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Abstract
The daily commuting out of the city of residence for labor purposes is a complex 
phenomenon driven by various geographical, transportation, economic, and social 
forces. Due to its high level of complexity, current modeling approaches are mainly 
disciplinary and thus lack a multifaceted approach incorporating diverse conceptu-
alization of this phenomenon. To contribute to this demand, this paper develops a 
methodological framework integrating aspects of commuting of different contexts, 
functionality, and level of geographical resolution. The proposed framework builds 
on a complex network and principal component analysis first to develop a multilayer 
graph of interregional commuting, next to configure variables representing aspects 
of network topology, and finally to decompose the total model into principal com-
ponents expressing uncorrelated aspects in the overall conceptualization of inter-
regional commuting. The proposed framework conceptualizes spatial distance as a 
major force of network topology and develops a quantitative framework evaluating 
the consistency of network topology across layers of different geographical reso-
lutions and functionality. The overall approach provides insights into the structure 
and functionality of interregional commuting and promotes the integrated macro-
economic approach in regional research.
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1  Introduction

Geographical space, transportation, and regional development lie under a sym-
biotic relation (Tsiotas and Ducruet 2021): from one side, geographical space 
imposes friction (cost) to movements between places, affecting the structure and 
functionality of transportation networks and their relevant ability to serve spatial 
economic development (Barthelemy 2011; Rodrigue et  al. 2013). From another 
side, regional development contributes to the increase (or change) of demand for 
geographical space and therefore supports the further evolvement of spatial and 
transportation networks (Rodrigue et  al. 2013). In the light of this interdepend-
ence, the spatial property is by default determinative for the components of this 
symbiotic scheme, affecting (a) the shape, form, and usage (urban, rural, regional, 
etc.) of geographical space; (b) the topology and functionality of transportation 
networks (Ducruet and Beauguitte 2014); and (c) the centripetal or centrifugal 
developmental dynamics of market places (Brakman et  al. 2005), in the context 
of the new economic geography. Spatial constraints are immanent at all levels of 
network aggregation (neighborhood, local, regional, national, and global), assign-
ing distance costs in the development of connections (Barthelemy 2011; Rodrigue 
et  al. 2013). Moreover, spatiality suggests a major force in the configuration of 
the regional problem (Capello 2016), which regards the asymmetric development 
observed either between different geographical places, at a fixed time, or at dif-
ferent times for the same place, or jointly. Although spatial constraints are (either 
directly or indirectly) evident in all aspects of socioeconomic activity, their mod-
eling and study is a complex task submitted to high level of relativity. Such relativ-
ity can be witnessed by (a) the uneven spatial distribution of regional variables and 
indicators observed at various geographical scales (Garretsen et al 2013); (b) the 
differences in the topology of transportation networks observed due to node aggre-
gation (Tsiotas and Polyzos 2018) or geographical scale (Tsiotas and Ducruet 
2021); (c) the emergence of top-down and bottom-up theories (Crescenzi and 
Rodriguez-Pose 2011) of regional economics and policy; (d) the need of apply-
ing diversified regional policies at different levels of geographical agglomeration 
(Brakman et al. 2005) and market integration (Ottaviano 2003); and more.

Recently, network science (Barabasi 2013; Brandes et  al. 2013), a discipline 
studying communication systems with the use of network paradigm, contributed 
to geographical and regional research by describing the structure of spatial net-
works beyond their geometry (Barthelemy 2011; Ducruet and Beauguitte 2014; 
Tsiotas and Ducruet et  al. 2021), allowing thus incorporating topological vari-
ables in the modeling of spatial systems. This modern discipline has been already 
proven fertile in the modeling of spatial networks (Barthelemy 2011) and has pro-
moted relevant research in transportation (road, rail, maritime, air transport) and 
other infrastructure networks. In the context of network paradigm, the  regional 
science, economic geography, and relevant disciplines can deeper conceptual-
ize topological aspects of interconnected systems configuring spatial hierar-
chies (Ducruet et al. 2011; Ducruet and Beauguitte 2014), and have more options 
available for the multilayer modeling of spatial and regional economic systems. 
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However, although the coupling of network and regional science is very promis-
ing, Marshall et  al. (2018) note that network topology is yet a new and undis-
covered concept in the context of regional and geographical sciences, and there 
is still a way to go to integrate topological analysis into current spatial analysis 
protocols. For instance, Tsiotas and Ducruet (2021) observe that decomposition 
techniques in network analysis are not yet applied in a comprehensive context to 
unravel the relationship between space and network topology.

Such reasoning motivates this paper to question whether there are also norms or 
common features ruling the effect of spatial constraints on the configuration of net-
work topology at different degrees of spatial or administrative aggregation, contrary 
to the undoubted variability describing spatial inequalities at different levels of geo-
graphical scale. This research question is inspired by recent approaches (Tsiotas and 
Polyzos 2018; Tsiotas and Ducruet 2021) examining (one major finding in economics) 
the “puzzling effect of distance” on spatial economic interaction using the network 
paradigm. However, this study goes one step further by examining this research ques-
tion in the context of land (instead of maritime) transportation. Towards answering 
to this research question, this paper models the interregional commuting system in 
Greece (GCN) into a multilayer spatial network (Barthelemy 2011; Kivela et al. 2014; 
Boccaletti et al. 2014) of national geographical scale. It further studies its multilayer 
topology both (a) within and (b) between its layers, which are configured at differ-
ent levels of geographical and administrative resolution (at the national, regional, and 
capital city level) and different types of structure and functionality (geometric, acces-
sibility, and commuting flow). The study builds on methods of complex network anal-
ysis (Barthelemy 2011; Barabasi 2013; Kivela et al. 2014; Boccaletti et al. 2014) and 
dimension reduction (Norusis 2008; Walpole et al. 2012) to examine the topological 
properties of GCN across its layers and extract the major topological components of 
this multilayer model. This is done by applying a principal component analysis (PCA) 
on a collection of topological variables from all layers. This dimension reduction 
method is chosen because (Wold et al. 1987; Norusis 2008): (a) it properly serves the 
research question of detecting common topological features amongst different layers 
of the GCN; (b) is popular, well-established, and empirically tested; and (c) has been 
already proven useful in multidisciplinary applications.

The overall approach in this paper conceptualizes the utility of commuting flows 
and the cost of spatial distance as major determinants of network topology and per-
forms an interlayer analysis to detect the important topological features across the 
network layers, which represent different aspects of utility and cost of the interre-
gional commuting market. In the context of a spatial-economic interpretation, the 
GCN is an integrated utility-cost model with multifaceted structural reference and 
economic functionality. In this light, the construction and study of a multilayer model 
of interregional commuting can promote scientific research and policy practice. For 
instance, the modeling approach proposed by this study can provide insights into 
spatial and transportation planning, and sustainable development, where it is quite 
assisting for the planners to conduct strategic national plans based on integrated mod-
els incorporating utility-cost (Kulmer et al. 2014) and spatial-economic information 
(Clinch and O’Neil 2009; Vigar 2009; Kulmer et al. 2014). As a market of immanent 
(and periodically alternating) supply and demand forces, the interregional commuting 
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network can provide insights into the detection of dipole or polycentric structures in 
urban and regional systems (Li et al. 2018; Tsiotas et al. 2021). Such structures illus-
trate either corporate or competitive relations in the geographical space and thus can  
point out axes and directions toward spatial development (Davoudi 2003), applica-
ble at all geographical scales (Tsiotas et  al. 2021). Also, in the model, the availa-
bility of layers at different levels of geographical and administrative resolution, can  
enlighten into a better comprehension of how spatial distance and spatial aggregation 
(Wegener 2001; Jeon et al. 2012; Tsiotas and Polyzos 2018) affects the structure and 
functionality of transportation systems. This asset can facilitate more efficient strate-
gic planning based on more accurate and better targeted geographical and administra-
tive levels (Albrechts 2006; Cavaco and Costa 2020). Generally, this paper promotes 
regional and transportation research by providing an empirical case study and meth-
odological approach examining the interrelation between geographical resolution and 
spatial hierarchy in transportation networks, which is a major concern in spatial and 
transportation planning (Rodrigue et al. 2013; Capello 2016). Finally, provided that 
relevant empirical research mainly builds on comparisons between network layers, 
this study advances computational network science by configuring a methodological 
framework for dimension reduction in multilayer networks to detect principal compo-
nents of network topology and to examine topological consistency across networks.

The remainder of this paper is organized as follows; Sect.  2 provides a litera-
ture review. Section 3 presents the methodological and conceptual framework of the 
study. Section 4 shows the results of the analysis and discusses them within the con-
text of regional and geographical sciences, and finally, in Sect.  4 conclusions are 
given.

2 � Literature Review

Commuting is the phenomenon of daily mobility for labor purposes outside the 
place of residence and has a multidisciplinary framework consisting of geo-
graphical, social, economic, technological, and political aspects (Green and 
Meyer 1997; Evans et  al. 2002; Van Ommeren and Rietveld 2005; Kanaroglou 
et al. 2015). This phenomenon is an act of spatial and socioeconomic interaction 
between neighbor places and regions and is of great importance for regional and 
urban research because it involves spatial-socioeconomic structures, at different 
geographical scales, operating over urban and regional development (McArthur 
et al. 2011; Drobne et al. 2012; Horak et al. 2014; Rodrigue et al. 2013; Polyzos 
2019). Due to its complexity, commuting research has been fruitful and broad, 
covering many topics, such as transportation-cost assessment (Hamilton 1989; 
Stutzer and Frey 2008; Van Ommeren and Fosgerau 2009); assessment of travel 
duration (Hamilton and Roell 1982); psychology of mobility (Koslowsky et  al. 
1995); traffic and accident analysis (Ozbay et al. 2007); selection of transporta-
tion modes and alternative routing (Murphy 2009; Liu and Nie 2011; Bwire and 
Zengo 2020); productivity (Van Ommeren and Rietveld 2005); land use (Tan et al. 
2019; Zhao et al. 2020); and commuting behavior (Ma and Ye 2019); among oth-
ers (e.g. see Kanaroglou et al. 2015). On the one hand, such approaches promote 
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polyphony and provide new insights into commuting research. On the other hand, 
they restrictively conceptualize commuting within the disciplinary framework of 
certain research fields, such as urban and regional planning, geography, transpor-
tation analysis, environmental assessment, and even econophysics (Barthelemy 
2011; De Montis et  al. 2011; Ren et  al. 2014; Marshall et  al. 2018). This con-
text of polyphony raises the demand for integration amongst the disciplinary 
approaches of commuting, especially in the current era of “big data” facilitating 
the availability, management, and analysis of big datasets. Toward this demand, 
the common context that can be found in almost every aspect of commuting 
research is a reference to the spatial impedance of transportation (Rodrigue et al. 
2013). In particular, against the demand derived by the attractiveness of places 
to develop movements of socioeconomic interest, space imposes constraints that 
are translated to transportation costs (Rodrigue et al. 2013). Transportation costs 
are immanent in every aspect of commuting research, either directly (Hamilton 
1989; Stutzer and Frey 2008; Van Ommeren and Fosgerau 2009), in terms of dis-
tance, space–time and trip duration, fuel and ticket cost; or indirectly, affecting 
the choice of transportation mode (Murphy 2009; Liu and Nie 2011; Bwire and 
Zengo 2020), the routing, the travel behavior (Koslowsky et al. 1995; Ozbay et al. 
2007), the infrastructure quality, and land use (Tan et al. 2019; Zhao et al. 2020).

Network science (Barabasi 2013; Brandes et  al. 2013), a modern discipline that 
emerged from the multidisciplinary study of connectedness, uses the network para-
digm to study communication systems (Easley and Kleinberg 2010; Newman 2010; 
De Montis et al. 2011); and to model network structures to graphs consisting of nodes 
(interconnected units) and edges (their connections). Within the context of network 
science, geographical systems of socioeconomic interaction can be modeled to spatial 
networks, which are graphs embedded in the geographical space (Barthelemy 2011), 
capable of incorporating topological, geometric, environmental, and socioeconomic 
information, in a single model. Although is a modern discipline, network science has 
been proven very effective in the modeling of spatial networks (Barthelemy 2011) and 
has already provided interesting insights into the structure and functionality of vari-
ous geographical systems of economic interaction, such as road (Porta et al. 2006a, b; 
Marshall et al. 2018); rail (Barthelemy 2011); maritime (Ducruet 2013; Tsiotas and 
Polyzos 2015a); air transport (Cardillo et al. 2013; Tsiotas and Polyzos 2015b); and 
other infrastructure (Debrie 2010; Barthelemy 2011); networks. Of course, a major 
part of such effectiveness should be attributed to graph theory (Diestel 2005), which is 
an established (for almost three centuries) field of discrete mathematics, where quanti-
tative network analysis builds on; and particularly to the past work of Kansky (1963), 
who succeeded a coupling of graph theoretic and probabilistic approach with transport 
geography (Rozenblat and Melancon 2013). Another portion of such effectiveness 
should be attributed to the so-called “gravitation models” (Wilson 1967), which con-
tributed to a discrete conceptualization of geographical systems, expressed as popula-
tion nodes, facilitating their modeling into graphs (Rozenblat and Melancon 2013).

Empirical research in spatial networks (Barthelemy 2011; Ducruet 2013; Rodrigue  
et  al. 2013) has shown that (a) spatial constraints are reflected on the shape of the 
degree distribution, usually configuring a bell-shaped (expressing that the major  
load of connectivity is undertaken by the majority of nodes) than a power-law pattern 



102	 D. Tsiotas, V. Tselios 

1 3

(expressing that the major load of connectivity is undertaken by a few nodes); (b) the 
transport mode affects network topology (e.g. air transport network are usually scale-free 
networks, whereas road or railway networks are not); (c) spatial and geographical con-
straints are more intense in the topology of land transportation networks than of mari-
time networks, (d) distant communication is mainly undertaken by the network hubs; 
(e) gateways between network layers (defined by different transport modes) are usually 
related to hubs within layers; and much more. In the relevant literature, spatial networks 
of multifaceted structure and functionality are effectively modeled into multilayer net-
work models (Barthelemy 2011; De Domenico et al. 2013; Kivela et al. 2014; Boccaletti  
et al. 2014), which are collections of various graphs considered as a single model com-
posed by different layers. In multilayer networks, their structure and functionality is 
applicable toward a double direction; within network layers, where each one is consid-
ered as a separate graph of certain topological properties; and between layers, where 
interlayer links are responsible for the functionality of the whole system are modeled. 
Indicative works in multilayer networks favoring the study of transportation systems 
are of De Domenico et al. (2013), which configured a prime framework towards this 
approach, and of Boccaletti et al. (2014) and Kivela et al. (2014), which are milestones 
for their formalism and detail. Relevant empirical research on multilayer transportation 
networks mainly focuses on the multimodal configuration of the network layers (Gallotti 
and Barthelemy 2014; Alessandretti et al. 2016). For instance, Gallotti and Barthelemy 
(2014) performed a path analysis on the multilayer, temporal network of the national, 
multimodal, British public transportation system, and proposed a method of statistical 
decomposition of trips in urban areas, in terms of riding, waiting, and walking times. 
The analysis illustrated the dependence of the temporal structure of trips to distance and 
allowed comparisons between different cities, highlighting the need for better optimiza-
tion strategies adapted to short, long uni-modal, or multimodal trips. The same authors 
(Gallotti and Barthelemy 2015), modeled the national UK public transport system as a 
multilayer network, which consisted of multi-modal layers of an airport, ferry dock, rail, 
metro, coach, and bus station transportation, and used a coarse-graining procedure to 
define coupling between different transport modes. Aleta et al. (2016) modeled the mul-
timodal transportation systems of 9 different cities in Europe, ranging from small towns 
to mega-cities like London and Berlin, to study their interconnected structure for high-
lighting their vulnerabilities and possible improvements. Their approach allowed creat-
ing a simple yet realistic model for urban mobility, able to reproduce real-world facts 
and to test for network improvements. Alessandretti et al. (2016) developed a multilayer 
representation of public transportation systems, which was built on different represen-
tations, multiple lines, schedule variability, and diversity of transfers. The analysis was 
implemented to the public transportation systems of several French municipal areas and 
revealed hidden patterns of privileged connections along with their efficiency compared 
to commuting flows.

Another strand of studies is interested in examining how space affects network 
topology across layers in multilayer transportation networks (Ducruet et  al. 2011; 
Tsiotas and Polyzos 2018; Ghavasieh and De Domenico 2020). The work of Ducruet 
et al. (2011) is indicative, who studied the effect of node aggregation between two 
different types of transportation networks, air, and sea flow, through three differ-
ent levels of urban delineation; cities, regional areas, and megalopolises. The study 
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revealed complementarities between air and sea transport networks in the urban 
hierarchy, showed that aggregation grasped some important topological and geo-
graphical properties of these networks, and found through topological similarity that 
global players in the transport industry tend to follow the main paths of urban devel-
opment. Tsiotas and Polyzos (2018) studied the topological consistency of a national 
(Greek) maritime network due to node grouping between layers of the same socio-
economic system. The analysis highlighted that degree is the most consistent aspect 
of this multilayer network by preserving both the topological and the socioeconomic 
information through node aggregation. Ducruet (2017) investigated the degree of 
overlap among different layers of circulation composing global maritime flows in 
the period 1977–2008. The analysis confirmed the strong and path-dependent influ-
ence of multiplexity on traffic volume, range of interaction, and centrality; and 
revealed that network grows and concentration around large hubs over time causes 
a place-dependent traffic distribution, due to the reinforced position of already 
established nodes. Finally, Ghavasieh and De Domenico (2020), by conceptualizing 
that transport systems management is related to the structural cost and acceleration 
of information flows, introduced a framework for functional reducibility of costly 
information immanent in multilayer transport systems, by coupling layers together 
concerning dynamics rather than structure. The authors found that the optimal con-
figuration is submitted to maximization of the deviation of the system’s entropy 
from the limit of free and non-interacting layers. Their approach provided a trans-
parent procedure toward reducing diffusion time and optimizing information flow in 
empirical multilayer systems, without the cost of altering the underlying structure.

The previous short review illustrates that network science contributed to geo-
graphical and regional research by describing the structure of spatial networks 
beyond their geometry, allowing thus incorporating topological variables in the 
modeling of spatial systems (Barthelemy 2011; Ducruet et  al.  2011; Tsiotas and 
Polyzos 2018). Through the network paradigm, regional science and geographical 
disciplines can now more in-depth conceptualize the “a-spatial” structural aspects 
related to systems’ topological features; and through the multilayer modeling, can 
more sufficiently incorporate the diverse geographical, structural, socioeconomic, 
policy, and other functional approaches of transportation in a single model (Ducruet 
and Beauguitte 2014). However, Marshall et al. (2018) noted that network topology 
is yet considered as a new and undiscovered concept in the context of regional and 
geographical sciences, and there is still a way to go to integrate topological analysis 
into current spatial analysis protocols. Aiming at serving this demand, this paper 
models the interregional commuting system in Greece (GCN) to a multilayer spa-
tial network of national geographical scale and studies its multilayer topology both 
within and between its layers, configured at different levels of geographical and 
administrative resolution (at the national, regional, and capital city level) and dif-
ferent types of structure and functionality (geometric, accessibility, and commuting 
flow). In terms of spatial and regional economics (Fujita 2005; Capello 2016), com-
muting is a spatial-economic phenomenon emerging by differential labor supply and 
demand derived at geographical places (Capello 2016; Rodrigue et al. 2013; Tsiotas 
et al. 2021). When a city offers better occupational opportunities than its neighbors, 
it configures a more attractive labor market, and consequently attracts commuting 
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flows of greater volume (Rodrigue et al. 2013). This perspective translates an inter-
regional network of incoming commuting flows (modeled at the national geographi-
cal scale) into an interconnected universal market of labor attractiveness, which rep-
resents a closed economic system (economy) configured both at the microeconomic 
(concerning nodes and their neighborhoods) and macroeconomic (concerning the 
total system) level. On the other hand, a city of high outgoing commuting flows has 
the merit to offer better living conditions than its neighbors enjoying its commut-
ers (Capello 2016). This perspective translates an interregional network of outgoing 
commuting flows into an interconnected universal market of housing attractiveness. 
Further, comparatively to other gravitational (McArthur et  al. 2011; Horak et  al. 
2014) or productivity (Ma and Ye 2019) aspects of interregional systems, commut-
ing is equipped by daily periodicity and round-trip directionality (Capello 2016), 
which describe immanent and not temporary trends of economic interaction, which 
is translated to round-trip transportation flows. Within this context, the layer of 
commuting flows in the GCN is a multifaceted model representing a closed eco-
nomic system of dual structural configuration (microeconomic/macroeconomic) 
and dual economic functionality (labor/housing). Moreover, by including layers of 
distance-weighted graphs in the multilayer model of the GCN, we can incorporate 
different aspects of the spatial impedance immanent in the commuting market. Pro-
vided that the spatial impedance is translated to transportation costs (Rodrigue et al. 
2013; Capello 2016), the layers of different geographical resolutions in the GCN 
allow incorporating diverse aspects of transportation costs applicable in this multi-
layer model.

According to the previous literature review, the multilayer GCN has the merit to 
simultaneously represent a hybrid utility-cost model, to the extent that commuting 
flows are an aspect of economic utility (Capello 2016), and geographical distance of 
cost (Rodrigue et al. 2013); in this interregional market. Moreover, this dual utility-
cost configuration of CSN goes beyond concordant econometric models (expressed 
in math form), to the extent that is expressed in graph-theoretic terms by matrices 
(adjacency, connectivity, and weights) including higher-order tensor information.

3 � Methodology and Data

Building on the network paradigm, this paper applies techniques of dimension 
reduction to decompose network topology to a set of principal components. To do 
so, the study conceives network topology in multivariable terms and not as a single 
property. In particular, we loosely consider in this paper as identical the concepts of 
topological space, where a graph is embedded to, and of what in literature is called 
“network topology” (Newman 2010; Barabasi 2013). To conceive this in a compre-
hensive context, we should refer to the concept of mathematical topology, which 
is specific. According to the Set Theory (Hausdorff 1957), a pair ⟨X,ℵ⟩ consisting 
of a set X and a class ℵ , where certain set operations (such as union and intersec-
tion with the null-set and other subsets) on X are well-defined, is called topologi-
cal space; and, further, the class ℵ is called “a topology on X”. Within a network 
context, we should correspond the set X to a graph model G, namely X ≡ G, which 
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is also a pair-set G(V,E) of nodes V and edges E. Under this correspondence, the 
term network topology rigorously refers to the class ℵG , which loosely describes 
an algebraic ability to apply well-defined set operations on G. In the research prac-
tice, the set-class ℵG defining a network topology is empirically conceived as the 
relational arrangement that the network elements display in a non-metric layout 
(Tsiotas 2019), and can be either random-like, or lattice-like, or small-world, or hub-
and-spoke, or other distinguishable patterns. To succeed in a better computational 
approximation of the network topology, many metrics, measures, and indicators have 
been developed in the literature (Newman 2010; Barthelemy 2011; Barabasi 2013; 
Boccaletti et al. 2014), capturing computational aspects of the topological proper-
ties in a network. Within this context, we define in this paper network topology as 
the composition of fundamental topological measures and attributes describing the 
topological features of a network. This approach allows studying network topology 
in a multivariable context, expressed by the collection of various measurable attrib-
utes and not by a single topological characterization. The overall approach goes 
beyond the typical comprehension of network topology in the literature and provides 
insights into a multivariable conceptualization of this concept. Within this context, 
we conceive the network topology of the Greek multilayer commuting network as a 
set of variables describing various topological properties in each layer and we apply 
a principal component analysis (PCA) method, which allows reducing the dimen-
sion of the available information to the least necessary to describe the multivariable 
notion of network topology, within a desired level of variability. This approach pro-
poses a novel decomposition method in multilayer network analysis and is expected 
to reveal either competitive or synergetic roles between different aspects of network 
structure, geometry, and functionality of commuting.

The analysis is based on a multilevel methodological framework consisting of 
five discrete steps. The first regards modeling the interregional commuting net-
work in Greece (Greek Commuting Network–GCN) into a multilayer graph model 
ℳ(𝒢) (De Domenico et al. 2013; Kivela et al. 2014; Boccaletti et al. 2014). In 
this multilayer model, the first layer (G1) represents the infrastructure road net-
work at the national scale, the second one (G2) the prefectural grouping of G1, the 
third (G3) the road accessibility network between Greek prefecture (NUTS III), 
and the fourth (G4) the directed interregional network of commuting flows. The 
second step includes the network analysis (Koschutzki et al. 2005; Newman 2010; 
Aleta et al. 2016), where major measures of network topology and geometry are 
computed to provide insights into the structure and functionality of this multi-
layer commuting network. At the third step, a set of network variables extracted 
from each layer are converted at a standard reference (at the regional scale) and 
are included in a principal component analysis (PCA), aiming to detect similari-
ties or differences according to this variance optimization method. At the fourth 
step, the results of PCA are tabulated through a “min–max” criterion, which fil-
ters the minimum and maximum cases per principal component and per variable, 
aiming at distinguishing the most important performances at different geographi-
cal and administrative levels of resolution. Finally, at the fifth step, conclusions 
are formulated within the context of transport geography and regional science.
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The construction of the GCN builds on the multilayer network paradigm (De 
Domenico et al. 2013; Kivela et al. 2014; Barthelemy 2011), which provides a rigor-
ous and sufficient framework for the modeling and topological analysis of multifac-
eted communication systems, both within and between the network layers. However, 
in current literature (Barthelemy 2011; Boccaletti et al. 2014; Kivela et al. 2014), the 
relationship between layers is expressed in terms of interlayer linkages, and there-
fore the interlayer attributes in such networks are studied through a “within-the-box” 
rationale, namely by examining interlayer links that are by default construction ele-
ments of a multilayer graph. In this paper, the analysis goes beyond the current mul-
tilayer network conceptualization by proposing a PCA-driven multivariable frame-
work for the study of interlayer relationships. In particular, this paper constructs a 
multilayer graph, where layers represent diverse aspects of the same socioeconomic 
system, the interregional transportation market of road commuting flows in Greece. 
By defining the available network layers concerning the fixed geographical scale 
of the whole country (at the national level), the differences between layers detected 
through comparisons in layer topological features can provide insights into the effect 
of the geographical and administrative resolution; and network functionality; on the 
configuration of the socioeconomic system of the Greek commuting. This is a novel 
approach to the extent it provides a framework for measuring topological differ-
ences between layers expressing different aspects of the same socioeconomic system 
that can be overall seen as the effect of each layer’s modeling rule on the reference 
socioeconomic system. This approach advances current conceptualization on multi-
layer transportation networks, which currently focuses on the multimodal configura-
tion of the network layers (Gallotti and Barthelemy 2014, 2015; Alessandretti et al. 
2016) rather than on differences in geographical resolution and administrative level 
(Ducruet et al. 2011; Tsiotas and Polyzos 2018; Ghavasieh and De Domenico 2020).

Within this context, the proposed framework can be applicable across jurisdic-
tions due to its methodological configuration, namely to the extent that it suggests 
a multilayer network modeling at different geographical scales, where all layers 
refer to a single (transportation or more broadly communication) system, and that 
it develops a quantitative approach evaluating the consistency of network topology 
mainly across these different geographical scales. Although the proposed methodo-
logical framework can be generalizable to every real-world application, its results 
are not by default universal to other realities because they are dependent on the 
framework’s empirical specialization, within the context of the certain case study. 
However, the universal contribution of the proposed methodological framework is 
that it conceptualizes spatial distance as a major force of network topology and it 
develops a quantitative framework evaluating the consistency of network topology 
across different geographical scales and functionality. In the following paragraphs, 
the steps of the proposed methodological framework are described in more detail.

3.1 � Graph Modeling

The interregional commuting network in Greece (GCN) is modeled to a multilayer 
graph ℳ(𝒢,𝒞 = Ø) consisting of four (4) layers = 𝒢{Gp} = {Vp,Ep, p = 1,…,4} 
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without interlayer connections = 𝒞{Εij⊆Vi×Vj} = Ø (De Domenico et  al. 2013; 
Kivela et  al. 2014; Aleta et  al. 2016), as it is shown in Fig.  1. The first layer 
G1(4,851;5,956) represents the infrastructure national road network in Greece and 
is modeled to a geo-referenced primal graph (Jiang and Claramunt 2004; Porta et al. 
2006a; Marshall et al. 2018), where the n1 = 4,851 nodes express route intersections 
and the m1 = 5,956 links (edges) express road-paths between nodes. The data for the 
construction of this layer was extracted from the Hellenic Land and Mapping Organ-
ization (OKXE 2005) and refer to the primary, secondary, and tertiary levels of the 
national road network along with the primary and secondary levels of the regional 
road network in Greece, as they are defined at the Presidential Decree 401/93. Due 
to the insular Greek morphology, G1 is not a connective graph, but an aggregate 
network (Tsiotas and Polyzos 2015a, b) including 156 components, the biggest of 
which is the road network of mainland Greece, whereas the other 155 are the local 
road networks of the Greek islands that are not connected with the mainland through 
road transport.

The second (G2) layer is configured by the grouping of G1 into 51 sub-graphs 
G2 = {G2p} = {V2p,E2p, p = 1,…,39} expressing the same in number prefectures of 
Greece, as they were defined by the act of Law 2539/97, which is commonly known as 
the “Kapodestrian” administrative division of Greece. In practice, layer G2 is the divi-
sion of G1 layer into 51 sub-graphs, where each is the part of G1 included within the area 
of a certain Greek prefecture (NUTS III level). In the third layer G3(39;71), the n3 = 39 
nodes express the non-insular capital cities of the Greek prefectures, and the m3 = 71 
edges express direct road connectivity between prefectures. In particular, two nodes (pre-
fecture capital cities) in this layer are connected if no administrative part of any other 
prefecture intermediates (or includes part of) their road-path. In this representation, 
nodes are geo-referenced at the coordinates of the city centers (WGS Web Mercator) 

Fig. 1   The interregional commuting network in Greece (GCN), modeled to a multilayer graph ℳ(𝒢). 
The first (G1) layer is the infrastructure road network at the national scale, the second (G2) is the prefec-
tural grouping of G1, the third (G3) expresses road accessibility between Greek regions (NUTS III), and 
the fourth (G4) is the directed interregional network of commuting flows. Data are extracted from OKXE 
(2005) and Google Maps (2019) and network layouts are produced by using the open-source software of 
Bastian et al. (2009)
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and this layer expresses the direct road accessibility between prefectures in Greece. 
Data of this layer were extracted from the Google Digital Mapping Services (Google 
Maps 2019). Finally, the fourth layer G4(39;121) builds on the G3 layer and models the 
directed flows of interregional commuting between the non-insular Greek capital cit-
ies, where edge-weights wij express the number of commuters moving daily from city 
i = 1,2,…,39 to city j = 1,2,…,39 (i ≠ j) to work. The available commuting data concern 
employed persons with residence in the area by place of work, and were extracted from 
the 2011 national census of Greece (Hellenic Statistical Service – ELSTAT 2011).

3.2 � Network Analysis

After the multilayer graph modeling, the topology of the GCN is studied by using 
a set of network measures shown in Table 1. In general, network measures capture 
a certain aspect of network topology (e.g. connectivity, intermediacy, path length, 
clustering, centrality, etc., see Koschutzki et al. 2005 and Newman 2010) and their 
total consideration can be seen as an approximation of the overall network topol-
ogy related to pattern structures in complex networks, such as the random, lattice, 
small-world, and scale-free topologies (Tsiotas 2019). Some measures refer to the 
total network G and are considered as global (or aggregate), whereas others refer to 
network components (nodes, edges) and are considered as local (Koschutzki et al. 
2005).

Direct comparisons of network measures between layers are possible only for 
cases capturing aspects of network topology and thus for those that are measured by 
unit-free or dimensionless numbers. For instance, measures of connectivity, neigh-
borhood, shortest-paths, and centralities, such as node degree, clustering coefficient, 
(binary) average path length and network diameter, graph density, and modularity 
are directly comparable between layers (Koschutzki et  al. 2005; Newman 2010; 
Boccaletti et  al. 2014; Kivela et  al. 2014). On the other hand, measures that are 
defined within a weighted (edge-dependent) context, such as average path length, 
edge length, weighted network diameter, etc. (Barthelemy 2011; Newman 2010), are 
not directly comparable and should be de-escalated by normalization or rescaling 
(Walpole et al. 2012) techniques to be comparable (they are indirectly comparable). 
In general, most of the network measures are well-defined within connected compo-
nents and thus calculations can be made without restrictions. However, in networks 
with more than one component, network measures are not well-defined, and conse-
quent computational and interpretation issues emerge (Koschutzki et al. 2005). For 
instance, it is impossible to compute the distance between two disconnected nodes 
and it is not easy to evaluate the importance of two nodes with the same degree 
that is included in components of different sizes. This problem is generally known 
as “insufficient connectivity” in complex networks and several repairing methods 
were proposed to overcome its restrictions each being appropriate within a certain 
context depending on the modeling and the purpose of the research. For this study, 
we use the simplest local restriction method – LRM (see Koschutzki et  al. 2005; 
Tsiotas and Polyzos 2015a, b), where measures computed within connected compo-
nents (local) are converted to global (i.e. referring to the aggregate network) without 
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modifications (as they are). This approach is considered satisfactory for the case of 
GCN because, first, the network is already complex due to its multilayer configu-
ration, which implies that insufficient connectivity should be managed most sim-
ply, and, second, because restriction due to model selection of each layer is already 
applicable implying that seeking for a high level of resolution in the analysis is 
aimless.

3.3 � Principal Component Analysis

The study aims to extract the major topological components of the multilayer GCN. To 
do so, we apply a principal component analysis (PCA) (Wold et al. 1987; Norusis 2008) 
between various topological variables of different GCN layers. Generally, the PCA is 
used to reduce the dimension of a set of possibly correlated (original or source) vari-
ables, by converting them into a set of linearly uncorrelated variables, called principal 
components. The process applies an orthogonal transformation to the variables, which 
can be perceived as fitting a p-dimensional ellipsoid to the data, where each axis of the 
ellipsoid is a principal component. When some axes are relatively small (in terms of 
explained variance) they can be removed from the dataset and thus the overall dimension 
of the system is reduced. The resulting principal components configure an uncorrelated 
orthogonal basis and are arranged into an ascending order, where the first principal com-
ponent has the largest possible variance and so on. The choice of the number of princi-
pal components can be illustrated to a scree-plot displaying a distinct break between the 
steep slope of the large factors and the gradual trailing of the rest (the scree), according 
to their eigenvalue size. The point at which a component adds relatively little variance 
to the total variance defines the proper number of principal components. The specifica-
tions of the algorithm used to perform the analysis are defined as follows: (a) computa-
tions are applied to the correlation (instead of the covariance) matrix, which is preferable 
for variables measured on different scales (Norusis 2008); (b) 25 maximum iterations 
is set for convergence; (c) extraction is applied when eigenvalues are greater than one 
(> 1); and (d) rotation is applied according to the “Varimax” method, which minimizes 
the number of variables that have high loadings on each factor, simplifying though the 
interpretation of the factors.

In transportation research, PCA enjoys a variety of applications, such as the 
study of structural efficiency of airline networks (Adler and Golany 2001), meas-
urement of transportation impacts of urban sprawl (Ewing et al. 2003), analysis 
of gas-emission and meteorological impacts of transportation (Shiva Nagendra 
and Khare 2003), evaluation of public-transport customers’ satisfaction (Sezhian 
et  al. 2011), origin–destination assessment (Djukic et  al. 2012), ecological 
assessment of transportation manufacturing (Park et al. 2015), and many others. 
For instance, Chen et  al. (2011) studied by using PCA the road-safety of three 
roads in Beijing, China, and they further evaluated the effectiveness of safety 
programs of traffic flow functionality. The analysis was applied to traffic data 
extracted from these roads and provided insights about the security level of each 
road, highlighting aspects of best and worst performance. The study concluded 
that safety programs cannot affect the normal operation of traffic flow but they 
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are applicable on a cost–benefit basis. Chung and Song (2018) studied, by using 
PCA, the determinative factors of motorcycle crash-severity in Korea, on data 
extracted from the year 2009. The analysis distinguished the most critical factors 
of motorcycle crash-severity and provided a framework for formulating remedial 
policy measures to decrease this phenomenon on roadways. Tang et  al. (2018) 
studied, by using PCA, some pivotal influencing factors of fatal traffic accidents 
recorded in the United States, for the period 2010–2016. The analysis exam-
ined the traffic conditions and several pivotal influencing factors of fatal traf-
fic accidents, concluding that tire wear, rim damage, exhaust system failure, and 
coupling failure are the most important factors. Bham et al. (2019) developed a 
composite rank-measure overcoming limitations of existing measures for network 
screening of hotspots or high-crash locations on highways. The PCA contrib-
uted to the assignment of non-arbitrary weights to different individual measures 
that are incorporated in a composite measure maximizing the variance without 
building on assumptions of the crash-data statistical distribution. As it can be 
observed, all such applications are described by the multidimensionality of avail-
able data, requiring data-management through dimension reduction, where PCA 
is an established method. Within this framework, the PCA is applied to the set of 
network variables of the GCN to restructure its topology into a set of uncorre-
lated topological (principal) components, where items within each component are 
correlated in terms of variability. The overall approach proposes a novel method 
for linking network variables across layers, which are defined at different geo-
graphical scales and functionality but refer to the same socioeconomic system.

For the variables of different layers to be compatible with the PCA, they should 
have the same length (number of cases) (Norusis 2008). To comply with this cri-
terion, all GCN variables were converted under a list-wise exclusion criterion, to 
have a length of 39 cases, equal to the number of the non-insular Greek prefectures 
(defined by G3 and G4 layers). This restriction drove the exclusion of layer G1 from 
the analysis because it coincides with the G2 layer. However, in the other parts of the 
analysis, the available variables were managed by default pair-wisely. Table 2 shows 
the 30 available topological variables of length 39 participating in the PCA of GCN.

On the other hand, no further data management, such as rescaling, number den-
sity computation, or normalization (Norusis 2008; Walpole et al. 2012) was applica-
ble to improve consistency between variables. Such approaches were not considered 
to significantly contribute to the analysis, because, although there is high-detailed 
information available on network structure, the commuting flow data is only avail-
able at low-resolution level (i.e. at the G4 layer that is configured at the interregional 
scale), a fact that inevitably also restricts the resolution of the computations. Being 
aware of this by default low-resolution context of modeling conditions on network 
flows, the analysis builds on a “minimax” consideration, which takes into account 
only the minimum and maximum values per case, and not on accurate enumera-
tions, a fact that sets any attempt for improving the computational resolution as 
redundant. However, these restrictions do not deteriorate the added value of the pro-
posed methodological framework to conceptualize a multilayer network modeling 
on layers configured at different geographical scales, which can be scalable to other 
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realities and therefore the restrictions applied to this study do not seem to suggest 
a considerable concern. The overall approach proposes a PCA-based methodologi-
cal framework for the in common modeling of various topological aspects in com-
plex networks defined at different geographical scales. In general, the PCA-driven 
analysis is applied to GCN to restructure its topology into a set of uncorrelated topo-
logical (principal) components, where items within each component are relevant in 
terms of their variability and of their contribution to the semiology of the principal 
component.

Table 2   Network variables participating in the PCA of GCN

Layer Variable
Code

Variable
Symbol

Description

G2 G201 RDD Region’s road density
G202 RDL Region’s road length
G203 NODES Number of nodes
G204 EDGES Number of edges
G205 MAX.DEG Maximum degree
G206 MIN.DEG Minimum degree
G207 AV.DEG Node average degree
G208 STR Strength
G209 COMP Number of connected components
G210 AV.E.LNG Average edge length
G211 DIAM Network diameter
G212 AV.C Average clustering coefficient
G213 AV.PL Average path length
G214 AV.CC Average closeness centrality
G215 AVG.CB Average betweenness centrality
G216 AV.ECC Average eccentricity

G3 G301 DEG Node degree
G302 STR Node strength
G303 C Node clustering coefficient
G304 ECC Node eccentricity
G305 CC Node closeness centrality

G4 G306 CB Node betweenness centrality
G401 COMMUTERS Number of commuters in each node
G402 IN.DEG In-degree
G403 OUT.DEG Out-degree
G404 DEG Node degree
G405 ECC Node eccentricity
G406 CC Node closeness centrality
G407 CB Node betweenness centrality
G408 C Node clustering coefficient
G409 STR Node strength
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4 � Results and Discussion

4.1 � Network Analysis

4.1.1 � Network Measures

At the first step of the analysis, network measures are computed for each layer and 
their results are shown in Table 3. Layer G1 appears almost a hundred times (100 ×) 
greater in size (n, m), and G2 is almost two times (2 ×) greater in size than the other 
two (G3, G4). Differences in the number of components seem to comply with the 
graph-model configuration, where layers G1 and G2 include the total (mainland and 
insular) national geographical space, while the other two (G3, G4) just the mainland. In 
terms of average degree ⟨k⟩ , layers G3 and G4 have the greatest values, implying that 
these networks enjoy higher average connectivity than the others. A similar picture is 
shaped for the edge-distance measures ( ⟨s⟩,⟨d

�
eij
�
⟩,∑

ij

d
�
eij
�
 ) where the G3 scores are 

greater than these of G1 and G2 (weighted scores of layer G4 are not comparable and 
thus not included). This is a reasonable finding since G3 is constructed at the interre-
gional scale, whereas the other two layers also include intraregional connections.

For the binary path-based measures ( ⟨l⟩ bin, dbin(G)), we can observe that 
they follow a ranking x(G1) > x(G2) > x(G3) ≈ x(G4) similar to the node order-
ing n(G1) = 4,851 > n(G2) = 94.59 (a rational number due to average computa-
tions) > n(G3) = n(G4) = 39. This observation describes a ranking relationship 
between network size (nodes) and these path-based measures. To the extent 
that the (binary) average path length and network diameter express aspects of 
accessibility in networks, this observation illustrates a gravitational configura-
tion of these measures due to their ranking relevance to network size. In terms 
of interpretation, this observation implies that accessibility becomes more per-
plexed as network size increases. However, the weighted expressions of ⟨l⟩ wei, 
d wei(G) shape a different picture, where G3 has greater scores than G1 and G2, 
which seems to be an effect of geographical resolution (since G3 is constructed 
at the interregional level, whereas G1 and G2 include intraregional connections). 
In terms of graph density, layers G3 and G4 have the highest scores, which seem 
also to be an effect of network size. This is also the case for clustering coefficient 
(scores of G3 and G4 are greater than the other layers), implying that models at 
the interregional scale enjoy higher clustering (circulation of information/ traffic) 
than the models at the intraregional scale. To the extent that clustering in trans-
portation networks is translated to traffic decentralization (through the develop-
ment of proportionally more triangular connections), this observation points out 
the advantage of the interregional administrative setting for the development of 
peripheral connectivity, which is a major goal towards regional development and 
regional inequalities convergence. Finally, modularity scores seem to follow a 
(network) size distribution pattern, according to which greater in size networks 
(G1 > G2 > G4, G3) tend to divide into communities more easily. This observation 
may also point out an advantage of the interregional administrative setting toward 
improving structural consistency in transport management configurations.
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4.1.2 � Degree Distributions and Strengths

The degree distributions of the GCN layers are shown in Fig. 2. For the G2 layer, 
box-plots (Walpole et  al. 2012) are also used to display the distribution variables 
p(k = 1), p(k = 2), p(k = 3), p(k = 4), and p(k = 5), configured within each available 
case of degree, namely from k = 1, …, to k = 5 (maximum degree). Substantially, 
instead of one degree distribution, Fig. 2b illustrates 51-degree distributions (shown 

Table 3   Network measures of the multilayer GCN

a Average values computed on the regional sub-networks
b Dimensionless number (unit-free measure)
c Computed on weighted network
d Computed on directed network
e Not available

Measure/ Metric Symbol Unit 𝒢

G1 G2
a G3 G4

Nodes n #b 4,851 94.59 39 39
Edges/links m # 5,956 116.98 71 121
Components p # 164 2.82 1 1
Maximum degree kmax # 8 8 7 13
Minimum degree kmin # 1 0 1 1
Average degree ⟨k⟩ # 2.456 1.22 3.641 3.103
Average strengthc ⟨s⟩ wei 13.979 (km) 6.171

(km)
322.26
(km)

1,506.4
(commuters)

Average edge lengthc ⟨d
�
eij
�
⟩ wei 5.757 (km) 5.226

(km)
85.497
(km)

506.74 (commuters)

Total edge lengthc ∑
ij

d
�
eij
�

  
wei 23,377 (km) 588

(km) 3334.4
(km)

58,754
(commuters)

Average path length 
(binary)

⟨l⟩
bin

# 47.29 6.87 4.58 4.196
(5.213d)

Average path lengthc d(⟨l⟩) wei 272.25
(km)

35.9
(km)

389.045
(km)

2641.6
(commuters)

Network diameter 
(binary)

dbin(G) # 146 18.27 14 14

Network diameterc dw(G) wei 840.52 (km) 95.47
(km)

1,124.4
(km)

7,094.4 (commuters)

Graph density (non-
planar)

ρ net 0.001 0.018c 0.097 0.097
(0.082 d)

Clustering coefficient C net 0.046 n/ae 0.47 0.474
(0.073d)

Average clustering 
coefficient

⟨C⟩ net 0.07 0.04 0.422 0.514
(0.405d)

Modularity Q net 0.964 0.76 0.566 0.621
(0.719 c)
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in dots) configured by the concordant sub-networks included in this layer. There-
fore, the available box plots provide a collective picture of the 51 degree distribu-
tions of the sub-networks in layer G2, and include information about the range, inter-
quartile range, average, and outliers of the available distribution variables. For layer 
G4, the in-degree (id) (Fig. 2e) and out-degree (od) (Fig. 2f) distributions are also 
shown. As it can be observed, all distributions follow a bell-shaped pattern imply-
ing that connectivity is undertaken by the majority of nodes in their correspond-
ing networks. This implies that all layers of GCN are structured under the effect 

Fig. 2   Scatter plots (k, n(k)) of the degree distributions for: a  G1 layer; b  G2 layer, including box-
plots also illustrating the distributions within each degree k = 1,…,5, for the available 51 sub-networks 
included in this layer; c G3 layer; d G4 layer (undirected); e G4 layer, in-degree (k–); and f G4 layer, out-
degree (k +). A normal fitting curve is fitted, where possible



117

1 3

Dimension Reduction in the Topology of Multilayer Spatial…

of spatial constraints (Barthelemy 2011), where hubs frequently emerge and do not 
undertake the major load of connectivity. In terms of kurtosis, the degree distribu-
tion of G1 is the most peaked (Fig. 2a), whereas G3 is the smoothest one (Fig. 2c), 
indicating that G1 is leptokurtic and G3 platykurtic. This observation implies that G3 
may show more distinguishable structures of hierarchy since more highly (hubs) and 
less connected (spokes) nodes exist in this layer proportionally to the others. Also, 
degree distributions of layers G3 (Fig. 2c) and G4 (Fig. 2d) appear more symmetric 
than the others, implying a better symmetry in the lattice-like configuration of their 
networks. Finally, the out-degree distribution (Fig. 2f) of G4 appears more similar to 
the undirected case (Fig. 2d), implying that the outgoing configuration of layer G4 is 
possibly more affected by network connectivity.

At next, correlations between incoming (s–) and outgoing (s+) strengths are exam-
ined according to the scatterplots shown in Fig. 3. Similar to the in- and out-degree 
defined in Table 1, incoming strength is the sum of incoming commuting flows and 
outgoing strength is the sum of the outgoing flows, for a given node. Reference lines 
are set to the median values and divide the plane into four quadrants. Cases above 
the line are considered as high (H) and below the line as low (L). This division pro-
duces four distinct commuting profiles corresponding to labor markets that can be 
described as isolated (LL), exporting (LH), importing (HL), and interactive (HH). In 
particular, the first (LL) profile includes cities with the low incoming and outgoing 
commuting flow and it can be considered as “isolated” to the extent that it describes 
cases with small interaction (both incoming and outgoing) with their neighborhood 
regions and thus those referring to more self-sufficient economies. The second pro-
file (LH) includes cases with low incoming and high outgoing commuting flows and 
illustrates “exporting” economies leaking more labor force than this they receive. 
The third (HL) profile includes cases with high incoming and low outgoing com-
muting flows and illustrates “importing” economies to the extent that these cases are 
receiving more labor force than they leak, describing thus markets of great occupa-
tion opportunities. Finally, the fourth (HH) profile includes cases with high incom-
ing and outgoing commuting flows and illustrates “interactive” economies to the 
extent that its cases have high interaction (both incoming and outgoing) with their 
neighborhood regions. According to this classification, the HL quadrant describes 
optimum cases benefited high incoming flows with small loss of labor force.

Further, different classifications in Fig.  3 between the unadjusted (s) and per-
capita (s*) cases, which are computed by dividing the commuting flows by the total 
city population, illustrate the effect of the population in the commuting flows of the 
GCN. As it can be observed, the cities of Amfissa, Athens, Florina, Grevena, Igou-
menitsa, Karpenission, Kastoria, Komotini, Lamia, Lefkada, Levadia, Patra, Tripo-
lis, and Preveza belong to different classes between the unadjusted and per-capita 
cases. Among these cities, Athens and Patra (which are amongst the most populated, 
with almost 4 million and over 300 k population, respectively) move from HL(s) to 
LL(s*), implying that they are considered as stable labor-markets when the control 
of the population is removed. On the other hand, Amfissa, Karpenission, Kastoria, 
Lefkada, and Tripolis move from LL(s) to HL(s*) when the control of the population 
is removed from the commuting strengths, implying that they are relatively attrac-
tive labor markets. Finally, Fig. 3c shows that group LL has a (statistically) smaller 
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average than the other three groups (LH, HL, and HH) in variable G409 (strength). It 
also has a smaller average than the groups LH, and HH in G401 (commuters). Group 
HH has a greater average than group LH in G206 (min degree) and G407 (between-
ness centrality). Accordingly, for the per capita (s*) case, we can observe that group 
HH has a greater average than LL and LH in variable G206 (min degree); group HH 
has a greater average than HL in G306 (betweenness centrality), G401 (commuters), 
G407 (betweenness centrality), G409 (strength). Group LL has a greater average than 
HL in G209 (no. of connected components); and a greater average than HH in G216 
(average eccentricity) and G304 (eccentricity). Group LH has a greater average than 
HH in G401 (commuters). This incoming and outgoing strength correlation analysis 
generates groups (LL, LH, HL, and HH) with pair-wisely distinguishable topologi-
cal attributes regarding commuting flows (G401, G409), intermediacy (G306, G407), 
eccentricity (G216, G304), and connectivity (G206, G209), addressing avenues for 
further research towards the topological configuration of the relationship between 
strength directionality (s+, s–).

Fig. 3   Scatter-plots of correlations between the incoming (S(–)) and outgoing (S(+)) strengths of the 
Greek commuting network (GCN), in a numeric (log–log scale), and b per capita (divided by the total 
city population) expression (metric scale). Reference lines express the median values and divide the 
plane into four quadrants (where H = high and L = low). Optimum cases appear in the HL quadrant, 
where incoming flows are high and outgoing flows are low for a given node. c Results of independent 
samples t-tests for the equality of means between the LL, LH, HL, and HH groups for the topological 
variables are shown in Table 2
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4.2 � Principal Component Analysis

The results of the PCA applied to the network variables of Table 2 are shown in 
Fig.  4. According to the scree-plot (Fig.  4a), 8 components are significant to the 
analysis and can be considered as principal, explaining an amount of 85% of the 
total variance. This result translates 74% of dimension reduction (8 principal com-
ponents out of 31 available items) with only 15% loss of information (total variance 
loss). Provided that principal components are uncorrelated variables configuring an 
orthogonal basis for the total system’s variance (Norusis 2008), the resulting prin-
cipal components have similarly separate semiology. That is, to the extent that each 
principal component includes a unique combination of loadings (Fig. 4b) and thus 
of information linked to the 31 available items, each combination is also uncorre-
lated with the others, in terms of its semiology composed by the physical mean-
ings of the items. Within this context, items with the highest loadings within each 
component can be considered as relevant in terms of their great importance in the 
configuration of the unique semiology of a principal component. To this end, Fig. 4c 
and d display respectively the maximum and minimum values of the PCA loadings 
(Fig.  4b), where cases included within a component are considered as relevant in 
terms of semiology.

Fig. 4   Results of the principal component analysis (PCA) applied to the network variables (shown in 
Table  2) of GCN, where a  shows the scree plot with a reference line to the 8 principal components, 
b  shows the rotated coefficients matrix, c  shows the minimum, and d  shows the maximum values of 
the rotated coefficients matrix. Rows 1:9 correspond to G4 layer (variables G401:G409), 10:15 to G3 layer 
(variables G301:G306), and 16:31 to G2 layer (variables G201:G216)
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To facilitate the interpretation of the principal components, the first two layers 
(G1 and G2) are considered as aspects of the GCN’s geometry (commuting cost/
intra-regional level); the third layer (G3) as an aspect of the GCN’s accessibility 
(commuting cost/interregional level); and the fourth (G4) as an aspect of the GCN’s 
functionality (commuting utility/interregional level). A summary of the principal 
components resulted from the PCA and of their semiology is shown in Table 4. In 
particular, the first principal component (PC#1) is positively related (Fig. 4b, c) to 
the node eccentricity (G216,G304,G405) and closeness centrality (G214,G305,G406) of 
all three (G2,G3, and G4) layers. On the other hand, it is negatively related (Fig. 4b, 
d) to the node degree (G301), strength (G302), and betweenness (G306) of the G3 
layer, to the in- (G402), out- (G403), and total (G404) degree of the G4 layer, and the 
betweenness centrality (G407) of G4 layer. In terms of interpretation, PC#1 is posi-
tively related to network-accessibility (as expressed by the measures of eccentric-
ity and closeness centrality) across all layers and negatively related to connectivity 
(degree) and betweenness of the GCN’s accessibility and functionality.

Next, the second principal component (PC#2) is positively related (Fig. 4b, c) to 
the betweenness centrality (G206) of the G2 layer and clustering coefficient (G303) of 
the G3 layer. On the other hand, it is negatively related (Fig. 4b, d) to the road density 
and length (G201,G202), to network size (G203,G204), maximum degree (G205), number 
of connected components (G209), network diameter (G211), and average path length 
(G211) of layer G2. In terms of interpretation, PC#2 seems to be positively related to 
the clustering of GCN’s accessibility and the intermediacy (betweenness) of GCN’s 
geometry and negatively related to measures describing network size (nodes, edges, 
connected components, diameter, and average path length) of the geometry of GCN. 
The third principal component (PC#3) is positively related (Fig. 4b, c) to the maxi-
mum node degree (G205) of G2 layer, to node degree (G301,G404) of G3 and G4 layer, 
and negatively related (Fig. 4b, d) to closeness centrality and eccentricity (G214,G
216,G304,G305) of G2 and G3 layers and betweenness centrality (G215) of G2 layer. In 
terms of interpretation, PC#3 appears positively related to connectivity (maximum 
degree, degree) across all layers and negatively related to network accessibility and 
the betweenness of the GCN’s geometry.

The fourth principal component (PC#4) is positively related (Fig. 4b, c) to road 
density (G201), network diameter (G211), and average path length (G213) of G2 layer 
and commuters (G401), in degree (G402), and node strength (G409) of G4 layer and 
negatively related (Fig. 4b, d) to eccentricity (G405) and closeness centrality (G406) 
of G4 layer. In terms of interpretation, PC#4 includes positive information about 
road density and network length of the GCN’s geometry, as well as connectivity 
and flow information of GCN’s functionality. On the other hand, it is negatively 
related to network accessibility (closeness and eccentricity) of the GCN’s function-
ality. The fifth principal component (PC#5) is positively related (Fig. 4b, c) to edge 
length (G210) and negatively related (Fig. 4b, d) to node degree (G207) and clustering 
coefficient (G212) of the G2 layer. In terms of interpretation, PC#5 includes posi-
tive information about edge length and negative information about connectivity and 
clustering of the GCN’s geometry. Next, the sixth principal component (PC#6) is 
positively related (Fig. 4b, c) to road length (G202) and average degree (G207) of G2 
layer, to betweenness centrality (G306) of G3 and G4 layer, and it is negatively related 
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(Fig. 4b, d) to clustering coefficient (G303) of G3 and G4 layer. In terms of interpreta-
tion, PC#6 appears positively related to road length and average degree of GCN’s 
geometry, to betweenness centrality of the GCN’s accessibility and functionality, 
and is negatively related to clustering of the GCN’s accessibility and functionality.

The seventh principal component (PC#7) is positively related (Fig.  4b, c) to 
the number of nodes and edges (G203,G204), the number of connected components 
(G209), and betweenness centrality (G215) of the G2 layer, to out-degree (G403) of the 
G4 layer, and is negatively related (Fig. 4b, d) to the minimum degree (G206), node 
strength (G208), and edge length (G210) of the G2 layer. In terms of interpretation, 
PC#7 includes information about network size (nodes, edges, number of connected 
components) and betweenness of GCN’s geometry, and negative information about 
connectivity and length of the GCN’s geometry. Finally, the eighth principal compo-
nent (PC#8) is positively related (Fig. 4b, c) to node strength (G208,G302) of the G2 
and G3 layers, to clustering (G212) of the G2 layer, and is negatively related (Fig. 4b, 
d) to the number of commuters and node strength (G401,G409) of G4 layer. In terms of 
interpretation, PC#8 includes information about network distance of GCN’s geom-
etry and accessibility, about the clustering of the GCN’s accessibility, and negative 
information about the functionality of GCN.

Overall, the PCA allowed decomposing the complexity of the multilayer GCN’s 
topological information into principal components of distinct semiology defined by 
interlayer topological measures. However, based on the empirical nature of the analy-
sis, these results cannot be considered as time-invariant and therefore they are not by 
default stable overtime for this network. Although the interpretation of these princi-
pal components is insightful within the spatiotemporal context of the available data, 
the high sunk-cost of road-transportation networks can provide a significantly higher 
endurance to the semiology of these principal components in comparison with other 
transport applications that are not infrastructure-dependent and thus are more flexible 
to rerouting or rescheduling (e.g. air-transport network constructed on flight timeta-
bles, trade courier networks, etc.). Within this context, the results of the analysis can 
shape a satisfactory picture of the medium-term or even long-term structure of the 
Greek commuting market, depending on the data restrictions and resolution. Besides, 
the proposed methodological framework is indifferent to the case study because it 
conceptualizes network topology as a composition of layers defined at different geo-
graphical resolutions and functionality of the same socioeconomic system, and thus 
within a context-free of spatiotemporal restrictions. This approach is novel to be used 
as a decomposition method in the analysis of multilayer networks, where, in the case 
of the multilayer GCN, showed distinct and sometimes competitive roles between 
network connectivity and accessibility, network length and connectivity, network 
length and clustering, and network distance and commuting flows.

5 � Further Analysis

On further analysis, we examine the association amongst the principal components’ 
grouping, the layer configuration of the GCN, and the grouping produced by an alter-
native established classification method. To do so, we further classify the available 
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GCN variables of Table 2 according to the hierarchical clustering method (Revelle 
1979; Murtagh and Contreras 2012), and afterward, we apply a Pearson’s chi-square 
test (McHugh 2013; Sharpe 2015) to detect any relevance amongst the diverse avail-
able groupings. At first, hierarchical clustering or cluster analysis (Revelle 1979; 
Murtagh and Contreras 2012) is an iterative method for grouping either cases or 
variables at different levels of hierarchy, resulting in a hierarchy of clusters. In this 
method, clustering is achieved under either an agglomerative or divisive algorithm, 
with a clustering criterion based on pairwise dissimilarity measures (chosen amongst 
a collection of available metrics), which quantify the linkage between observations 
(Norusis 2008). To perform this analysis, we apply to non-standardized data (to com-
ply with a relevant specification of the PCA algorithm) an agglomeration algorithm 
capturing between-groups linkage through a Pearson’s correlation dissimilarity meas-
ure. For the sake of comparisons, 8 clusters are extracted from this process to comply 
with the PCA outcome. Therefore, the results of the hierarchical clustering are shown 
in Fig. 5, where the configuration of the 8 clusters is shown in dashed-line colored 
windows. As it can be observed, there are 3 main clusters (HC#1, HC#2, and HC#7) 
including respectively 8, 9, and 6 items; there are 3 other clusters (HC#3, HC#5, and 
HC#6) including two items each; and other 2 (HC#4 and HC#8) including one item 
each. This composition configures an ascending rank-size ordering {9, 8, 6, 2, 2, 2, 1, 
1}. Computing the correlation coefficients (Norusis 2008) with the concordant rank-
size orderings, {7, 6, 5, 4, 3, 3, 2, 1}, and {8, 7, 5, 3, 2, 2, 2, 2}, of the groups of 
positive and negative PCA loadings (Table 4) yields respectively r(HC,PCA+) = 0.944, 
and r(HC,PCA-) = 0.986, which are all significant coefficients at the 0.01 level. These 
results imply that both (positive and negative) groupings generated by the PCA have 
a good structure of hierarchy in terms of their rank-size configuration. Amongst the 
PCA groupings, this of negative loadings seems to have a better structure of hierar-
chy, to the extent that a hierarchical structure is expressed by the hierarchical cluster-
ing result.

To better detect the hierarchical association between the available groupings, we 
further apply a Pearson’s chi-square test for independence (McHugh 2013; Sharpe 
2015). This method is a statistical hypothesis-testing used to examine whether there 
is a relationship and specifically whether there is a statistically significant associa-
tion in the frequencies between the groups of two categorical variables. In particu-
lar, the chi-square test measures the discrepancy of the class frequencies between 
the examined variables comparatively to what would be expected in case they were 
unrelated. The null hypothesis (Ho) states that the class frequencies between the 
examined variables are not associated, whereas the alternative (Ho) states that they 
are. In terms of interpretation, a valid null hypothesis indicates that frequencies in 
one variable can be considered as irrelevantly distributed across the classes of the 
other variable, whereas a valid alternative hypothesis is that there is an association 
between the distribution of frequencies between these variables (Norusis 2008). To 
visualize the nature of the association, the class proportions are displayed with bar 
charts. To perform the Pearson’s chi-square test (McHugh 2013; Sharpe 2015), we 
configure four categorical variables, (a) the layer grouping (LAYER), indicating 
the layer where each variable of Table 2 belongs to; (b) the hierarchical clustering 
grouping (CLUSTERS HIER.), indicating the hierarchical cluster (1–8) where each 
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variable belongs to (Fig. 5); (c) the positive PCA grouping (PC POSITIVE), indicat-
ing the principal component (1–8) where each variable has the highest positive load-
ing (Fig. 4b, c); and (d) the negative PCA grouping (PC NEGATIVE), indicating 
the principal component (1–8) where each variable has the most negative loading 
(Fig. 4b, d).

Within this context, Table 5 shows the results of the Pearson’s chi-square test for 
independence, which are further illustrated in the bar charts of Fig. 6. First, as it can 
be observed, only variable PC NEGATIVE is significantly associated with LAYER 
(Table  5). In particular (Fig.  6a), components PC#2(–), PC#5(–), and PC#7(–) 
exclusively include variables from layer G2; components PC#4(–), PC#8(–) exclu-
sively include variables from layer G4; while the other components include variables 
from pair layers (but not from all of them). For the pairs LAYER-HIER.CLUSTER 
and LAYER-PC POSITIVE, the group configuration (Fig. 6b, c) is not as clear as 
is for PC NEGATIVE. These results indicate that the negative loadings’ group-
ing is relevant to the layer configuration, whereas the other two groupings are not. 
Next, variables PC POSITIVE and PC NEGATIVE are significantly associated with 
HIER.CLUSTERS (Table 5). In particular (Fig. 6d), component PC#4( +) is mainly 
included in cluster HC#1, PC#1( +) is mainly included in cluster HC#2, PC#5( +) is 
exclusively included in cluster HC#7, cluster HC#5 exclusively includes variables 
from component PC#2( +), and HC#8 exclusively includes variables from PC#7( +); 
whereas other hierarchical clusters are configured by 2 or maximum 3 PC( +) 

Fig. 5   Results of the hierarchical clustering applied to the variables of Table 2
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Table 5   Chi-square tests between the categorical variables of the layer, principal component, and hierar-
chical analysis grouping

a Chi-Square Tests
b Symmetric Measures, Nominal by Nominal
Statistically significant results are shown in bold font

VARIABLES Statistics VARIABLES

LAYER CLUSTERS 
(HIER.)

PC POSITIVE PC NEGATIVE

LAYER Pearson Chi-Squarea 19.211 9.852 34.408
Degrees of freedom 14 14 14
Asymp. Sig. 

(2-sided)
0.157 0.773 0.002c

Phib 0.787 0.564 1.054
Approx. Sig 0.157 0.773 0.002
Cramer’s Vb 0.557 0.399 0.745
Approx. Sig 0.157 0.773 0.002
N of Valid Cases 31 31 31

CLUSTERS 
(HIER.)

Pearson Chi-Squarea 19.211 86.875 144.936
Degrees of freedom 14 49 49
Asymp. Sig. 

(2-sided)
0.157 0.001 0

Phib 0.787 1.674 2.162
Approx. Sig 0.157 0.001 0
Cramer’s Vb 0.557 0.633 0.817
Approx. Sig 0.157 0.001 0
N of Valid Cases 31 31 31

PC
POSITIVE

Pearson Chi-Squarea 9.852 86.875 70.034
Degrees of freedom 14 49 49
Asymp. Sig. 

(2-sided)
0.773 0.001 0.026

Phib 0.564 1.674 1.503
Approx. Sig 0.773 0.001 0.026
Cramer’s Vb 0.399 0.633 0.568
Approx. Sig 0.773 0.001 0.026
N of Valid Cases 31 31 31

PC
NEGATIVE

Pearson Chi-Squarea 34.408 144.936 70.034
Degrees of freedom 14 49 49
Asymp. Sig. 

(2-sided)
0.002 0 0.026

Phib 1.054 2.162 1.503
Approx. Sig 0.002 0 0.026
Cramer’s Vb 0.745 0.817 0.568
Approx. Sig 0.002 0 0.026
N of Valid Cases 31 31 31
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components. Also (Fig. 6e), component PC#1(–) is exclusively included in cluster 
HC#2, PC#6(–) is identical to HC#4, and PC#5(–) is identical to HC#6, whereas 
other hierarchical clusters are configured by 2 or maximum 3 PC(–) components. 
Finally, according to a similar reading, we can observe that the configurations of the 
PC POSITIVE and PC NEGATIVE grouping are associated. These results highlight 
that the principal components groupings have a good structure of hierarchy.

Overall, this further analysis provided insights into the association amongst 
the principal components’ grouping, the layer configuration, and the hierarchi-
cal structure of GCN, as it is captured by hierarchical clustering on the set of the 
available topological variables. The Pearson’s chi-square test for independence 
showed that the PCA grouping, except for dimension reduction, may provide an 
effective clustering method that is first consistent with the topological hierarchy 
(both PCA groupings are significantly associated with hierarchical clustering) 
and secondly with the layer configuration (the PCA grouping of negative load-
ings is significantly associated with layer configuration) of the GCN.

6 � Conclusions

Towards detecting norms or common features ruling the effect of spatial constraints 
on the configuration of network topology at different degrees of spatial or adminis-
trative aggregation, this paper modeled the interregional commuting in Greece into 

Fig. 6   Bar charts illustrating class frequencies between the available categorical variables referring to the 
layer (G), principal component (PC), and hierarchical clustering (HC) grouping
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a multilayer graph (GCN). The study built on methods of complex network analy-
sis and dimension reduction to examine its topological properties across its layers 
and extract principal topological components of this multilayer model, by applying 
a Principal Component Analysis (PCA). The GCN layers were defined at different 
levels of geographical and administrative resolution, and different types of struc-
ture and functionality. The study conceptualized the available layers in terms of the 
utility of commuting flows and cost of spatial distance and performed an interlayer 
analysis to detect the important topological features across these different aspects of 
the interregional commuting market. The methodological framework first developed 
a multilayer graph of interregional commuting, next configured variables represent-
ing aspects of network topology, applied network analysis, and finally decomposed 
the total model into principal components expressing uncorrelated aspects of inter-
regional commuting.

First, network analysis revealed that the distance-defined topological features 
(and particular distance strength, average, and total edge length, and distance-
weighted average path length and network diameter) and the network clustering of 
GCN increase either with the increase of the administrative level or the decrease 
of geographical resolution. To the extent that distance is related to transportation 
cost, this finding underlined the importance of the administrative level choice in the 
strategic cost of spatial planning and transportation management. On the other hand, 
it pointed out the advantage of the interregional administrative setting for the devel-
opment of peripheral connectivity, which is a major goal towards regional devel-
opment and regional inequalities convergence. Next, the analysis revealed that the 
path-based topological measures (average path length and binary network diameter) 
positively depend on network size. To the extent that these “a-spatial” topological 
measures express aspects of network accessibility, this finding underlined the impor-
tance of network size in the establishment of accessibility, highlighting thereby that 
effective spatial planning and transportation management should build on simplicity. 
Finally, network analysis revealed that network size is competitive to structural con-
sistency and as it grows up it increases the network’s tendency to divide into commu-
nities. This finding also pointed out the importance of structural simplicity in spatial 
planning and transportation management, along with the advantage of the interre-
gional administrative setting toward improving structural consistency in transport 
management configurations.

In terms of statistical mechanics, the degree distributions analysis revealed that 
all degree distributions across the GCN layers follow a bell-shaped pattern, imply-
ing that connectivity in this network is submitted to spatial constraints and is mainly 
undertaken by the majority of nodes rather than by hubs. A more distinguishable 
hierarchical structure detected in the layer related to the GCN interregional accessi-
bility, revealed the advantage of this administrative setting towards a more effective 
planning building on centrality and structures of hierarchy. The correlation analysis 
applied to incoming and outgoing node strengths developed profiles of commuting 
performance (configuring the isolated, exporting, importing, and interactive labor 
markets) based on the strength directionality of GCN. This approach revealed that 
some profiles share common topological attributes across all layers, addressing 
avenues for further research towards the topological configuration of the strength 
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directionality of commuting, which expresses either labor or housing attractiveness 
in the interregional commuting market.

Finally, the PCA resulted in dimension reduction of the GCN topology, from 31 
available topological items to 8 principal components. Each component enjoyed a 
distinct and singular semiology defined by the physical meanings of the included 
items, providing thereby interesting insights into the relationship between network 
connectivity and accessibility, network length and connectivity, network length and 
clustering, and network distance and network functionality (commuting flows) of the 
GCN. On further analysis, the association was examined amongst the grouping pro-
duced by the PCA, the layer configuration of GCN, and a hierarchical clustering 
applied to the set of the available topological variables. The results showed that the 
PCA grouping was first consistent with the topological hierarchy and secondly with 
the layer configuration of the GCN, highlighting that the proposed method can also 
be seen as an effective clustering technique, conservative to the norms describing 
the total system.

Provided that it was applied to the case of interregional commuting in Greece, 
the results of the analysis are not universal and thus they do not by default describe 
other realities. For instance, any analogies related to comparisons of topological 
features between layers, fitting specializations of the degree distributions, the com-
muting profiles based on strength directionality correlations, and semiology of the 
principal components resulted from the analysis, are all related to the case study 
and the modeling specifications and may vary when computed in other applications, 
although common patterns may appear due to the common setting provided by the 
spatial constraints to network connectivity. However, in methodological terms, the 
conceptual and methodological framework of this study enjoys the universality of its 
component methods (multilayer modeling, network analysis, correlation, and prin-
cipal component analysis) and thus the effectiveness and consistency of the overall 
analysis are indifferent to the case of GCN. One suggestion that the analysis offers 
to spatial planning and transportation management is incorporating topological 
aspects in the description and modeling of transportation systems, which is an ongo-
ing process not yet fully integrated into spatial planning and transportation research. 
This is because network topology conceptualizes systems of spatial interaction 
beyond their geometry, and thus can provide quantitative measurements of relational 
linkages and features that can facilitate a deeper systems’ knowledge and equip to 
more effective planning. Particularly, being compatible with the multilayer setting 
of spatial planning and transportation management, the multilayer graph modeling 
can facilitate quantitative decomposition and interlayer analysis providing profound 
knowledge of transportation systems and systems of spatial interaction. Within this 
context, another suggestion of this study toward ensuring simplicity in spatial and 
transportation planning is the reduction of (horizontal) complexity within layers 
and the increase of interlayer (vertical) configuration in the modeling of transporta-
tion systems. Also, to the extent that larger geographical scales are related to larger 
distances (expressing cost), the finding that peripheral connectivity in GCN is bet-
ter developed at larger geographical scales tells us that the development of periph-
eral connectivity is a relatively more costly goal of transportation planning. Taking 
into account that the interregional administrative setting was found favorable to the 
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development of peripheral connectivity, this study also suggests giving more effort 
to spatial planning and transportation management at the interregional administra-
tive level. This approach can facilitate processes towards regional development and 
regional inequalities convergence.

Overall, the analysis provided insights into the spatial, topological, and func-
tional configuration of interregional commuting in Greece, at different levels of geo-
graphical resolution, administrative scale, and functionality; conceptualized network 
topology in a novel multivariable framework; highlighted the importance of spatial 
constraints in this multilayer setting of Greek commuting; underlined the impor-
tance of geographical scale and resolution in transportation modeling; detected the 
effectiveness of the interregional administrative scale on the topology of transporta-
tion networks; and proposed a methodological framework for dimension reduction 
in the topology of multilayer spatial networks into principal components. This paper 
promotes multidisciplinary conceptualization and suggests incorporating topologi-
cal aspects in the description and modeling of transportation systems in spatial plan-
ning, transportation, and regional research.
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