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Abstract
The dynamic urban link travel speed estimation (DU-LSE) problem has been stud-
ied extensively with approaches ranging from model to data driven since it benefits 
multiple applications in transport mobility, especially in dense cities. However, with 
drawbacks such as heavy assumption in model-driven and not being capable for big 
city network in data-driven, there has not been a consensus on the most effective 
method. This study aims to develop a Sequential Three Step framework to solve the 
DU-LSE problem using only the passively collected taxi trip data. The framework 
makes use of two deep learning models namely Traffic Graph Convolution (TGCN) 
and its recurrent variant  TGCNlstm to capture both spatial and temporal correlation 
between road segments. The proposed framework has three advantages over simi-
lar approaches: (1) it uses only the affordable taxi data and overcomes the data’s 
incompleteness both in spatial (full GPS trajectory is not available) and temporal 
(incomplete historic time-series) domain, (2) it is specifically designed to preserve 
the directionality nature of traffic flow, and (3) it is capable for large networks. The 
model results and validations suggest the framework can achieve high enough accu-
racy and will provide valuable mobility data for cities especially those without traf-
fic sensing infrastructure already in place.
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1 Introduction

In the twenty-first century, urbanizations are happening in countries around the 
globe at an extraordinary speed, which is reflected by the increase in percentage 
of urban population from 39% in 1980 to 58% in 2019 (World Bank 2019). This 
rapid urbanization will pose new mobility needs and lay more stress in the trans-
portation system especially in cities with old infrastructure that could not keep 
up with even the current demand. City planner can ask funds for rehabilitation 
and expansion of the current infrastructure such as opening more lanes, building 
new roads, or transit lines. However, the cost effectiveness of these investments 
is quite often questionable since new infrastructure does not necessarily translate 
into better mobility as shown in the example of the Braess Paradox (Frank 1981). 
On the other hand, there has been rising attention in improving urban mobility 
through Intelligent Transportation System (ITS), which leverages recent state-
of-the-art technologies to increase the effectiveness of the system without major 
investment in the current infrastructure.

In the United States, the States’ Department of Transportation (DOT) have 
already implemented many applications of ITS such as Ramp Metering, which 
limits the number of vehicle entering highway during peak hour to avoid a costly 
congestion, or Traffic Signal Coordination, which synchronizes multiple adjacent 
intersections to enhance a selected directional flow (DOT 2019). One main chal-
lenge that has been consistently debated in ITS is traffic state estimation (TSE), 
which is the process of inferring traffic state variables (e.g., flow, travel time, den-
sity, etc..) with partially observed traffic data (Seo et al. 2017). However, studies 
in TSE vary greatly in the scope of estimation. In spatial scope, certain studies 
estimate a selected set of road segments such as major roadways (e.g., highways) 
and/or those implemented with traffic volume sensors (e.g., Inductive Loop). 
In temporal scope, papers are more focused on short-term prediction (Ermagun 
and Levinson 2018; Thapa et al. 2022) since the estimation is more reliable. The 
research area of estimating all road segments in a dense urban network at every 
time of the day is new and unexplored. To this end, we introduce the Dynamic 
Urban Link Travel Speed Estimation (DU-LSE) problem which specifically aims 
at computing link travel speed for every link within a network, at different time 
of the day and day of the week. The outcome of DU-LSE can be beneficial to a 
wide variety of application in ITS such as monitoring traffic jam, estimating time 
of arrival, route planning (Kumar et al. 2019; Nantes et al. 2016; Papageorgiou 
et al. 2003; Seo et al. 2017; Xu et al. 2020), and even for the emerging technology 
of autonomous vehicle operations (Fountoulakis et  al. 2017; Khan et  al. 2017). 
There are private companies such as INRIX, HERE, or TOMTOM offering traffic 
estimation services but there are three main concerns for city planner who wishes 
to adopt this method. First, the estimation coverage of these services may be lim-
ited to major segments of the road network such as interstate and in urban mobil-
ity, knowledge of both major and minor segments (i.e., Central Business District) 
is significantly more beneficial. Second, since these services require data col-
lected either from probe vehicle travel program or stationary traffic sensor, cities 
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that do not have these infrastructures simply cannot utilize this method. Third, 
estimation for commercial companies is still not as accurate and reliable since 
there are multiple observations of the original data, and it is not clear on the sam-
pling method. Therefore, there should be an independent alternative framework to 
compare such information.

DU-LSE has been studied extensively with methods ranging from model-driven 
to data-driven approaches (Seo et  al.  2017). Conventional model-driven approach 
relies on theoretical principles represented by mathematical formulation to describe 
the physical traffic flow. On the other hand, data-driven approach such as deep learn-
ing relies on a vast amount of data and learns its hidden pattern through the opti-
mization of model’s weights and biases. This approach has recently gained traction 
due to two main factors. First, there is an unprecedented growth rate in the amount 
of data generated even just through passive daily actions. A study in 2013 found 
that 90% of the world data at that time was created during 2011–2012 alone (Ralph 
2013). This abundant source of data functions as a fuel to improve the accuracy 
of deep learning models. Second, continual advancement in computing power has 
paved the way for processing these large data such as IBM’s Infosphere process-
ing at a rate up to 120,000 GPS points per second (Biem et al. 2010). However, in 
the ITS field and especially in solving DU-LSE, studies using data-driven approach 
often require data from sensing infrastructure such as inductive loop detectors, 
license plate recognition devices, or 360° cameras. Cities that wish to take advan-
tage of these studies for their ITS system either need to have these infrastructures 
already in place or invest in a new sensing infrastructure which can be costly. This 
poses a problem for cities with emerging population and economy especially those 
in developing countries. Thus, the use of data that is a byproduct of daily activi-
ties and publicly available is desirable. In the case of urban mobility data, taxi trip 
dataset has great potentials because not only it meets all these criteria but also is 
abundantly available, especially in dense urban areas. For example, as a result of the 
Open Data Law signed into effect as of 2012, the New York City Taxi & Limousine 
Commission (NYC-TLC) has released an astonishing record of 1.1 billion taxi trips 
from 2009 to 2015 (City of New York 2019). Due to its enormous size, this dataset 
is perfectly suitable to fuel a deep learning model aiming to solve the DU-LSE prob-
lem. Furthermore, the taxi data has extensive both spatial and temporal coverage, 
which is demonstrated later in Sect. 4 case study.

Although there have been several papers devoted to DU-LSE (Yu et al. 2019; Wu 
et al. 2015; Liu et al. 2019; Sekuła et al. 2018; Zhan et al. 2013), the literature has 
not yet reached a consensus on the most effective method because of drawbacks in 
the methodology such as heavy assumption in model-driven and lack of scalability 
in data-driven approaches. We shall present a more extensive review of the literature 
on DU-LSE and identify these drawbacks in Sect. 2. Therefore, this objective of this 
paper is to develop a sequential three step framework that leverages a single dataset 
of taxi trip to estimate historical complete network link travel speed, disaggregated 
by time of the day.

The remainder of the paper is organized as follows: Sect. 2 reviews the related litera-
ture in the domain of deep learning model in ITS and specifically, the DU-LSE prob-
lem. In Sect. 3, we present in detail each step in the sequential three step framework. 
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This framework is then applied on the New York City Taxi dataset in Sect. 4. Section 5 
discusses the evaluation validation of each step in the framework and finally, Sect. 6 
concludes the paper with the discussion on findings, model performances, and avenues 
of future research.

2  Literature Review

The number of studies using deep learning model in ITS is increasing with appli-
cations ranging from ridesharing services (Geng et  al. 2019; Ke et  al. 2017; Yao 
et al. 2018), bikesharing services (Lin et al. 2018), to car parking demand prediction 
(Yang et al. 2019). These studies usually utilize a combination of two methods to 
capture both spatial and temporal relation. For spatial relations, studies utilize varia-
tions of Convolutional Neural Network (CNN) which have already achieved tremen-
dous success in the field of image recognition and video classification. The main 
idea of CNN is to aggregate information of pixels located inside a pre-defined kernel 
filter and this filter is then transported through the rows and columns of the image’s 
pixel to learn and identify common patterns. However, CNN has difficulty in imple-
mentation for road network. Unlike image dataset, which is an Euclidean type data, 
road network is a graph structure data and there is no notion of direction but only 
notion of node connectivity. One possible solution is using Graph Convolutional 
Network proposed by Kipf and Welling (2017). The approach’s main idea is that a 
host node would gather information from its neighbor one “hop” away from itself. 
The procedure can be repeated multiple times to reach to further neighbors. One 
thing to remind from this study is it is node-based, which means only node informa-
tion can be processed whereas information of the links connecting these nodes are 
ignored.

For temporal relation, variations of Recurrent Neural Network (RNN) especially 
those in form of Long-Short Term Memory (LSTM) are utilized. The main idea of 
RNN is, it would take both the current and previous observations as input and the 
operation is repeated at each state of time and hence the name “Recurrent”. How-
ever, RNN suffers from the exploding or vanishing gradient problem where changes 
of model’s weights and biases during training are either too small or too big that it 
could not achieve convergence in the loss function. LSTM addresses this problem 
by introducing an internal state value at which the gradient flow is uninterrupted and 
thus avoids the exploding/vanishing gradient problem (Hochreiter and Schmidhuber 
1997). This approach has been the state-of-the-art model for capturing temporal rela-
tion in situation such as bike-sharing and car parking demand prediction (Lin et al. 
2018; Yang et al. 2019). However, most studies using LSTM rely on a complete his-
toric time-series dataset to effectively train the model. Traditionally, LSTM was often 
implemented in a local fashion where a node would only look back at its historical 
data and ignores its neighbor’s, but more recent papers are starting to embed con-
nectivity into the formulation and promote spatial message passing. For an in-depth 
review of deep learning model in ITS, we recommend the survey by Wang et  al. 
(2019) where the authors goes through various techniques and applications. One 
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main take away from this survey is deep learning lack the interpretability power if not 
formulated appropriately.

In the DU-LSE problem, the common practice for achieving the link-level travel 
speed often involves a theoretical four step planning process, which are (1) trip gen-
eration, (2) trip distribution, (3) modal split, and (4) traffic assignment (Sheffi 1975). 
However, the four-step planning process requires the planner to issue a Household 
Travel Survey, which is costly and conducted approximately once every 10 years thus 
results in a low reliability when being implemented in later period of the collecting 
cycle. In addition, the process relies on stringent assumptions such as Wardrop User 
Equilibrium that do not necessarily hold true in the real world (Yu et al. 2017). More 
recent research can be categorized into either model-based or data-driven approach. In 
model-based, (Yeon et al. 2008) used probabilistic breakdown for freeway segments 
and Discrete Time Markov Chain to estimate travel time with data from microwave 
sensors and CCTV on US202 in Philadephia, PA. With New York taxi data, (Zhan 
et al. 2013) proposed a two steps framework where route choice is first estimated by 
multinomial logit model and travel time is calculated by an optimization model mini-
mizing the expected and observed path travel time. Another high-performance algo-
rithm was introduced by (Wu et  al. 2015) where the author used convex optimiza-
tion coupled with dimensionality reduction scheme and projected gradient algorithm 
to estimate traffic. The data is a fusion between vehicle count via sensors and cellular 
network along I-210 region of Los Angeles. Other notable approach in model-based 
are Tucker decomposition-based imputation (Tan et al. 2013) for PeMS data in Sac-
ramento County and maximum likelihood (Jenelius and Koutsopoulos 2013) for GPS 
probes in Stockholm, Sweden. In data-driven approach, early work includes a three-
layer neural network for low-pooling frequencies probe vehicle data (Zheng and Van 
Zuylen 2013), denoising stacked autoencoders for Caltrans PeMS (Duan et al. 2016), 
neural network with linear and hyperbolic layers to capture sharp non-linearity of traf-
fic flow in case of special event such as a Chicago Football Game (Polson and Sokolov 
2017), and (Sekuła et al. 2018)’s neural network with a profiling model for ATR sta-
tion and vehicle probe data in Maryland. A more contemporary approach with high 
performance is the 3D-TGCN by (Yu et  al. 2019). The model makes use of Graph 
Convolutional Network and Dynamic Time Wraping, and it is applied to the PeMSD7 
(2012) and PEMS-BAY (2017) data from Caltrans. One major contribution of this 
method is DTW introduces less training parameters compared to RNN-based model 
and the training process is more efficient.

2.1  Research gaps

After reviewing related literature, we identify four research gaps as follows:

1. First, most studies rely on well-established and dense dataset that provide a com-
plete historic time-series collected from traffic sensors such as Inductive Loop 
Detector or License Plate Recognition (Cui et al. 2019; Diao et al. 2019; Wu et al. 
2015; Yu et al. 2019; Zhu et al. 2018), floating probe vehicle GPS data (Cui et al. 
2019; Yu et al. 2017; Zhu et al. 2018), mobile phone data (Wu et al. 2015; Zhu 
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et al. 2018) or even a combination of all of it. However, these datasets require 
a supporting infrastructure already being implemented in the first place (e.g., 
sensors) and thus is not applicable to city that does not have such hardware or 
software system for the entire network. Even if a city decides to implement new 
sensing facilities, not only it would cost more but also pose a question of where to 
locate these devices. Other data sources such as GPS or mobile data is not readily 
available to most researchers and pose concerns about personal security.

2. Second, studies using variation of Graph Convolutional Network (Cui et al. 2019; 
Diao et al. 2019; Kawasaki et al. 2019; Kipf and Welling 2017) are mostly node-
based and link information (i.e., road length and number of lanes) are ignored. 
This also results in an undirected graph where there is only a notion of two nodes 
being connected by a link but no notion of direction. Therefore, these studies 
have limitation in capturing the directional flow nature which is inherent in traffic 
behavior. An example would be, the same highway connecting the suburb and the 
downtown area, north-bound traffic would differ greatly compared to south-bound 
traffic at a specific point of time. In addition, the north and south-bound road are 
represented as two separate links connecting the same origin–destination pair, 
which cannot be reflected in an undirected graph commonly used in GCN.

3. Third, studies aiming to capture temporal relation by using variations of LSTM 
(Cui et al. 2019; Lin et al. 2018; Liu et al. 2019) only apply the technique locally, 
which is a road segment will only look at its own historical data and not its neigh-
bor.

4. Finally, most papers only consider network with moderate size (i.e., up to 500 
links) and aim to capture only part of the city transportation network (i.e., high-
way) especially at segments where traffic sensors are located. In dense urban area, 
traffic estimation for all links is exponentially more useful than that of for selected 
highway segments.

2.2  Paper Contribution

1. First, we use only the publicly available Taxi Trip data, which is a byproduct of 
daily activities and requires minimal investment for City Planners who wish to 
implement this framework. Taxi data is different than that of probe vehicle data 
or location-based services data for which the city needs to purchase the data. 
But for taxi data, many cities have memorandum of understanding with the taxi 
companies to share the data if they would like to operate in the city with assurance 
in user privacy. However, the dataset has two main disadvantages that prevents 
it from being widely used in the DU-LSE field. These are (i) each trip does not 
have full GPS traces but only the pickup and drop-off coordinates and even these 
data are completely random, sparse, and far between each other in a network 
and (ii) no complete historic time-series are provided. The sequential three step 
framework presented in this paper helps to address this problem of incomplete 
information so that city planner can use this readily available data for their task 
of determining DU-LSE. To the best of our knowledge, this is the first paper to 
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estimate network-wide travel speed throughout the day with only one single taxi 
trip data.

2. Second, our paper captures the directional flow, which is to estimate travel speed 
on both directions of a road segment. This is challenging because conventional 
GCN works with undirected graph and there is only notions of node-connectivity 
and neighbor’s message passing. We also want to preserve directional flow nature 
of traffic as explained in the following illustration. At an intersection, there are 
two traffic flows going in and out of the intersection in the East direction. These 
two traffic flows can then past message about each other whereas other direc-
tions such as North, West, and South are not related. This notion applies to the 
remaining directions and traffic flow as well. To this end, our paper contributes 
Traffic Graph Convolutional Network to capture this directional flow nature by 
using a node-link embedding technique in conjunction with a modified directional 
adjacency matrix.

3. Third, for capturing temporal relation, our paper introduces  TGCNlstm along with 
an appropriate model architecture to allow the node to look back at not only of its 
historical data but also its neighbor’s.  TGCNlstm makes uses of the core idea from 
TGCN, such as modified directional adjacency matrix, and LSTM architecture 
(Hochreiter and Schmidhuber 1997).

4. Fourth, this paper makes use weight sharing to reduce training parameters and 
increase training efficiency. At a lower level of TGCN, each node in the network 
has its own neural network of which computational graph is created by branch-
ing from the host node out to its neighbor. By repeating this operation multiple 
times, the host node can gather information multiple “hops” away. If two nodes 
i,j are connected together via a real-world road segment, then only one weight 
wij is assigned to this pair and wij is shared across multiple computational graphs. 
We will explain this notion further in Sect. 3.8.5 of Computational Graph. This 
facilitates our case study to estimate dynamic urban link travel speed for large 
network within reasonable computational time. The number of training param-
eters is independent of the size of the taxi dataset, but the model accuracy benefits 
greatly from this taxi dataset size.

3  Methodology

3.1  Problem Definition

We first describe the problem as follows. The framework takes input of a taxi trip 
dataset where each taxi i ∈ I contains the information about (1) the pickup and 
dropoff coordinates, pickup and dropoff time, and travel distance. This information 
is represented as a tuple:

The output of the model is the travel speed of every link in the network at every 
time of the day as follows: yat,∀a ∈ A, t ∈ T  where A is the set of links and T  is the 

{xstart
i

, ystart
i

, xend
i

, yend
i

, tstart
i

, tend
i

, d},∀i ∈ I
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set of Time period. All notations for this paper are summarized and presented in 
Appendix A. In addition, physical meaning of every notation will be mentioned and 
explained in text after it is introduced.

3.2  Overall Framework

In order to solve the DU-LSE using taxi trip data, we use a Sequential Three Step 
(S3S) framework which consists of (1) Path Choice Prediction, (2) Partial Link 
Travel Time Prediction, and (3) Dynamic Urban Link Travel Speed Estimation. The 
overall interactions between these steps are as follows. Step 1 takes the raw input 
which is taxi trip data and produces an output of predicted path choice for all taxi 
trips. This output is fed as an input to step 2 which then produces an output of par-
tial link travel time. Step 3 then takes the step 2 output as input and produces the 
ultimate result which is the DU-LSE. Our study uses link-level travel speed as rep-
resentation of traffic state instead of travel time for reasons discussed later in step 
3. It’s important to note that one can readily compute link travel time by dividing 
link length with travel speed. A schematic view of S3S framework’s architecture 
and details of each step are provided in Fig.  1. For the analysis of step 1 and 2, 
we first subset the taxi trip from the master dataset by a 30-min time window (i.e., 
01/01/2014 06:00–06:30). Steps 1 and 2 are then independently processed for each 
time window and repeated until every time windows within the analysis period (i.e., 

Fig. 1  Schematic Representation of The Sequential Three Steps Framework
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from the date 01/01/2014 to 12/31/2015) are executed. Therefore, we do not include 
the subscript of time window t in the description and formulation of step 1 and 2. 
The S3S framework is the key component of overcoming the incompleteness of taxi 
trip data as mentioned in Sect. 2.

3.3  Framework’s Application on Similar Data Types

Besides a single taxi dataset with only the pickup and dropoff coordinates available, 
our research also works well or even better with similar but denser spatio-temporal 
dataset. One such example is the extension of taxi dataset including GPS traces. GPS 
traces provide two fundamental advantages over the original taxi dataset which are 
(1) the path chosen by the taxi between the Origin–Destination pair is known and (2) 
partial link travel time can be derived directly by comparing the timestamp between 
the start and end of a road segments for a taxi trip. Therefore, our framework can 
bypass step 1 and 2 completely because the path choice and partial link travel time 
derived from GPS traces is theoretically more accurate than the estimation from step 
1 and 2. GPS traces can then be introduced directly to the input of step 3. The dis-
advantages of using GPS traces are (1) such data might not be available in some city 
due to privacy reason; and (2) the GPS-implemented fleet is biased within certain 
areas and does not cover the entire network. Our framework provides flexibility and 
robustness by including step 1 and 2 and practitioner can make a choice based on the 
data they have.

3.4  Step 1: Path Choice Prediction (PCP)

Given the input of the pickup and drop-off GPS coordinates and the observed travel 
distance of a taxi trip, this step aims to infer the path taken by that taxi trip. PCP 
step includes the following procedure. First, the pickup and drop-off coordinates are 
projected to the nearest link via a perpendicular line. This projected point is called 
the mapped point. Then the mapped point is projected to the nearest intersection 
which is then named as an intermediate node. We assume that the taxi would not 
make a U-turn for either picking up or dropping off customer which results in only 
one unique pair of intermediate nodes for pickup or drop-off. Figure 2 shows both 
a schematic view and real-world application of the data mapping step. We also 
calculate the distances between the map points and intermediate nodes, which are 
named D1 and D2 respectively. Second, for each pair of intermediate nodes, we gen-
erate k-shortest-paths using Yen’s Algorithm (Yen 1971) and calculate the trave-
ling distance for each path. We need to add this travel distance, D1 , and D2 together 
in order to get the predicted path distance. A pseudocode for Yen’s Algorithm is 
provided in Appendix B. One drawback of Yen’s Algorithm is the paths generated 
only vary slightly between each other and there are a lot of overlap links. In the 
real world, drivers are often presented with a diverse set of alternative paths with 
limited overlapping and the Yen’s Algorithm cannot easily captures this notion. 
There are other algorithms aiming at improving speed or increasing diversity such 
as Hoffman’s Algorithm (Hoffman and Pavley 1959), Multi-pass (Chondrogiannis 
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et al. 2020), Constrained Time-Dependent KSP Algorithm (Hu and Chiu 2015), or 
Greedy Framework (Liu et  al. 2018). However, these algorithms are complex and 
only being tested in moderate size network. Our case study features the New York 
City network with more than 9,500 links and 4,500 nodes, which can pose difficul-
ties for those algorithms. In addition, the k-shortest-path problem need to be solved 
for every single taxi trip and the computational time and power for such algorithm 
is simply not applicable. The Yen’s Algorithm is the only algorithm that can practi-
cally be applied in this situation. To alleviate this drawback, we exclude taxi trip 
records with too high of an error between the observed and predicted travel dis-
tance from the training set. The choice of k is a model’s hyperparameter and in our 
New York case study, after several trials, we choose k = 5 since it balances between 
computational time and model’s accuracy. Finally, the taxi trip’s chosen path is the 
path minimizing the absolute difference between the predicted path distance and the 
observed distance collected from the taxi trip record. An example of Path Choice 
Prediction is also shown in Fig. 2. Step 1 is executed independently and repeated for 
each taxi trip and each time period.

3.5  Step 2: Partial Link Travel Time Prediction (PLTT)

Given the input taxi trips including its predicted chosen path and observed travel 
time, this stage aims to infer the travel time of only selected links. Step 2 is also 

Fig. 2  Data Mapping
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executed independently and repeated for each time period. In the main formulation 
of PLTT, the decision variable is the partial link travel time, and the constraint is 
the predicted trip travel time, which is computed directly from partial link travel 
time, is close to the observed trip travel time. Therefore, the number of decision 
variable and constraints are number of links included in the taxi set and number 
of trips respectively. However, if we apply PLTT directly to a set of taxi trips, the 
number of decision variables will be much greater than the number of constraints 
and the resulting partial link travel time is not as accurate. Therefore, we first create 
a preprocessing Taxi Trip Sub-setting (TTS) model to address this problem. TTS 
aims to maximize the number of trips selected for subset S while guarantees that the 
number of selected trips divided by the number of involved links is greater than a 
certain threshold. The decision whether a taxi trip record i is selected for subset S is 
represented by the decision variable xi of the TTS model and the formulation is as 
follows:

3.6  TTS Model

3.6.1  Objective Function

3.6.2  Subject to

Equation (1) is maximizing the number of selected trips for the subset S. Equa-
tion (2) shows the total number of involving links L corresponding to the subset S. 
Pi is a vector of size A × 1 representing the sequence of link constituting the travel 
path for taxi trip i. This means that if link a is presence in the path sequence of trip i, 
the ath value of vector Pi is equal to 1 and 0 for otherwise. The decision variable xi is 
binary showing whether trip i is selected for the subset S. The product ∏ is an ele-
ment-wise vector multiplication across every trip i of the vector 

(
1 − Pixi

)
 . The ∑ is 

the sum of all elements in the resulting vector from the previous calculation and it is 
equal to the number of links included in subset S. Equation (3) ensures that the ratio 
between the number of trips selected and its corresponding number of participating 
links is larger than a hyperparameter ��(0, 1) . A higher � and thus, a higher ratio of 
�∕L would yield a more accurate result for PLTT because the number of constraints 
would be close to the number of decision variables. However, higher � would also 
narrow down the feasible space and ultimately, fewer links would be selected for 
prediction and step 3 will receive fewer inputs.

(1)Max ∶ � =
∑

i∈I

xi

(2)L =
∑

a∈A

[

1 −
∏

i∈I

(
1 − Pixi

)
]

(3)�∕L ≥ �
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After the subset S is created, the second procedure of step 2 is to predict travel 
time of the link included in subset S based on the Partial Link Travel Time (PLTT) 
model. The decision variable tt is a vector of size A × 1 where the ath element rep-
resents the travel time of link a. The model aims to minimize sum of square error 
between the predicted travel time and the observed travel time among all taxi trips 
in subset S.

3.7  PLTT Model

3.7.1  Objective Function

3.7.2  Subject to

Equation (4) is the objective function minimizing the sum of square error between 
the predicted travel time and the observed travel time over all taxi trips i belong to 
subset S. The predicted travel time only accounts for the summation of link travel 
time along the selected path and thus, we introduce the term Δi to represent the total 
intersection delay for taxi trip i. Since only the full path travel time is known, we 
currently set this Δi to 0 and the intersection delay is incorporated into link travel 
time. However, in future research where taxi GPS traces are available, this Δi can be 
accurately determined and improve the accuracy of step 2. Equation (5) shows the 
predicted travel time of taxi trip i is equal to the sum among all links a the element-
wise product tt⋅Pi . This entire step is repeated for each time period.

3.8  Step 3: Dynamic Urban Link Travel Speed Estimation

Step 3 takes the input of partial link travel time from step 2 to produce an output of 
dynamic traffic state which is represented by link level travel speed. Step 3 proce-
dure is as follows:

1. Encoding link speed as node features: this step aims to transfer link feature, which 
in this case is travel speed, as node features to facilitate message passing between 
nodes.

2. Creating a modified directional adjacency matrix: this step creates a matrix that 
represent simultaneously node connectivity and the relation between different 
directional flows.

3. Traffic Graph Convolution Network (TGCN): this step develops a convolution 
operation on graph structure to learn the spatial relation between nodes.

(4)Min
∑

i∈S

(
t
pred

i
+ Δi − tobs

i

)2

(5)t
pred

i
=
∑

a∈A

tt⋅Pi∀i ∈ S
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4. Recurrent TGCN: this step joins hidden layers at different time period together 
to learn the temporal relation between nodes. The computational graph of step 3 
would be shown after the discussion of each individual component.

3.8.1  Encoding Link Travel Speed as Node Feature

First, we convert the link travel time to travel speed as the input for the deep learning 
model since it has the following advantages over travel time:

• Link travel speed are highly corelated between road segments. Thus, it makes the 
process of message passing between node more efficient.

• In case the link is untraversable, the link travel speed can be set to zero and effec-
tively stop the process of message passing between node whereas for link travel 
time, one must set an arbitrary large number, which can be subjective.

Recent development of graph convolution network only allows for message pass-
ing between node whereas link features such as the distinction between directional 
movement (i.e., north-bound vs south-bound traffic) are usually neglected. In addi-
tion, the graph considered tends to be undirected. This paper aims to bridge this gap 
by embedding link features (travel speed) as node features. For a node i, there is a 
maximum of 4 outward link going from node i to its neighbor. The speed on these 
outward links would be embedded to the node features vector as shown in the exam-
ple in Fig. 3. Here, travel speed on outward links of node i, which are v1, v2, v3 and 
v4 , are embedded to node i feature representation vector:

The inward link to node i should not be embedded because it would be repetitive 
since node i’s neighbors have already embedded it in their feature representation 
vector.

The order in which these link travel speed goes into the node feature vector 
depends on its north bearing angle �link

a
 and this node-link embedding principal is 

presented in Table 1. The principal along with the modified directional adjacency 
matrix help our framework preserving the notion of direction which is inherent in 
traffic flow.

Xi =
[
x1
i
, x2

i
, x3

i
, x4

i

]
where x

f

i
= vf , ∀f ∈ (1 ∶ 4)

Fig. 3  Visualization of Link 
Travel Speed Embedding
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3.8.2  Modified Directional Adjacency Matrix

In the normal Graph Convolution Network by Kipf and Welling (2017), the adja-
cency matrix can only represent the node connectivity and the graph is undirected. 
This is not applicable for road network because the direction at which these nodes 
are connected is important. This can be shown by the following example:

We consider node 2 in Fig. 4a as the node of interest or host and it is looking 
to gain information from its neighbor, node 1. We can say that the value of x2

1
 is 

highly related to x2
2
 while none other pair is related. Therefore, only the pair of xf

i
 

that has f = 2 can pass message between each other. This is because the direction 
of the link from neighbor 1 to host 2 lies in the f = 2 direction. This conforms with 
the node-link embedding principle mentioned in Table 1. Therefore, we construct a 
[ N × N × F ] modified adjacency matrix A as follows:

The adjacency matrix for the example can be visualized in Fig.  4b. Here, every 
links in the network is embedded separately even for those with the same OD pair and 
aijf ≠ ajif  . The notion of direction is preserved with the use of the third-dimension f. 
The adjacency matrix, node-link embedding principle, and the traffic graph convolu-
tion network are specifically designed to be compatible with each other and capture 
the real-world network traffic as close as possible. In the GCN introduced by Kipf & 
Welling (2017), the adjacency matrix is normalized using the following operation to 
ensure the node features after convolution are not scaled up:

A ∶ aijf =

{
1 if the link from neighbor j to host i is in the f direction

0 for otherwise

Table 1  Node-Link Embedding Principal

North bearing angle �link

a
Embedding Principle

0 ≤ 𝛼link

a
< 90 Link travel speed embedded to the first element

90 ≤ 𝛼link

a
< 180 Link travel speed embedded to the second element

180 ≤ 𝛼link

a
< 270 Link travel speed embedded to the third element

270 ≤ 𝛼link

a
< 360 Link travel speed embedded to the fourth element

Fig. 4  Node Message Passing
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where: Â = A + I , and I is an identity matrix and D̂ is diagonal node degree matrix 
of

This normalization ensures that the row sum of A is equal to 1. However, this nor-
malization is not necessary for our Modified Directional Adjacency Matrix. Within 
a certain direction f, we only want the host node i to look at one particular relevant 
neighboring node j and thus, only this pair aijf  value is 1 whereas the remaining is 0. 
Therefore, this guarantee:

To help explain this feature, we refer to back to Fig. 4 and assume the host node is 
node 2 and the direction of interest is f = 2 (or East). Here, we only allow x2

1
 of node 

1 to pass information to node 2’s x2
2
 . Suppose there are other nodes neighboring 

node 2 to the East, North, and South. However, none of these neighboring nodes can 
pass information about x2

2
 and thus, their aijf  value is 0. Therefore, for a particular 

direction, this guarantees the row summing to 1 for our Modified Adjacency Direc-
tional Matrix.

3.8.3  Traffic Graph Convolution Network (TGCN)

After embedding link to node and constructing the directional adjacency matrix, 
TGCN will apply “convolution” over the road network. GCN can be described as 
a neural network where each node of the graph is a neuron itself and the propaga-
tion rule is the “convolution” operation. In CNN, “convolution” refers to aggregat-
ing information from nearby pixels. Therefore, the idea of “convolution” on a node 
can be regard as aggregating the information from all of its neighbor. This can be 
visualized in Fig. 5a where the host node u is looking to gain information from its 
immediate neighbor v1, v2, v3, and v4.

Therefore, the Graph Convolution on graph domain can be formulated as follows:

where relu(x) is the rectified linear activation function (ReLu) as follows:

Equation (6) represents the convolution on graph where for every neighbor v of u, 
we take the previous hidden layer of neighbor hk−1

v,f
 , multiply it with the weight  wuv, 

and aggregate it to the current layer of host u. In addition, a bias bu is added and the 
entire operation is transformed using the ReLu function. Here we do not need to add 
the subscript f for the weight wuv because for a pair of host u and neighbor v, there is 

A = D̂−1∕2ÂD̂−1∕2

∑

j

aijf = 1,∀i ∈ I, f ∈ F

(6)hk
u,f

= relu

(
∑

v∈N(u)

wuvh
k−1
v,f

+ bu

)

,∀u ∈ N, f ∈ F

relu(x) = {
xifx ≥ 0

0ifx < 0
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only one link in a specific f direction (e.g., f = 2 in the example of Fig. 4) that can 
facilitate node message passing. This operation is repeated for each node u within 
the network and for each traffic directional flow f. This repetition can pose a problem 
in computational efficiency and Eq. (6) is very difficult to be programmed. There-
fore, we modify and migrate the operation from graph domain to matrix domain. 
First, instead of using the individual node representation hk

u,f
 , we use a [ N × F ] 

matrix Hk where each row represents the node feature. In similar fashion, a [ N × N ] 
matrix W and a [ N × F ] matrix B would be utilized instead of the set of individual 
weights wuv and bu . The modified directional adjacency matrix A would facilitate the 
transition from graph domain to matrix domain. Equation  (6) can be rewritten in 
matrix domain shown in Eq. (7) below.

Fig. 5  Convolution on Graph
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Here, for a specific value = f  , we first subset a matrix af  from the modified 
adjacency matrix A and perform an element-wise matrix multiplication withW . 
The resulting matrix is then used as the first component in the matrix multiplica-
tion with the vector Hf

k−1
 subsetted from the previous layer network state Hk−1 at 

= f  . A visualization of Eq.  (7) is shown in Fig. 5b. This operation is repeated for 
every f ∈ (1 ∶ 4) . Equation  (8) adds the bias B and the entire operation is trans-
formed using the ReLu function and the resulting matrix is the current layer network 
stateHk . By performing Eqs. (7) and (8), a node will effectively learn the informa-
tion from its neighbor one hop away. TGCN can be repeated multiple times to allow 
the node learning from neighbors further away. Equations (7) and (8) address the 
research gaps in Sect. 2 and it has the following three advantages: (1) It preserves 
the notion of directional flow, (2) It transform a complex convolution on graph 
domain to matrix domain and make it readily for scaling to larger network, and (3) 
the weights W can be shared across multiple execution of TGCN and thus greatly 
reduce the number of weights to be trained. This weight sharing feature will be dis-
cussed further in the computational graph section below.

3.8.4  TGCNlstm for capturing Temporal Dependencies

After the TGCN operation is applied at each time period to capture spatial relation, 
we introduce the  TGCNlstm cell to join the traffic states at different time periods 
together. We modify the well-known LSTM cell to a  TGCNlstm cell to capture both 
temporal and spatial relation in one operation and apply it to the final two layers 
K − 1 and K . The  TGCNlstm cell would take three inputs which are (1) the current 
layer at previous time period Ht−1

k
 , (2) previous layer at current time period Ht

k−1
 , 

and (3) the internal state at previous time period st−1 . There are two outputs of the 
 TGCNlstm cell namely (1) the current layer at current time period Ht

k
 and the internal 

state at current time period st . The computation graph of LSTM can be shown in 
Fig. 6a as follows:

In the spatial aspect of  TGCNlstm, it functions in similar fashion as TGCN with 
the only difference being  TGCNlstm has two inputs Ht−1

k
 and Ht

k−1
 . Therefore, we 

would have to modify the adjacency matrix af
lstm

 , the weight matrix Wlstm , and the 
convolution operation as shown in Fig. 6b. First, the previous layer at current time 
period Ht

k−1
 and the current layer at previous time period Ht−1

k
 are row-wise concat-

enated resulting in a [ 2N × F ] matrix. We column-wise concatenate the adjacency 
matrix af  at f = f  with an [ N × N ] identity matrix to get the adjacency matrix af

lstm
 

for  TGCNlstm. The weight matrix is also in [ 2N × N ] dimension where the first 
[ N × N ] part is the same as TGCN and the second [ N × N ] part only has weights 
in the diagonal location and the remaining location are 0. We then perform the dot 
product between af

lstm
 and Wlstm . The resulting matrix is the first component of the 

(7)H
f

k,pre_transformed
= af ⊙W ⊗ H

f

k−1
,∀f ∈ (1 ∶ 4)

(8)Hk = relu(Hk,pretransformed
+ B)
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matrix multiplication, and the second component is the subset at f = f  of the con-
catenated input [ Ht

k−1
;Ht−1

k
 ]. The process is repeated for every f  . A schematic rep-

resentation of which is shown in Fig. 6b. Despite the concatenation, the resulting 
matrix will have N rows thus make it easily compatible with other operation. This 
adjustment encourages the node to not only takes temporal information from itself 
but also from its neighbor. We name the entire operation as tgcnlstm () as follows 

Fig. 6  TGCNlstm Architecture
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to better describe the calculation of the internal values occurs within the  TGCNlstm 
cell.

From the computational graph shown in Fig.  6, we have 4 internal parameters 
namely fort , inpt,actt , and outt and these parameters are calculated by the following 
equations:

where �() is a sigmoid function and tanh() is a hyperbolic tangent function as 
follows:

Equations (9–12) represent the calculation of the internal parameters fort , inpt
, actt , and outt respectively. In each of these equations, a new set of trainable weight 
and bias are introduced. These weights and biases are shared across time periods. 
Equation  (13) determines the internal state value at current time period st . This 
ensures the gradient flow is uninterrupted across time periods. Equation (14) shows 
the final network link travel speed at current time period Ht

k
.

3.8.5  Computational Graph

In this section, we present the computational graph stating the flow of informa-
tion from the input to the output. We choose the number of layers as k = [0:4] 
and t = [1:28] for our New York City Case study. A training sample would rep-
resent a typical day (i.e., Monday 01/06/2014). First, the input of a typical sam-
ple is disaggregated into multiple states Ht

0
 where each state represents a specific 

H
t,f

k−1
= tgcnlstm

(
Wlstm,

[
H

t,f

k−1
,H

t−1,f

k

])
= a

f

lstm
⊙Wlstm ⊗

[
H

t,f

k−1
,H

t−1,f

k

]
,∀f ∈ (1 ∶ 4)

(9)fort = �
[
tgcnlstm(W

for,
[
Ht

k−1
,Ht−1

k

]
) + Bfor

]

(10)inp = �
[
tgcnlstm(W

inp,
[
Ht

k−1
,Ht−1

k

]
) + Binp

]

(11)actt = tanh
[
tgcnlstm(W

act,
[
Ht

k−1
,Ht−1

k

]
) + Bact

]

(12)outt = �
[
tgcnlstm(W

out,
[
Ht

k−1
,Ht−1

k

]
) + Bout

]

(13)st = fort ⋅ st−1 + inpt ⋅ actt

(14)Ht
k
= outt ⋅ tanh(st)

�(x) =
1

1 + e−x

tanh(x) =
ex − e−x

ex + e−x
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time period (i.e., 06:00 – 06:30). In the example of our New York City network, 
our analysis period ranges from 06:00 in the morning to 20:00 in the evening at 
30 min interval which results in 28 states of Ht

0
 . A combination of these 28 Ht

0
 

states will form one training sample. The input would be partial link travel speed 
from step 2. If the speed of the link is not available, the value is set to 0 thus 
disrupts the message passing from the beginning. Then, the TGCN are applied 
three time to Ht

0
 at each time period resulting in Ht

3
 . The TGCN’s weight W  is 

shared from Ht
0
 to Ht

3
 but not across different time period. This means that the 

TGCN’s weight is distinctive for each time period. Therefore, we differentiate it 
by the subscript TGCNt. At the last two layers, the  TGCNlstm takes the input of 
Ht

3
 , Ht−1

4
 , and st−1 and produces the outputs of Ht

4
 and st−1 . Here, the set of weights 

and biases for  TGCNlstm are shared across time periods. The final layer Ht
4
 cor-

responds to the final output of network wide dynamic link travel speed. In this 
computational graph, a node can gather information from neighbors as far as 5 
“hops” away. Figure 7 shows the full computational graph of the DU-LSE model.

The loss function is a sum of square error (MSE) between the predicted travel 
speed and the observed travel speed, and it is accumulated over all Ht

4
 . The loss is 

computed on the observed values only and it is computed in Eq. 15 shown below:

(15)Loss =
∑

t∈T

(
H

t,obs

4
− H

t,pred

4

)2

Fig. 7  Computational Graph
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4  New York City Case Study

4.1  New York Taxi Dataset

Our study’s methodology can benefit cities possessing taxi trip data such as Chi-
cago or San Francisco and we choose New York City to demonstrate our framework. 
The Taxi Trip dataset used in this paper is obtained from the New York City Taxi 
and Limousine Commission (NYC-TLC) and it is publicly available on the City of 
New York’s official website.1 Each observation of the dataset is a single taxi trips 
which includes several details of the trip and our paper mainly focuses on the fol-
lowing four: (1) Pickup and Dropoff Coordinates; (2) Pickup and Dropoff Times-
tamp; (3) Observed Travel Distance; and (4) Observed Travel Time. The coordinates 
are only available from 2015 backwards and thus we select January  1st, 2014, to 
December  31st, 2015 as our analysis period. We load the taxi trips dataset into a 
local database using PostgreSQL to facilitate the task of querying specific records 
falling into a time period. Our daytime analysis period ranges from 06:00 – 20:00 
with a 30-min interval resulting in 28 time period. Upon doing descriptive statis-
tics, we recognize the difference in travel pattern between the weekdays is signifi-
cant enough that we would need to create several models for each set of day. This is 
shown in Fig. 8b below. Due to limited resources, we only consider Monday of each 
week for analysis, but the methodology can be readily applied to other weekdays as 
well. We select the entire Manhattan road network for analysis which has 9,617 road 
segments or links and 4,750 nodes or intersection. The network is obtained from 
the OpenStreetMap Database.2 Therefore, we select taxi trips of which both pickup 
and drop-off coordinates fall within the Manhattan network. In addition, we present 
several visualizations of the dataset from both a spatial and temporal perspective. 
Figure 8a shows the spatial aspect of the dataset where the Manhattan Network and 
the Taxi Trip Pickup and Dropoff location are presented. On the other hand, Fig. 8b 
shows the temporal aspects where the average number of trips and travel speeds are 
presented.

4.2  Results

First, we choose the following values for the hyperparameters in the New York Taxi 
case study. We set k = 5 in the kth shortest path algorithm; ratio threshold � = 0.85 
in the TTS model; and intersection delay Δi = 0 in the PLTT model of step 2.

To implement the methodology discussed in the previous section, we use mul-
tiple means of programming. First, the raw data in.csv format is stored in a Post-
greSQL database for easy querying. For the first two steps of Path Choice Predic-
tion and Partial Link Travel Time Prediction, we use R programming with built 
in library for Parallel Computing and Optimization Algorithm. For calculating kth 

1 https:// www. nyc. gov/ site/ tlc/ about/ tlc- trip- record- data. page
2 https:// www. opens treet map. org/ relat ion/ 175905

https://www.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.openstreetmap.org/relation/175905
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shortest path, we use a function from PostgreSQL which is pgrouting and it uses 
Yen algorithm for this computation. The first step is computationally heavy since 
the computer needs to do Data-mapping and finding k-shortest-path for every taxi 
trip records. However, the process is accumulative and the “divide and conquer” 
strategy is applicable. After finishing the first two steps, we use Python program-
ming, specifically the library Tensorflow 2.0 (Google 2020), to develop our deep 
learning model.

In Step 3, the model takes the input of Partial Link Travel Time from Step 2, 
converts it into input speed, and produces the output of network wide link travel 
speed. In our New York city network case study, the size of the network is 9,617 link 
and the number of time period is 2,912 (note that 28 time period would comprise a 
day). The output speed is available across all these links and time periods. However, 

Fig. 8  Descriptive Statistics of the Dataset
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it would be difficult to show all these values and we decide to illustrate our result 
for selected links and time periods only. We choose the time periods on Monday, 
06/23/2014 to show our result and this date is chosen randomly. Figure 9 shows the 
heatmap of step 3 input and output. Each row represents a specific road segment, 
and each column represents each time period from 06:00—20:00 at 30 min incre-
ment. The road segments are taken from the Midtown Area just below the Central 
Park. The heatmap color scale is provided on the right representing travel speed in 
miles per hour.

The color in each cell represents the link travel speed. For the input heatmap 
in Fig. 9a, links, of which travel speed is not available, are colored in white. Cells 
tilting toward dark purple denote a lower link travel speed and those tilting toward 
brighter yellow denote a higher travel speed. From Fig.  9b, the majority of links 
experience travel speed less than 15 mph in most time of the day and only a few 
links such as West 57th Street or West 43rd Street have travel time larger than 25 
mph during the earlier period of the day (i.e., 06:00—07:30). For each link, we also 
see a gradual change in travel speed throughout time of the day where most link 
start at a higher travel speed, decrease and remain low during working hours, and 
increase back in later in the evening.

Figure 10 shows the temporal aspect of our model’s result where link travel speed 
at each time period is illustrated. To demonstrate the spatial aspect, we plot two sub-
sets of the New York city network representing major arterial and minor arterial in 
the Midtown area respectively in Fig. 10. For each subset, three time period namely 
07:00—07:30, 12:00—12:30, 18:00—18:30 are selected since these time periods 
represent different trip purpose (i.e., commuting, lunch, and recreation) and vary 
greatly in the Origin–Destination trip demand. In the computational graph shown in 
Fig. 7, the TGCN module’s training weights vary between time period which gives 
the model flexibility in capturing different network speed patterns emerging through-
out time of the day and this flexibility is reflected in Fig. 10. The link travel speeds 
are color-coded with the same analogy as in Fig. 9 and the color scale is provided on 
the right. In the subset for major arterial plots, the northern part of Manhattan has 
considerably higher travel speed than the rest of the network whereas the Midtown 
and Downtown area experience consistent low travel speed with some exceptions 
such as the highways near the Brooklyn Bridge. In overall network performance, 
the 07:00—07:30 time period rank first in travel speed, followed by the 18:00—
18:30 and the 12:00–12:30 time period as illustrated by the color tilting from the 
"brighter" side to the "darker" side. Figure 10b shows the subset of minor arterial in 
the Midtown area accompanied by its location with respect to the Manhattan Net-
work as a whole. The majority of the link has travel speed less than 15 mph through 
all three time period. One small observation is the two long links in the bottom right 
of the network which has relatively high travel speed as compared to the remaining 
links. These two links are part of the Park Avenue Road at the segment near Grand 
Central Terminal and these links are on a different elevation compared to the rest. 
The curve link in the middle of the network is Broadway where the southern seg-
ment is utilized as walking avenue which explains the sudden stop in this link. The 
first northern segment before West 57th street of Broadway Avenue has higher travel 
speed compared to the rest of the segment. After West 57th and downward, there 
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Fig. 9  Heatmap Showing Input and Output Speed of Selected Links
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road geometry is expanded from a normal two-lane one direction road into multiple 
purpose road with two side parking and bike lane available. These segments also 
have a higher density of retail areas, restaurants, and offices too.

5  Model Evaluation and Validation

The first part of this section evaluates the model’s performance internally by com-
paring the prediction result from each step of the framework with the taxi trip data. 
The second part of this section validates the entire framework’s result with the 
ground truth data.

5.1  Model Evaluation

In this section, we discuss the evaluation for every three step of the model’s 
sequential framework. Step 1 aims to predict travel path by minimizing absolute 
difference between the predicted distance from the travel path generated from 
K-Shortest-Path algorithm and the observed travel path recorded by the taxi. 
Figure  11a shows the distribution of the absolute error between predicted and 
observed value of step 1 at three different time periods. We disaggregate the plot 
by trip distance because for longer trip, we expect a larger error compared to 
shorter one. The unit of y-axis is density and because the figure is a distribution 
plot, the total area under the curve sums to 1. In the trip distance 0–4 and 4–8 

Fig. 10  Output Link Speed of Major and Minor Links at Three Different Time Period
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category, the distribution is highly centered around the mean value being near 
zero with a slight skew to the right. In the 8–12 and 12–16 category, the dis-
tribution has a longer tail on the right, which indicates some outliers with high 
absolute error. However, the mean remains at a low enough value. In general, the 
time period 12:00–12:30 has a better performance compared to the other two. In 

Fig. 10  (continued)
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similar fashion, step 2 aims to predict link travel time at selected links by mini-
mizing the error between observed and predicted trip travel time and the absolute 
error distribution of which is shown Fig. 11b. We also see the same distribution 
as in Fig. 11a for the first four trip distance category. Step 2 only selects a frac-
tion of the observation for analysis and by keeping the ratio between number of 
trips selected and number of links in subset S high, the optimization model is able 
to achieve high accuracy.

We introduce two metrics namely Root Mean Square Error (RMSE) and Mean 
Absolute Percentage Error (MAPE) to evaluate not only this step but also the 
other two remaining steps and the calculation of these two metrics are shown in 
Eqs. (16) and (17).

Fig. 11  Absolute Error of Step 1 and Step 2 at Selected Time Period



206 H. Ngo, S. Mishra 

1 3

We then subset each taxi trip i by its Time Period and Travel Distance and cal-
culate these subset’s RMSE and MAPE instead of the entire dataset in order to iden-
tify any pattern of these two metrics across Time Period and Travel Distance. The 
resulting evaluation is shown in Table 2 where the rows represent time period, and 
the columns represent travel distance. As trip distance increases, the value of both 
RMSE and MAPE increase since the origin–destination are too far apart that the 
K-Shortest-Path cannot cover all available path. At 0–4 mile of distance, the RMSE 
and MAPE are around 0.19 mile and 7.5% respectively whereas at 12–16 mile of 
distance, the values are 3 mile and 19% respectively. In contrast to travel distance, 
the RMSE and MAPE do not greatly fluctuate which is reasonable since the formu-
lation of step 1 does not involve time period.

We perform the evaluation of step 2 Partial Link Travel Time. In this step, we 
predict travel time of selected links by minimizing the sum of square of the error 
between the predicted travel time and the observed travel time of selected taxi trips 
in subset S and thus, this error is the metric to evaluate the performance of step 2. 
Unlike step 1, step 2’s evaluation focuses more on spatial pattern. Since a taxi trip 
span across multiple spatial regions and the error is calculated on a trip basis, the 
total trip error is distributed evenly among the spatial regions. Figure 12 shows the 
Mean Absolute Error (MAE) and the MAPE at each region. The takeaway of these 
figures is that we can estimate a taxi trip’s error by summing the MAE value of all 
the regions that it passes by. This shows how certain areas might have lower accu-
racy in partial link travel time prediction.

On average across all taxi trips, step 2 reaches a performance of 2.6  min in 
MAE and 18% in MAPE. The spatial pattern of MAE is very similar to the 
RMSE’s where higher error is located in the Midtown neighborhood near the 
Central Park and lower error is located at the Northern part of Manhattan such 
as Harlem, Hamilton, and Washington Heights neighborhood. This is because of 
two reasons. First, Midtown neighborhoods have considerably higher not only the 
number of taxi trips, as shown in Fig. 8a, but also the number of taxi trips passing 
through this area and thus, there are more variations in the error. Second, in step 
2 of PLTT’s formulation, we model intersection delay, but the value is assumed to 
be 0 due to lack of data. The variation in travel time at each intersection between 
red, green, or even left turn waiting/signal and the accumulation of such varia-
tions throughout the trip results in an overestimation of the link travel time. Mid-
town neighborhoods have shorter road segments and significantly higher number 
of intersections compare to Northern Manhattan’s which results in accumulation 
of intersection delay and ultimately higher error. However, the error value is still 
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low at 0.6 min on MAE and 4% MAPE in these areas and it is not significantly 
more than the minimum error.

To evaluate the Step 3 of Dynamic Urban Link Travel Speed Estimation, we 
calculate RMSE between the output link travel speed and the partial input travel 
speed for the observed record of the input only. The RMSE is disaggregated by 
Manhattan neighborhood and time of the day and the values are shown in Fig. 13. 
Here, we see a difference in RMSE pattern throughout time period. For time 
period from 06:00—10:00 the average of RMSE across neighborhoods are 1.8 
mph. However, this value decreases considerably later in the day with an average 
of 0.7 mph at time period 10:00—15:00 and 0.2 at time period 15:00 – 22:00. 
This is mainly due to the number of taxi trips are much higher from late morning 
until evening compared to early morning as shown in Fig. 8b. A higher number 
of taxi trip results in more observed data and better estimation for step 3. The top 
3 neighborhoods with the highest accuracy are East Harlem South, Upper East 
Side, and Gramercy of which average RMSE value are 0.53, 0.60, and 0.61. This 
is reasonable because it’s in the middle of the network and a lot of taxi trip would 
travel through these areas.

Fig. 12  Step 2’s Mean Absolute Percentage Error by Spatial Regions
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5.2  Model Validation

In this section, we first validate our framework with a baseline framework from 
Zhan et al. (2013). Then, we obtain ground-truth travel speed data collected from 
traffic sensor by the New York Department of Transportation’s Traffic Management 
Center and compare it with our framework.

5.2.1  Validation with Similar Methodology

We choose Zhan et  al. (2013) as the baseline framework for comparison because 
their paper has the similar scope to our’s, which is estimating link travel time using 
taxi dataset with only the origin and destination known (GPS traces are not avail-
able). Their methodology considered path taken by taxi trips as latent and proposed 
a multinomial logit model to estimate the probability of choosing a particular path. 
The decision variable is the link travel time, and the expected path travel time are 
based on this. By multiplying the path probability with its expected path travel time, 
the paper arrived at the expected trip travel time and the objective is to minimize the 
root mean square error between the expected and observed trip travel time. Since 
their methodology is applied to a small road network near Central Park, we also 
apply their methodology to our taxi dataset on a small network that is identical to 
the Midtown network in Fig. 10b. From the 2-year taxi dataset, we select 2 days and 
3 time periods from each day resulting in 6 instances. The 2 days are April 7 and 20 
of 2015 and the 3 time periods are 07:00 – 07:30, 12:00 – 12:30, and 18:00 – 18:30. 

Fig. 13  Evaluation of Step 3: RMSE by Neighborhood and Time Period
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After applying Zhan et al. (2013)’s methodology to these instances, we obtain the 
link travel time and compare with our three-step framework’s result.

Figure  14 shows the absolute error between our result and Zhan et  al. (2013)’s 
at these 6 instances. The links are color-coded based this absolute error with darker 
color indicating lower error and vice versa and we notice the following pattern. First, 
the absolute error is highest in the first time period of 07:00 – 07:30 and it decreases 
in the noon and evening time periods. Since later time periods have more taxi trip 
records than the first time period, the accuracy of both methodologies are higher 
and there is less variance. However, the majority of the link are still within 2 min of 
absolute error indicating similar estimation. Second, links in the East–West direction 
has slightly more error than links in the North–South direction because of two rea-
sons. First, North–South links are usually shorter than East–West and thus the error 
is smaller. Second, taxi demand going in the general North–South of Manhattan (e.g., 
from Central Park to Financial District) is proportionally higher than the demand 
going East–West. With more taxi trips record in the North–South direction, the esti-
mation of North–South links for both methodologies will be more accurate and stable 
resulting in less error.

Next, we use the link travel time from both methodologies combined with the 
predicted path choice from step 1 to calculate the predicted trip travel time and val-
idate with the observed trip travel time. Table  3 shows the Mean Absolute Error 
(MAE) and the Mean Absolute Percentage Error (MAPE) of these two methodolo-
gies at 6 instances. In terms of, our three-steps framework is slightly more accurate 
across all 6 instances, but two methods still have very low error at an average of 1.5 
and 1.0 min respectively. In terms of MAPE, our framework also has lower error 
except for the fourth instance. On average, the MAPE for Zhan et al. (2013) and our 

Fig. 14  Absolute Error in 6 Instances
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three-steps framework are 30% and 26% respectively. Zhan et  al. (2013)’s frame-
work requires to subset the taxi trip record of which origin and destination is within 
the studied network only. Since our Midtown network is small, the taxi trip is rela-
tively short resulting in a shorter travel time and a higher value of MAPE.

5.2.2  Validation with Ground Truth Speed Sensor

We obtain the ground truth speed data from the City of New York.3 The New York 
Department of Transportation’s Traffic Management Center and other local agencies 
have installed multiple traffic speed detectors in a variety of form. One of which is 
camera detector which also provides live view of traffic and can be viewed via the 
website.4 Therefore, we filter the data based on the following criteria to ensure it is 
compatible for comparison with the framework’s result: (1) the years are between 
2014 and 2015, (2) weekday is Monday and time of the day is between 06:00 
– 20:00, (3) the traffic speed detectors fall within the Manhattan borough only. Ulti-
mately, we get 19 traffic speed detectors and a total of 57,611 observations from 
4/18/2015 – 11/30/2015. The location of these speed detectors is shown in Fig. 15 
below:

Each speed detector is assigned to the corresponding link based on its loca-
tion and the traffic flow direction of which the camera is capturing. The times-
tamp of each observation is also translated into the equivalent time period so 
that the ground truth data and model’s result are comparable. We compute the 
absolute error between the model’s result and the ground truth data, aggregate 
by time period, and utilize boxplot to show the distribution of these errors as a 
box plot at each time period as shown in Fig. 16. The majority of these boxplots 
have median typically falling under 5 which indicates the framework has high 
level of accuracy. The  25th percentile is close to zero whereas the  75th percen-
tile is around 10 mph. However, the number of outliers are substantial and the 

3 https:// data. cityo fnewy ork. us/ Trans porta tion/ Real- Time- Traffi c- Speed- Data/ qkm5- nuaq
4 https:// webca ms. nyctmc. org/

Table 3  Validation between Observed and Predicted Trip Travel Time

Date Time Mean Absolute Error (minutes) Mean Absolute Percentage Error (%)

Zhan et al. 
(2013)

Three-steps 
Framework

Zhan et al. (2013) Three-steps 
Framework

Day 1 07:00—07:30 1.4 1.0 27.9% 22.8%
12:00—12:30 1.6 1.1 27.1% 24.3%
18:00—18:30 1.1 1.0 29.1% 29.6%

Day 2 07:00—07:30 1.0 1.0 35.3% 29.8%
12:00—12:30 2.2 1.1 23.7% 15.6%
18:00—18:30 1.6 1.2 38.1% 33.1%

https://data.cityofnewyork.us/Transportation/Real-Time-Traffic-Speed-Data/qkm5-nuaq
https://webcams.nyctmc.org/
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distribution of which is wide. We observe that the time period 5–7 and 19–21 
or correspondingly 08:00 – 09:30 and 15:00 – 16:30 have more outliers than the 
rest. During these hours, the network usually experiences traffic congestion, and 
the travel speed would vary greatly from minutes to minutes. Our model is esti-
mating a 30-min average and these variations result in a high number of outliers. 
Beside congestion, some driver tends to drive leisurely slow and chooses longer 
but less traffic route in contrast to rushing driver choosing shortest path. These 
are heterogeneity in driving behavior, and it can increase the framework’s error. 

Fig. 15  Speed Camera Location
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Finally, as previously mentioned in step 2 evaluation section, the framework does 
not capture intersection delay and the result tends to overestimate the individual 
link travel time as, which ultimately contributes to the absolute error. However, 
giving only limited knowledge (i.e., sparse taxi trip), the framework is still able to 
estimate travel speed within a 5-mph accuracy.

Fig. 16  Boxplot of Absolute Error between Framework’s Result and Ground Truth
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In addition to Fig. 17 showing the distribution error, we also provide the Mean 
Absolute Percentage Error (MAPE) and Mean Absolute Error (MAE) by each time 
period in Fig.  17. The MAPE averages around 22.3% and the values are slightly 
higher during midday compared to the early morning or late afternoon. The MAE 
plot also tells the same story where higher values are observed during midday. As 
shown in Fig. 8b, the number of taxi trips during midday is significantly less than 
the morning peak hours or later in the evening where people tend to go out for rec-
reational purposes. Therefore, the input for step 3 of during these hours are not as 
strong the others and as a result, the error is higher. However, the average MAE of 
all time period is still 5.8 mph indicating reasonable estimation accuracy.

6  Conclusions and Future Work

In this paper, we propose a sequential three step framework to solve the problem 
of Network Wide Dynamic Link Travel Speed using only the Taxi Trip Dataset. 
In the first two steps, information from taxi trip record such as pickup and drop-
off location, travel time, and distance are processed to give output of partial link 
travel speed. The third step makes use of a novel deep learning model which con-
sists of two main components which are Traffic Graph Convolution (TGCN) for 

(a) Mean Absolute Percentage Error

(b) Mean Absolute Error
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capturing spatial relation and  TGCNlstm for temporal relation. The result suggests 
that the framework can estimate dynamic link level travel speed in dense urban area 
and the accuracy is high as shown in the framework’s application and evaluation in 
the New York case study. The significance of our study are (1) it only requires one 
open source (or low-cost) and passively collected dataset (i.e., Taxi); (2) unlike other 
normal GCN, the TGCN is specifically designed for traffic network and is able to 
capture directional flow of traffic through the Node-Link Embedding and Modified 
Adjacency Matrix; (3) in TGCN-LSTM, the model encourages node to take both 
historical data from itself and its neighbor; and (4) the model is capable of obtaining 
network wide travel speed for bigger networks with up to 9,500 links.

However, the three-step framework has several drawbacks. First, the computa-
tional efficiency in the first step is low since for each taxi trip record, the follow-
ing two tasks must be executed: coordinate mapping and kth-shortest-path gener-
ation. We make full use of our computer’s capability through parallel computing 
and efficient algorithm design. The process is accumulative and can be solved 
independently, but it still demands time due to the shear amount of data (i.e., up 
to one week). Second, the Yen’s Algorithm generates an alternative path set that 
lacks diversity and cannot capture real-world driver’s route choice. Third, we cannot 
accurately evaluate step 1 and 2. In step 1 the ground truth data on the taxi’s path 
and itinerary are unknown whereas step 2 can overestimate link travel time due to 
unknown in intersection delay. For future research, all of these drawbacks can be 
fully addressed if taxi trips GPS traces (i.e., not just origin and destination but loca-
tion at different timestamp) is made available.

A possible approach to deal with the estimation of path travel times from pick-up 
and drop-off time stamps lies with consideration of delay in the presence of traffic 
control devices such as signalized or unsignalized intersections, is to have detailed 
attributes of type of signal (signalized, stop or yield sign), and signal characteris-
tics (timing of pre-timed signalized, actuated-signalized, semi-actuated signalized). 
The methodology proposed in the paper can incorporate the effect of signals in path 
travel time estimation, though in the case study in the absence of such data the delay 
accounted from signals are not considered. Considering dynamic state of traffic flow 
and signal timings are not always available on the urban road network and the goal 
of this paper is develop a model to estimate travel time as accurate as possible with 
least information and make the model more generic for planning applications for 
large networks, the results presented in the case study may associate with under or 
over estimation of path travel times.

We believe our research can be beneficial for urban planners in the ITS domain, 
especially those in developing economies without state-of-the-art infrastructure 
already in place. Future work for this study can concentrate on integrating the travel 
time estimation not only of road network but also other modes of travel especially 
public transportation including transit and bike providing urban dwellers complete 
information on travel cost between competitive travel modes for their decision mak-
ing. In addition, further investigation could be emphasized on computational effi-
ciency and intra-direction convolution, which allows for not only through movement 
but also turning movements.
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Appendix A. Sets, Parameters, and Decision Variables used 
in the paper

Sets

N  Set of nodes

A  Set of links

F  Set of node features or directions

K  Set of layers

I  Set of taxi trips

T  Set of time periods

Parameters

η  Total number of trips selected for subset S in the TTS model of step 2

L  Total number of links included in subset S in the TTS model of step 2

Pi  [A × 1 ] vector representing links comprising the travel path of taxi trip i

β  Hyperparameter in the TTS model of step 2

lengtha  Length of link a

t
pred

i
  Predicted travel time for taxi trip i

tobs
i

  Observed travel time for taxi trip i

Δi  Intersection delay of trip i

�link
a

  North-bearing angle of link a

A  Modified directional adjacency matrix with dimension [ N × N × F]

af  Subset of A at f  with dimension [ N × F]
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Hu
k
  Feature representation of a node u at kth hidden layer

Ht
k
  [N × F] matrix contains information of all nodes in the network at kth hidden 

layer and time period t

fort  Forget value for  TGCNlstm at time period t

inpt  Input value for  TGCNlstm at time period t

Outt  Output value for  TGCNlstm at time period t

actt  Activation value for  TGCNlstm at time period t

st  Internal State value for  TGCNlstm at time period t

Loss  Overall loss value for the deep learning model in step 3

Decision Variables

xi={0,1}  1 if trip i is selected for subset S in the TTS model of step 2, and 0 
otherwise

tt  [A ×1 ] vector representing link travel time from PLTT model

Wt  [N × N ] weight matrix in TGCN for passing information between neighbors at 
time period t

Wfor,  Winp,  Wact,  Wout  [N × 2N ] weight matrices for passing information and cal-
culating internal state values in  TGCNlstm cell

Bfor,  Binp,  Bact,  Bout  [N × F ] Bias matrices in  TGCNlstm cell

Models and Operations

PCP  Path Choice Prediction. The first step in the framework

PLTT  Partial Link Travel Time Prediction. The second step in the framework

TTS  Taxi Trip Subsetting. An inner preprocessing model within step 2
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TGCN  Traffic Graph Convolution Network. An operation for passing message 
between host node and its neighbor, specifically design to capture direc-
tional traffic flow

TGCNlstm  Traffic Graph Convolution Network with Long-Short Term Memory. 
An operation for passing message between host node’s historical data as 
well as its neighbor’s

Appendix B

Yen’s Algorithm

Input: Graph G(V,E); Origin o; Destination d; number of shortest path K

Output: A set of alternative paths A=[p1,…,pk]

1 Find the first shortest path: A[0] = Dijkstra(G,o,d);

2 Initialize a container for storing potential paths: B = []

3 For k = 1 to K do

4     A spur node ranges from the first to the node next to last of the previous k-shortest-path

5    For i = 0 to length(A[k – 1]) – 2 do

6         Assign the spur node: Vspur = A[k–1].node(i)

7         Create root path by taking nodes from origin to spur node: Proot= A[k–1].nodes(0, i);

8 For every path p in A do:

9             If Proot == p.nodes(0, i)

10             Remove the edges to ensure the spur path is different than the previous k-shortest-path:

remove p.edge(i,i+1) from G

11    End p loop

12        Remove nodes from G that are the same as root path except for spur node:

remove Proot[-Vspur] from G;

13        Create spur path from spur node to destination: Pspur = Dijkstra(G, Vspur, d);

14        A complete path is a combination of root and spur path: Ptotal = Proot + Pspur
15        Add the potential path to the storage: B.append(Ptotal)

16 End i loop

17     Sort the potential paths from smallest to largest cost: B.sort()

18     The kth-shortest path is the path with lowest cost from B: A[k] = B[0]

19 End k loop

20 Return A
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