, and high Type II error. These show that
the EBF model is superior to the forecast hazard map in terms of ‘‘true
positive’’ prediction accuracy and Type I prediction error, although it is
inferior to the forecast hazard map in terms of ‘‘true negative’’ prediction
accuracy and Type II prediction error.

6. Discussion

6.1. ON PREDICTION OF LAHAR SOURCE (OR PLI) ZONE

Our work on predicting lahar source (or PLI) zone follows the ‘‘H/L’’ tech-
nique developed by previous workers (e.g., Malin and Sheridan, 1982; Sher-
idan and Malin, 1983). Thus, in this regard, we present nothing new except
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to demonstrate further this technique in the test area and to use predicted
boundary of predicted PLI zone in predicting DLI zones. With respect to a
field-based map of pyroclastic-flow deposits (Figure 3), which are known
sources of most lahars in test area, predictive map of PLI zone has very
high ‘‘true positive’’ prediction accuracy, high ‘‘true negative’’ prediction
accuracy, very low Type I prediction error and low Type II prediction er-
ror. These results further demonstrate utility of ‘‘H/L’’ technique to predict
PLI zone. However, it is emphasized here that delineation of PLI zone re-
quires baseline geological information to determine ‘‘H/L’’ ratios appropri-
ate for type of eruptive deposits that spawn lahars in certain volcanoes
(e.g., Waitt et al., 1995; Waythornas and Miller, 1999; Scott et al., 2001).

6.2. ON PREDICTION OF DLI ZONES

Our methodology to predict DLI zones is similar but different to
LAHARZ modeling (Iverson et al., 1998; Schilling, 1998). The main
similarities lean on, aside from thematic objective, three aspects: (a) non-
application of physics; (b) application of DEM; and (c) application of GIS.
As these similarities are obvious, the focus here is to explain the differ-
ences. The main differences also lean on three aspects: (a) application of
DEM; (b) type of input data to predictive modeling; and (c) type of output
of predictive modeling. In LAHARZ modeling, a DEM is used to generate
outputs. In our predictive modeling, a DEM is used to derive spatial data
to be used as inputs. In LAHARZ modeling, input data consist of hypo-
thetical volumes of lahars. In our predictive modeling, input data consist
of a map of training data and maps of topographic factors relevant for

Figure 8. Probabilistic map of distal lahar-inundation zones derived by LR modeling.
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DLI. In LAHARZ modeling, outputs are planimetric and cross-sectional
areas of DLI zones. In our predictive modeling, outputs are probabilities
of DLI zones.

It is type of output in prediction of DLI zones that motivated us to dem-
onstrate applications of probabilistic spatial modeling techniques described
above. This is because Iverson et al. (1998, p. 980) stressed desirability to
provide quantitative and probabilistic analysis of lahar-inundation zones,

Table V. Error matrices for validation of forecast map of DLI zones and binary predictive

models of DLI zones against field-based map of DLI zones.

Field-based map of DLI

zones (Figure 3)

DLI zones non-DLI zones

Forecast map of DLI zones (Figure 2) DLI zones 137,477 100,804

Non-DLI zones 161,871 2,470,998

WofE model of DLI zones DLI zones 235,085 416,667

Non-DLI zones 64,263 2,155,135

LR model of DLI zones DLI zones 168,447 282,202

Non-DLI zones 130,901 2,289,600

EBF model of DLI zones DLI zones 279,680 1,263,608

Non-DLI zones 19,668 1,308,194

Values in table are number of pixels.

Figure 9. Probabilistic map of distal lahar-inundation zones derived by EBF modeling.
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The probabilistic techniques used here were developed for and are com-
monly applied to mineral potential mapping (e.g., Bonham-Carter et al.,
1988, 1989; Moon, 1989, 1990; Agterberg and Bonham-Carter, 1990, 1999;
Agterberg, 1992; An, 1992; An et al., 1992, 1994; Agterberg et al., 1993;
Bonham-Carter, 1994; Carranza and Hale, 2000, 2001, 2003; Carranza,
2002). Similar spatial modeling techniques have also been applied to natural
hazard zonation studies (e.g., Mark and Ellen, 1995; Binaghi et al., 1998;
Connor et al., 2001; Rupert et al., 2003) but not specifically to predictive
mapping of DLI zones. It is pointed out here, however, that estimates of
SDLI values by applications of techniques presented do not pertain to distal
lahar recurrence probabilities, as these are, according to Iverson et al.
(1998, p. 980), assessed most logically based on lahar volumes. Nonetheless,
estimates of SDLI values by applications of techniques presented enable
mapping and ranking of zones with varying degrees of SDLI.

6.3. ON ACCURACY AND ERROR OF PREDICTIVE MODELS OF DLI ZONES

With respect to the field-based hazard map (Figure 3) and in terms of pre-
dicting DLI zones, the three predictive models have much higher ‘‘true po-
sitive’ prediction accuracy and much lower Type I prediction error than
the forecast hazard map (Figure 2). However, with respect to the field-
based hazard map (Figure 3) and in terms of predicting non-DLI zones,
the three predictive model have lower ‘‘true negative’’ prediction accuracy
and higher Type II prediction error than the forecast hazard map. These
results indicate that the forecast map under-estimated the DLI zones,
whereas the three predictive models over-estimated the DLI zones. The re-
sults further suggest that, if later field-based maps of DLI zones were used
here for validation (i.e., Figure 3), then prediction accuracy (both ‘‘true
positive’’ and ‘‘true’’ negative) and prediction error (both Type I and Type
II) of the three predictive models would probably be even higher and
lower, respectively, than the accuracy and error estimated here. However,
validation of the predictive models of DLI zones with an immediate post-
eruption field-based map of DLI zones is considered appropriate than vali-
dation with field-based maps of DLI zones much later after the eruption
because of the following reason. The predictive models of DLI zones are
based on a model of pre-eruption topographic surface, which was probably
still much similar to the immediate post-eruption topographic surface over
which distal lahars flowed and were deposited.

The predictive model with highest ‘‘true positive’’ prediction accuracy
and lowest Type I prediction error is the EBF model, followed by the
WofE model, and then by the LR model. This is because the EBF model
resulted in highest number of DLI pixels, the WofE model resulted in sec-
ond highest number of DLI pixels, and the LR model resulted in lowest
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number of DLI pixels. The predictive model with highest ‘‘true negative’’
prediction accuracy and lowest Type II prediction error is the LR model,
followed by the WofE model, and then by the EBF model, This is because
the LR model resulted in highest number of non-DLI pixels, the WofE
model resulted in second highest number of non-DLI pixels, and the EBF
model resulted in lowest number of non-DLI pixels. These results suggest
the following. The LR model could represent a ‘‘poor-case’’ DLI hazard
scenario; that is, highest under-estimation of DLI zones and lowest over-
estimation of non-DLI zones. The WofE model could represent a ‘‘worse-
case’’ DLI hazard scenario; that is, moderate under-estimation of DLI
zones and moderate over-estimation of non-DLI zones. The EBF model
could represent a ‘‘worst-case’’ DLI. hazard scenario; that is, lowest under-
estimation of DLI zones and highest over-estimation of non-DLI zones.
Thus, with the three proposed techniques for predictive mapping of DLI
zones, different DLI hazard scenarios could be depicted and then provided
as inputs to lahar hazard mitigation planning.

It was not, however, the intention to show which of three spatial mod-
eling techniques would provide the best predictive DLI model, because it
cannot be guaranteed that the performance of each of these techniques in
the test area would be the same as in other areas. Our intention here was
to show potential alternative techniques that could be useful in providing
probabilistic analysis of DLI zones, In this regard, we discuss further rami-
fications of these techniques to prediction of DLI zones.

6.4. ON RAMIFICATIONS OF PROBABILISTIC MAPPING OF DLI ZONES

The techniques presented here to predict DLI zones are data-driven and
thus sensitive to areas where they are applied, because spatial associations
between training data and spatial factors vary from one area to another.
Consequently, outputs of probabilistic techniques used here depend on
(a) quality and quantity of training data and (b) quality and quantity of
spatial factor maps.

Ideally, training data to be used in predicting DLI zones, using the tech-
niques presented here, should consist of field-based maps of past DLI
zones, because spatial accuracy of such maps are known, or verifiable.
However, such type of baseline data might be lacking in areas where a vol-
cano has not erupted within living memory. Thus, here, we used training
data of ‘‘pre-eruption’’ DLI zones, which were calculated using a DEM.
However, we only recommend using same type of training data as surro-
gate if baseline geological information concerning past DLI zones are lack-
ing. Nonetheless, the fair to very good validation results for the predictive
DLI models suggest that type of training data used here is applicable to
volcanic areas where little or no geological information is available. Alter-
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natively, the results indicate possibility of using DLI zones delineated by
LAHARZ modeling as training data in the probabilistic techniques pre-
sented here. Whether real or surrogate training data are used, quantified
spatial associations between training data and spatial factor maps could be
statistically non-significant (i.e., meaningless) if the former is insufficient.
The number of pixels of training data used here (Figure 4) is about half as
small as number of mapped lahar deposits and lahar-impacted channels
(Figure 3). However, estimates of WCij

in WofE modeling and aCij
coeffi-

cients in LR modeling are statistically significant (Tables II and III), which
indicate that quantity of training data used here was sufficient to obtain
statistically significant results.

Quality, in terms of spatial accuracy, of factor maps certainly influences
outputs of techniques presented although we did not evaluate quantita-
tively this aspect here as this relates to accuracy of pre-eruption DEM (see
further below). It is, therefore, emphasized here that estimates of SDLI val-
ues (Equation (2)) derived by applications of techniques presented are
pseudo-probabilities because these were calculated by using (a) training
data that are not real DLI zones and (b) some spatial factor data that do
not carry sufficient information about training data. From the results (Ta-
bles II–IV), it is shown that elevation and slope do not carry sufficient
information about (i.e., they have negative spatial associations with) train-
ing data. In applying these techniques to mineral potential mapping (see
references cited above), maps of geological factors that show negative spa-
tial associations with mineral occurrences are practically not used to delin-
eate potentially-mineralized; i.e., negative spatial associations means
negative evidence. Here, in spite of their negative spatial associations with
the training data, elevation and slope were still used because, in western
parts of test area, DLI is influenced by elevation and slope rather than by
proximity to lahar source zone. That is, in western parts of test area, DLI
zones are mostly lowlands and floodplains that are distal to boundary of
lahar source zone. However, in a volcanic terrain one could expect that
good correlation exists between elevation and slope, such that using both
of them is tantamount to using redundant spatial factor maps and that
using only one of them would be sufficient to obtain meaningful results. At
this point, we digress to issue of quantity of spatial factor maps but revisit
subsequently issue of redundant spatial factor maps.

In GIS-based predictive modeling, it is certainly desirable to make use
of several layers of spatial data depicting individual factors that influence
occurrence of geographic phenomena of interest. However, in applications
of the spatial modeling techniques presented, large quantity (in terms of
number of map layers) of spatial factor data could also be undesirable.
This is because, as number of map layers of spatial factor data increases,
problem of lack of CI among map layers with respect to training data
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increases. The problem of CI, however, can be solved by combining maps
of spatial factors that show lack of CI with respect to training data. There
are a number of ways to do this and either principal components analysis
or factor analysis is robust (Davis, 1973). Combining maps of spatial fac-
tors showing lack of CI with respect to training data should be combined
according to a theme. Thus, going back to issue of redundancy of eleva-
tion and slope in this study, these two spatial factors may be combined
into a ‘‘landscape’’ factor. However, when a new spatial factor map is de-
rived by combining maps of spatial factors that lack CI with respect to
training data, posterior probabilities and degrees of belief have to be re-
estimated. Concerning problem of lack of CI among spatial factor maps
with respect to training data, the results show that modeling with either
LR or EBF is advantageous over WofE modeling. Alternatively, there are
other probabilistic techniques that are not seriously affected by lack of CI
among spatial factor maps with respect to training data. One such robust
probabilistic technique is application of neural networks, which is also
commonly used in mineral exploration (e.g., Harris et al., 2003; Porwal
et al., 2003) but is becoming useful to volcanic-hazard studies (e.g., Bert-
ucco et al., 1999; De Falco et al., 2002). Application of neural networks to
predictive delineation of DLI zones is yet to be demonstrated; however, its
utility would depend on sufficient training data about not only known past
DLI zones but also about zones ‘‘never’’ inundated or have very low prob-
ability of being inundated by lahars. For this reason, we have not applied
neural work to the present case study.

6.5. ON LIMITATIONS OF PRE-ERUPTION OEM

It has been shown by Stevens et al. (2002) that predictive modeling of vol-
canic flows such as lahars is sensitive to spatial accuracy of a DEM. How-
ever, the fair to very good validation results of the predictive models
created indicate that spatial (horizontal and vertical) accuracy of DEM
used here is adequate for mapping of zones that could, in general, be inun-
dated by multiple lahars. Nonetheless, we recognize that DEMs of high
spatial and temporal accuracy is crucial in predicting lahar-inundation
zones. On one hand, changes in topography due to erosion and/or deposi-
tion of volcanic materials can alter lahar flow paths along drainage lines
that head on lahar source zone. On the other hand, structures built to mit-
igate lahar hazards or other cultural features that impede drainage could
also alter lahar flow paths. These imply that predictive models of lahar-
inundation zones based on spatial data derived from a DEM have to be
updated whenever recent DEMs become available. Modern methods of
topographic data acquisition (e.g., laser altimetry, radar interferometry) are
now available to create spatially and temporally accurate DEMs.
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7. Conclusions

(1) A DEM is a potentially valuable source of spatial data that can be
used in predicting lahar-inundation zones in areas where a volcano has
not erupted within living memory and where baseline geological infor-
mation is lacking. However, predictive models of lahar-inundation
zones based on the techniques presented have to be up-to-dated when-
ever DEMs of higher spatial and temporal accuracy become available.

(2) Potential zone of lahar source (or PLI zone) can be determined by
using a ratio of vertical descent to horizontal run-out that is typical of
eruptive deposits that spawn lahars. By this technique, predictive map
of PLI zone has very high ‘‘true positive’’ prediction accuracy, high
‘‘true negative’’ prediction accuracy, very low Type I prediction error
and low Type II prediction error, which are similar to those of the
forecast volcanic-hazard map.

(3) Zones susceptible to DLI can be determined by using spatial data de-
rived from a DEM. Spatial training data derived from a DEM consist
of ‘‘pre-eruption’’ DLI zones. Spatial factor data derived from a DEM
or a DEM-derived product include; (a) proximity to lahar source zone,
(b) proximity to drainage lines that head on lahar source zone, (e) ele-
vation and (d) slope.

(4) The probabilistic techniques used to predict zones susceptible to DLI
involve modeling by weights-of-evidence, by logistic regression and by
evidential belief functions. These techniques concern quantification of
spatial associations between training data and spatial factors in order
to interpolate/extrapolate from layers of spatial factors unknown (or
future) DLI zones. Performance of these techniques used depend on
(a) study area, (b) quality and quantity of training data and (c) quality
and quantity of spatial factor data. The output of these probabilistic
techniques are pseudo-probabilities of DLI, which nonetheless
enable mapping and ranking of zones that could, in general, be suscep-
tible to DLI.

(5) The predictive models of DLI zones have higher ‘‘true positive’’ predic-
tion accuracy and lower Type I prediction error but lower ‘‘true nega-
tive’’ and higher Type II prediction error as compared to forecast map
of mudflow zones. The lower ‘‘true negative’’ prediction accuracy and
higher Type II prediction error of the predictive models as compared
to the forecast model, however, do not negate usefulness of the pro-
posed techniques. This is because over-estimation of lahar-inundation
hazard, rather than under-estimation of lahar-inundation hazard, could
be potentially beneficial in hazard mitigation planning to save lives and
properties.
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(6) Results of the study further indicate that the techniques presented to
predict DLI zones could be useful to predict DLI zones in situations
where [mapped] potential lahar sources have not yet been re-worked to
lahars. Results of the study suggest that the techniques presented to
predict DLI zones are applicable to other volcanic areas that are as
prone to DLI as the environs of Pinatubo volcano. However, whether
or not the techniques described to predict DLI zones are applicable to
volcanic areas not as prone to DLI as environs of Pinatubo volcano
needs further testing.

(7) Results of study indicate that predictive lahar-inundation maps derived
from applications of presented predictive techniques can be considered,
howbeit interpreted with caution, in decision-making to mitigate lahar
hazards in areas where a volcano has not erupted within living memory
and where baseline geological information is lacking.
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Appendix A: Spatial Neighborhood Calculations

Spatial neighborhood calculations in ILWIS uses a 3 · 3 kernel filter,
which is moved over a raster map. Pixels in this filter are coded as follows:

Result of a calculation is stored in central pixel of 3·3 kernel in output
map. If a neighborhood operation is performed on pixels on top or bot-
tom line or on very first or last column of a raster map, new neighbors are
created by duplicating this boundary line or column. General syntax of
iterative spatial neighborhood calculation is: Map2 = MAPITERP
(Map1#(iterexpr)); where Map2 is output raster map, Map1 is input raster

1 2 3

4 5 6

7 8 9
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map, # is neighborhood operator indicating all neighbors are to be used
and iterexpr is iteration expression until pixels do not change anymore in
output map.

Calculation of ‘‘pre-eruption’’ distal lahar-inundation zones and
drainage lines that head on boundary of lahar source zone are performed
once a DEM without pits, i.e., pixels with values lower than all its sur-
rounding pixels, is obtained. Spatial neighborhood expression for mapping
pits in a DEM is Pit = NBMINP(DEM#) = 5, where Pit is output map,
NBMINP is neighborhood operator that returns in output map position of
neighbor with smallest value. The term (DEM#) = 5 means that, if on a
DEM, central pixel of 3· 3 kernel filter has smallest value, then central
pixel is considered a pit. Result of this operation is a Boolean map in
which pits are labeled ‘‘True’’, otherwise ‘‘False’’. Pits in a DEM are filled
automatically (see http://www.itc.nl/ilwis/general_info/new_in_32.asp).

Calculation of ‘‘Pre-eruption’’ Distal Lahar-Inundation Zones from Given

‘‘Start-Points’’

Calculation uses as inputs a start map (in which pixels representing ‘‘start-
points’’ of distal lahar-inundation are assigned a value of 1; otherwise, a va-
lue of 0). Syntax for calculating map of distal lahar-inundation channels is

Map2 ¼MAPITERPðiffðstart;start;NBMAXðstart#;ðDEM#DEMÞÞÞÞ:

This expression means that, if (denoted by iff) central pixel, in a 3 · 3
kernel, over start map has a value of 1, it is unchanged. Otherwise,
neighbor pixels of central pixel with value equals 1 (denoted by opera-
tor NBMAX) is used in the calculation provided that this neighbor
pixels has an elevation greater than elevation of central pixel (denoted
by expression DEM#>DEM). This means that, if a neighbor pixel
belongs to a distal lahar-inundation zone, then central pixel will only be
labeled a part of the distal lahar-inundation zone if neighbor pixel is
topographically higher than central pixel. This expression can also be
used to model lava flows, debris flows and pollution dispersion from a
given source.

Calculation of Drainage Lines from Given ‘‘Start-Points’’

The first operation for this procedure to create a map of flow directions,
calculated by the expression:

Flowdir ¼ 10�NBMINPðDEM#Þ:
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The result is a raster map with values ranging from 1 to 9. For example, a
value of 1 means that flow direction towards central pixel is from north-
west (see coding above). With a Flowdir map and the same start map as
described above, drainage lines can be tracked from given ‘‘start-points’’
by the calculation expression:

Map2

¼MAPITERPðiffðstart;start;NBMAX8ð#;ðFlowdir#¼NBPOSÞÞÞÞ:

This expression means that, if (denoted by iff) central pixel, in a 3 · 3 ker-
nel, over start map has a value of 1, it is unchanged. Otherwise, if, in 3 · 3
kernel, value of a neighbor pixel in start map excluding central pixel (de-
noted by NBMAX8) equals neighbor position in Flowdir map (denoted by
Flowdir# = NBPOS, meaning that flow from that pixel is towards central
pixel), then value of central pixel in start map is replaced with value of
that neighbor. If more than one neighbor pixels in start map satisfy the
condition, then value of neighbor corresponding to pixel in Flowdir map
with highest value is used (denoted by NBMAX8(start#,(Flowdir# =
NBPOS))).
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