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Abstract. The paper deals with the validation and evaluation of mathematical models in

natural hazard analysis, with a special focus on establishing their predictive power. Although
most of the tools and statistics available are common to general classification models, some
peculiarities arise in the case of hazard assessment. This is due to the fact that the target for

validation, the propensity to develop a dangerous characteristic, is not really known and must
be estimated from a (usually) very small sample. This implies that the two types of errors (false
positives and false negatives) should be given different meanings. Related to this, a very
frequent situation is the presence of prevalence (different proportion of positive and negative

cases) in the sample. It is shown that sample prevalence can have a dramatic effect in some
very common validation statistics, like the confusion matrix and model efficiency. Here some
statistics based on the confusion matrix are presented and discussed, and the use of threshold-

independent approaches (especially the ROC plot) is shown. The ROC plot is also proposed as
a convenient tool for decision-taking in a risk management context. A general scheme for
hazard predictive modeling is finally proposed.

Key words: geomorphological hazard modelling, probabilistic models, prediction errors,
accuracy assessment, decision support, decision threshold, ROC plot

1. Introduction

Model validation is a fundamental step in any natural hazards study. Vali-
dation refers to comparing the model predictions with a real-world dataset,
for assessing its accuracy or predictive power. Validation permits to estab-
lish the degree of confidence of the model, which is of great importance for
transferring the results to the final users. Also, without a proper validation
it is not possible to compare the model with other ones, or even with alter-
native sets of parameters or predictor variables. The evaluation of the
model, on the other hand, refers to the assessment of its adequacy to
the needs of the final users. In hazard analysis, this very often involves the
delineation of zones with different hazard levels that would lead to
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different management practices. In addition, a good validation and evalua-
tion scheme can also provide feedback for improving the model.

The typical case study in natural hazard analysis comprises a dataset of
study units (hillslopes, volcanos, grid pixels, etc) that can or can not devel-
op a dangerous characteristic. This paper deals with predictive models that
yield a continuous response variable expressing the degree of hazard or
propensity to express a dangerous characteristic. Different mathematical
approaches to this are:
• Bivariate analysis: a combined susceptibility index or a probability of
occurrence is derived from the analysis of the influence of each explan-
atory variable. Several different methods have been published, from
direct estimation (Clerici et al., 2002) to Bayesian estimation or fuzzy-
logic approaches (Lee et al., 2002).

• Multiple regression analysis: a linear relationship is used to predict a
continuous characteristic of the dangerous phenomenon, like the
percentage of area affected, from a set of explanatory variables (e.g.
Carrara, 1983).

• Discriminant analysis: a function is determined that assigns discriminant
scores to the study units. Usually, the units are classified according to
the distances to the centroids of some a priori fixed response groups, but
more refined rules can be used in a hazard analysis context (e.g. Lorente
et al., 2002).

• General linear models: an extension of regression models allowing for
non-linear response functions. The mostly used technique is logistic
regression, which yields directly a probability of occurrence of the dan-
gerous phenomenon (e.g. Bledsoe and Watson, 2001).

• The discussion is not only reduced to statistical approaches, as there are
examples of physically based models with probabilistic components.
Usually, a probabilistic component is included to account for uncertainty
in parameter estimation (e.g. Van Beek and Van Asch, 2004).

There are many examples of natural hazards analysed in a probabilistic
way: volcanic eruptions (Perry et al., 2001), ice-jam induced flooding
(Massie et al., 2002), channel instability (Bledsoe and Watson, 2001;
Martı́nez-Casasnovas et al., 2003), gully erosion (Morgan and Mngomezul-
u, 2003), snow avalanches (Floyer and McClung, 2003). Among all natural
hazards, the studies on slope instability have probably been the most com-
monly addressed by the methods mentioned above (i.e., Neuland, 1976;
Rice and Pillsbury, 1982; Carrara, 1983; Furbish and Rice, 1983; Carrara
et al., 1991; Chung et al., 1995; Van Westen et al., 1997; Rowbotham and
Dudycha, 1998; Chung and Fabbri, 1999; Dai and Lee, 2002; etc).

Although a crucial step in predictive modelling, in many cases model
validation is not given the necessary attention, and only very basic accu-
racy statistics are given. In most of the cases, a classification threshold is
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set to allow the construction of confusion matrices and computation of
classification statistics like the model efficiency (proportion of correctly
classified observations). As it will be shown later on, this scheme is more
adequate to pure classification studies than to predictive hazard models,
where the meaning of false positives and false negatives (also known as er-
ror types I and II in many texts) can be significantly different. Also, as the
subject of hazard analysis is by definition rare (infrequent) processes, a
very common situation is to deal with a great prevalence of negative cases
(non-observations of the dangerous phenomenon) in the sample. It will be
shown that prevalence in the sample constitutes a great drawback for the
use of some statistics widely used for model validation and model compari-
son. For this reason, an alternative set of statistics and the use of threshold-
independent approaches like the ROC (receiver-operating characteristic)
plot will be shown, and their use will be encouraged for the validation of
hazard predictive models.

As it has been said, after building the model a decision threshold (cutoff
value) is frequently set to divide the continuous response variable in two or
more hazard classes. Although this is not strictly necessary (a continuous
variable is certainly more informative than a sorted categorical scale), most
of the final users will better handle a map with a legend with labels like
‘safe’, ‘probably safe’ and ‘unsafe’ than a cryptic numeric value. Although
a continuous variable can be more meaningful to the researcher, in many
occasions he will be requested to provide a threshold to discriminate be-
tween safe and potentially unsafe locations, for the model to be useful in a
decision-taking context (this is why I suggest the use of the term ‘decision
threshold’, as opposed to the word ‘classification threshold’ used above).
To avoid subjective thinking, setting a decision threshold should include an
analysis of the costs of commuting positive and negative errors. The topic
is also dealt with in this paper, and a modification of threshold-indepen-
dent plots for error cost and decision analysis is proposed.

Finally, an alternative methodological scheme is proposed that clearly
separates validation and evaluation steps.

2. The Confusion Matrix and Derived Statistics

A common methodological scheme in hazard modelling is depicted in Fig-
ure 1. As it can be seen, once a continuous reponse variable expressing the
degree of hazard has been obtained, a classification threshold is set to di-
vide the continuous variable into two or more classes. This categorical
solution is normally considered the final product of the model, and valida-
tion is performed by comparing this prediction with the observations in a
validation dataset, different from the one used to build the model (for a
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complete discussion of sample partition for model validation, see Chung
and Fabbri, 2003).

Note that in this scheme the setting of a classification threshold is an
integral part in the construction of the model. As the response variable
yielded by the mathematical model has a continuous nature, this cutoff va-
lue is necessary to obtain a dichotomous variable (for the ongoing discus-
sion more than two classes can be considered a set of dichotomous
variables) that can be compared with the validation sample that by defini-
tion has a binary nature. This is described in Figure 2, where are plotted
the frequency distributions corresponding to the two cohorts in the sample
(cases with and without the dangerous characteristic, X1 and X0). For each
one of the two cohorts in the validation sample one obtains a frequency
distribution, according to the scores given by the model. The classification
threshold (dotted vertical line) that separates the cases predicted as safe
(X¢0) and unsafe (X¢1), is usually set equal to the proportion of positive
cases in the model sample. In an ideal situation, with perfect discrimina-
tion between the two groups, the two frequency distributions would appear
separated in the plot. In most of the cases, however, a certain overlapping
will occur, leading to prediction errors. In the figure, prediction errors
have been marked with letters b and c. The set b are the false positives, or
error type I in common statistical literature; the set c, on the other hand,
represents the false negatives, or error type II. Sets a and d, respectively,
group the true positives and true negatives.

Classif. thresholdhol

of hazard
Continuous degree

Model
sample

Statistical 
model

Mechanistic
model

Prediction of safe and 
unsafe locations

Validation 
sample

Confusion matrix,
accuracy statistics

(a)

(b)

(c)

Figure 1. Flowchart of a common probabilistic model design. a: sampling; b: model
construction; c: model validation.
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As in many classification studies the cohorts tend to be more or less
balanced, the threshold frequently has a value around 0.5 (Figure 2a). This
is not the case, however, in most hazard studies, where the size of the two
cohorts in the sample can differ by several orders of magnitude. This is the
case described in Figure 2b. Note also the different meaning of both types
of errors in hazard analysis. In most common classification studies (i.e.
land use type from satellite imagery), false negatives (c) and false positives
(b) are more or less equivalent (just something was classified in the wrong
group). In hazard studies, however, one deals with a rare phenomenon
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Figure 2. Frequency distributions for the negative and positive groups, and the role
of the prediction threshold. (a) Equal groups. (b) Unequal groups. a, true positives;
b, false positives (error type I); c, false negatives (error type II); d, true negatives.
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that can or can not have happened within the study period, but can hap-
pen in the future. False positives, in this context, can be either genuine
assignment errors, or else real hazard-prone areas that have not yet devel-
oped the dangerous phenomenon. This is a very important fact that has to
be kept in mind in predictive hazard analysis, and the discussion will reap-
pear later on in this paper. Once a prediction threshold has been adopted,
the binary predictions can be compared with the validation sample, allow-
ing the construction of a confusion matrix (Table I). The confusion matrix
shows the number of correctly and incorrectly predicted observations, for
both positive and negative cases. The letters in the cells correspond to that
of Figure 2 (see explanation above).

In Table II are defined some statistics commonly used in classification
and prediction models. Between them, the model efficiency (also referred as
success rate) is the most frequent in the literature; it can be defined as the
proportion of correctly classified observations, and for this reason it is
sometimes considered equivalent to the R2 statistic. Its opposite (rate of
incorrect classified observations) is the misclassification rate. The positive
predictive power is the proportion of true positives in the total of positive
predictions, the negative predictive power being the contrary. The odds ra-
tio (ratio between correctly and incorrectly classified observations) is the
only statistic that makes use of all the values in the confusion matrix.

Table I. Confusion matrix. a, true positives; b, false positives (error type I); c, false nega-

tive (error type II); d, true negatives.

Observed

Predicted X1 X0

X 01 a b

X 00 c d

Table II. Accuracy statistics derived from the confusion matrix.

Efficiency (a + d)/N Proportion of correctly classified

observations

Misclassification rate (b + c)/N Proportion of incorrectly classified

observations

Odds ratio (a + d)/(b + c) Ratio between correctly and incorrectly

classified cases

Positive predictive

power

a/(a + b) p(X1|X
0
1) or the proportion of true positive

in the total of positive predictions

Negative predictive

power

d/(c + d) p(X0|X
0
0) or the proportion of true negatives

in the total of negative predictions
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A very important drawback of the statistics presented in Table II is that
they are highly dependent on the proportion of positive and negative co-
horts in the sample. If the sample presents high prevalence of one of the
cohorts, as is normally the case in hazard studies, then columns X1 and X0

of the confusion matrix are not directly comparable, as their sums are not
equal. For example, consider the case where the sample contains a very
low proportion of positive cases (X1). This will make values a and c of the
confusion matrix much lower than their counterparts, b and d, thus affect-
ing all the statistics presented in Table II in the sense of making them
more optimistic or ‘liberal’. Paradoxically, in such a case the most efficient
model would be to predict all places as safe (X¢0), as the true positives will
be irrelevant compared to the true negatives! Despite this, the model effi-
ciency is the only accuracy statistic reported in many studies, which consti-
tutes an important drawback to evaluate and compare the different
approaches.

For this reason, an alternative set of statistics, not relying in prevalence,
is recommended (Table III). It can be seen that in their calculation the two
groups in the sample are kept separated (columns X0 and X1 of the confu-
sion matrix). The model’s sensitivity expresses the proportion of positive
cases correctly predicted, and can be considered the main statistic for
expressing the predictive power of the model. It is analogous to the ‘suc-
cess rate’ and ‘prediction rate’ statistics defined by Chung and Fabbri
(1999), and its use should be recommended instead of the more widespread
model efficiency. Specificity, on the other hand, is the proportion of nega-
tive cases correctly predicted. The false positive rate is defined as the
proportion of false positives in the total of negative observations, and the
false negative rate as the proportion of false negatives in the total of posi-

Table III. Some accuracy statistics not depending on prevalence.

Sensitivity a/(a + c) p(X 01|X1) or the proportion of

positive cases correctly predicted

Specificity d/(b + d) p(X 00|X0) or the proportion of

negative cases correctly predicted

False positive

rate

b/(b + d) p(X 01|X0) or the proportion of false

positives in the total of negative

observations

False negative

rate

c/(a + c) p(X 00|X1) or the proportion of false

negatives in the total of positive

observations

Likelihood ratio Sensitivity/(1-specificity) Ratio between true positive and

false negative fractions
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tive observations. The likelihood ratio makes use of all the values present
at the confusion matrix.

The use of these accuracy measures is well established in other disci-
plines like medicine (see, e.g., Forbes, 1995) or ecology (i.e. Fielding and
Bell, 1997), also dealing with predictive models of rare events. The particu-
lar meaning of false positives in this kind of models has to be emphasized
again. As it has been explained above, false positives have to be thought of
as cases highly propense to develop the dangerous characteristic in the fu-
ture, and not merely as classification errors. Reporting the model specificity
is therefore very important, as it permits to describe a model as being pessi-
mistic or ‘conservative’, if it is low specific (a big part of the study units are
given high hazard susceptibility rates), or else optimistic or ‘liberal’, when it
is high specific (only a small part of the units are predicted unsafe). Sensi-
tivity and specificity are thus complementary statistics, as can be seen in the
following example: Consider two different samples containing 100 study
units each one, 50 of which present a dangerous characteristic (volcanic
activity, slope instability, etc) in sample A, and only 5 in sample B. Suppose
that we build a predictive model for each one of the samples, yielding the
same prediction rate of 0.8 (80% of positive cases correctly predicted, or
sensitivity) when 50% of the cases are predicted as unsafe. This can be rep-
resented by the confusion matrices shown in Table IV. In case A, also 80%
of the negative cases would be correctly predicted, whereas in case B 98%
of the negative cases would be predicted as potentially dangerous. It is clear
that these two models could not be considered equal, but this difference is
very difficult to express if a measure of specificity is not provided.

3. Threshold-independent Methods: The ROC Plot

The above defined statistics have in common that they need the establish-
ment of a threshold value for their calculation. It should be stressed that
the selection of a threshold and the categorization of the response variable
should not be a characteristic of the model itself, but a result of the use of
the model in a specific context. For this reason, the validation of the mod-
el should not be based on one pre-determined threshold.

X1 X0 X1 X0

X'1 40 10 50 X'1 4 46 50

X'0 10 40 50 X'0 1 49 50

50 50 5 95

Observed

P
re

d
ic

te
d

Observed

P
re

d
ic

te
d

(a) (b)

Table IV. Confusion matrices of two models exhibiting same sensitivity but greatly differ-
ing in specificity.
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One way of achieving this would be plotting the different accuracy val-
ues obtained against the whole range of possible threshold values. That is
exactly what a ROC (receiver-operating characteristic) plot does. The ROC
plot was first introduced by Deleo (1993) in the field of signal processing
to designate the performance of a system for classifying a variable into
dichotomous classes.

An example ROC plot is given in Figure 3. The dots represent all the
possible cutoff thresholds, corresponding to the cases in the sample. Al-
though the threshold values are not represented directly in the ROC plot,
it is easy to obtain them from the data base. In Figure 3 some threshold
values (probabilities) have been marked for guidance.

For every point a different sensitivity/specificity pair of values is ob-
tained (in some texts the value plotted in abscissas is 1 – specificity). These
values indicate the ability of the model to correctly discriminate between
positive and negative observations in the validation sample. See that they
are directly related to the two errors, type II error being opposite of mod-
el’s sensitivity and type I error opposite of model’s specificity. In this
sense, it is equivalent to speak in terms of error II/error I pairs, and for
this reason secondary labels have been added to the plot.

It can be seen in the figure that for a low threshold the model will yield
a high number of true positives (will be highly sensitive), but at the ex-
pense of having a high type I error. In the example presented in Figure 3
we will obtain around 90% of true positives at a 0.05 threshold, but the
type I error (false positives) will be also very high, around 65%. The oppo-
site will occur if we take a high threshold. As stated above, the first case
represents a conservative model, with the emphasis put on covering all the
potentially dangerous study units, at the expense of including also some
units that could not be really dangerous.

The area-under-ROC can serve as a global accuracy statistic for the
model, independent of a single prediction threshold. This statistic varies
between 0.5 (no improvement over random assignment, represented by the
diagonal straight line) and 1 (perfect discrimination). It is clearly seen that
the more separated the ROC curve appears in relation to the diagonal
straight line, the better the model discriminates between safe and unsafe
locations. This value can be approximated by finite differences:

S ¼
Xnþ1

i¼1

1

2
�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xi � xiþ1ð Þ2

q
� yi þ yiþ1ð Þ ð1Þ

being xi the specificity and yi the sensitivity at threshold i, and xn+1=0,
yn+1 =1. If the number of points in the sample is not enough to use this
procedure, the area under ROC-curve can also be estimated by adjusting a
polynomial curve and integrating.
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Developing the idea of the success rate, Chung and Fabbri (1999) have
proposed the so-called prediction rate curve (PRC) that has been used also
by other authors (Lee et al., 2002; Remondo et al., 2003). Similarly to the
ROC plot, the PRC shows the success rate (equivalent to the sensitivity) in
ordinates, against the proportion of the total cases (map area, in the origi-
nal work) predicted as positive in abscissa, for the whole range of possible
thresholds. Like the ROC plot, the area under the curve can be used as a
threshold-independent statistic, ranging in this case from 0 to 1. The PRC
approach lacks an explicit representation of the model specificity, although
it is implicit in the proportion of total cases predicted as positive, if one
knows the proportion of positive and negative cases in the validation sample.

4. Error Cost Analysis and the Use of the ROC Plot for Optimum Decision

Threshold Selecting

When evaluating the hazard of a dangerous natural phenomenon, the con-
tinuous response provided by the model should fulfill the requirements of
the researcher. In this sense, the ROC plot and the area-under-ROC statis-
tic permit to evaluate the model’s performance independently of a deter-
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Figure 3. Example of a ROC plot.
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mined cutoff value. In a risk management context, however, researchers
are often asked for a decision threshold to determine if a given place is
safe or unsafe, which will determine the prevention measures undertaken.
Contrary to what has been explained before, here the selection of a cutoff
value belongs to the practical use of the hazard model.

In a purely theoretical hazard study the two types of errors are perfectly
equivalent in importance, although they mean different things. For the
researcher on natural hazards, a false positive may mean that a given place
is potentially dangerous, even that no dangerous activity has been
observed there. A false negative, on the other hand, means that the model
has not been capable of predicting the potential hazard. The analysis of
the two types of errors should provide useful information for improving
the model. For the risk manager, however, the two types of errors have a
very different meaning. A very pessimistic model, containing a great num-
ber of false positives, can imply the loss of a potentially safe space, or even
the uselessness of the investments made for prevention. But a false positive
error may signify the loss of lives or the destruction of infrastructure.

The ROC plot can be used to support decision taking for a given place.
Suppose, for example, that a certain slope is given a probability of failure
of 0.1 within a given time period (see Figure 3). From the ROC plot we see
that we have two choices: we can state that it is unsafe with 80% probabil-
ity of being right (true positive), or we can say that the slope is safe, with
63% probability (true negative). Suppose now that we decide that the slope
is unsafe, so we are to recommend some prevention measures, with a total
cost of 2000e. The probability of making a type I error (false positive) is
37%, so the net cost at risk would be: 2000 * 0.37=740. Otherwise, we can
declare the slope as safe, and do not recommend any correction measures.
Despite this, a landslide can still occur, with probability 20% (error type
II). Suppose that this landslide would bury some infrastructure, with a total
cost of repairing it of 1000e. This makes: 1000 * 0.2=200. Comparing the
net costs of making type I and type II errors, the less expensive option is to
consider the slope as safe and do not take any correction measures, even if
the initial probabilities were favourable to the unsafe option.

When considering a greater area instead of a single point, the ROC plot
can also be modified into an error-cost plot to select the most convenient
decision threshold for the whole zone, as shown in Figure 4. The second-
ary axes (errors) have been modified to express the net costs of both error
types. The optimum threshold should be the value that minimises the total
error costs, integrated over the whole area. In the ROC plot, this is the
value where the two cost-weighted errors are approximately equal (a value
of 0.1475 in the example shown in Figure 4).
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5. Alternative Methodology

From the discussion above an alternative methodology based on the use of
threshold-independent methods can be proposed (see flowchart in Figure 5).
As it has been stressed along this paper, the construction and the use of the
model should be separated. The validation of the model can be done with-
out the need of a predefined threshold, by a threshold-independent method
like the ROC plot. The evaluation of the model is done afterwards, includ-
ing the selection of one or more decision thresholds, also with the aid of the
ROC plot. The evaluation step should answer the question of how good is
the model in stating the security or safety of a given place or study area. An
idea of this can be obtained by the confusion matrix and derived accuracy
statistics, once one or more decision thresholds have been set.

6. Conclusions

In this paper the importance of the validation and evaluation steps in
model design is encouraged. It has been shown that validation can provide
the researcher with very useful information for improving the model, but it

Figure 4. Cost/benefit ROC plot.
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is also important to give the final users of the model an idea about the
confidence of the model results. The evaluation of the model permits to
adapt the model results to the needs of the final users.

After fitting the mathematical model, the usual methodology consists in
establishing a threshold or cutoff value to divide the response variable into
dichotomous classes. Then, one or more statistics based in the confusion
matrix are calculated for validating the model. The threshold value is nor-
mally fixed equalling the prior probabilities for the dangerous phenome-
non, estimated by its sampling rate. However, the setting of a threshold is
more a question of use of the model than a characteristic of the probabilis-
tic model itself. For this reason, the use of threshold-independent valida-
tion methods is proposed.

The construction and the use of ROC (receiver-operating characteristic)
plots has been shown. The ROC plot, and the area-under-ROC statistic, pro-
vide a complete validation scheme without depending on a pre-defined
threshold. The ROC plot can also be used afterwards as an error cost analy-
sis tool to assist in selecting a decision threshold for risk management.

An alternative methodology for probabilistic hazard analysis has been
proposed. The use of threshold independent methods is recommended in
the validation step. They can also be used during the evaluation step to
provide the final users with one or more alternative decision thresholds.

Model  
sample

Statistical 
model

Mechanistic  
model

Validation 
sample

Decision threshold

Prediction of safe and 
unsafe location

ROC plot

Accuracy statistics 

  

  

  
s

  

of hazard   
Continuous degree

(a)

(b)

(c)

(d)

Figure 5. Flowchart of alternative methodology based in threshold-independent

methods. a: sampling; b: model construction; c: model validation; d: model evalua-
tion.
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After that, several accuracy statistics based in the confusion matrix can be
calculated to express the confidence of the model at this specific thresholds.

The influence of sample prevalence (different proportion of positive and
negative cases) in several very common accuracy statistics has been shown,
and alternative measures have been proposed.
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