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Abstract
In this paper, we introduce a novel iterative method for finding the minimum-norm 
solution to a pseudomonotone variational inequality problem in Hilbert spaces. We 
establish strong convergence of the proposed method and its linear convergence 
under some suitable assumptions. Some numerical experiments are given to illus-
trate the performance of our method. Our result improves and extends some existing 
results in the literature.
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1  Introduction

Throughout this paper, assume that C is a nonempty, convex and closed subset of 
the real Hilbert space H with the inner product ⟨, ⟩ and the norm ‖.‖ . Let F ∶ H → H 
be a Lipschitz continuous operator. The object of our investigation is the following 
variational inequality problem (shortly, VI(C, F)):

Find x∗ ∈ C such that

We denote the solution set of VI(C, F) by Sol(C, F).
Many problems in various fields such as physic, economics, engineering, opti-

mization theory can be led to variational inequalities. Iterative methods for solving 
these problems have been proposed and analyzed (see, for example, Facchinei and 
Pang (2003), Gibali et al. (2017), Kassay et al. (2011), Kinderlehrer and Stampacchia 
(1980), Konnov (2001) and references therein). One of the most famous methods for 
solving VI(C, F) is the extragradient method introduced by Korpelevich (1976). In 
this method, one needs to calculate two projections onto C at each iteration. This may 
affect the efficiency of the method when finding a projection onto a closed and con-
vex set C is not an easy problem.

In recent years, many authors are interested in the extragradient method and 
improved it in various ways, see, e.g. Anh et  al. (2020),  Censor et  al. (2011a, b, 
2012b), Reich, Thong and Dong et al. (2021), Reich, Thong and Cholamjiak et al. 
(2021), Thong and Hieu (2018), Thong and Vuong (2021), Yang et al. (2018), Yang 
(2021) and references therein. The subgradient extragradient method, proposed 
by Censor et al. (2012a) for solving VI(C, F) in real Hilbert spaces is one of these 
modifications.

where � ∈ (0,
1

L
), and L is a Lipschitz constant of F. This method replaces two pro-

jections onto C by one projection onto C and one onto a half-space. The sequence 
{xn} generated by (2) converges weakly to an element of Sol(C,  F) provided that 
Sol(C, F) is nonempty.

Kraikaew and Seajung (2014) used the subgradient extragradient method and 
Halpern method to introduce an algorithm for solving VI(C, F) as follows:

(1)⟨Fx∗, x − x∗⟩ ≥ 0 ∀x ∈ C.

(2)

⎧⎪⎨⎪⎩

x0 ∈ H,

yn = PC(xn − �Fxn),

Tn = {x ∈ H ∶ ⟨xn − �Fxn − yn, x − yn⟩ ≤ 0},

xn+1 = PTn
(xn − �Fyn),

(3)

⎧⎪⎪⎨⎪⎪⎩

x0 ∈ H,

yn = PC(xn − �Fxn),

Tn = {x ∈ H ∶ ⟨xn − �Fxn − yn, x − yn⟩ ≤ 0},

zn = PTn
(xn − �Fyn),

xn+1 = �nx0 + (1 − �n)zn,
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where 𝜆 ∈ (0,
1

L
), {𝛼

n
} ⊂ (0, 1), 𝛼

n
→ 0,

∑∞

n=1
𝛼
n
= +∞. They proved that the sequence  

{xn} generated by (3) converges strongly to PSol(C,F)x0 if F is monotone and L-Lipschitz  
continuous. The main disadvantage of Algorithms (2), (3) is a requirement to know 
the Lipschitz constant of F or at least to know some its estimation.

Very recently, Yang (2021) proposed a modification of subgradient extragra-
dient method with step size rule using the inertial-type method as follows: Given 
𝜆0 > 0,𝜇 < 𝜇0 ∈ (0, 1) . Let x0, x1 ∈ H be arbitrary

Under the pseudomonotonicity and sequential weak continuity of the mapping, the 
convergence of the algorithm was established without the knowledge of the Lipschitz  
constant of the mapping.

Motivated and inspired by the above mentioned works, and by the ongoing 
research in these directions, in this paper, we suggest a new iterative scheme for 
finding the minimum-norm solution to VI(C, F) (1). It is worth pointing out that the 
proposed algorithm does not require the prior knowledge of the Lipschitz-type con-
stant of the variational inequality mapping and only requires to compute one projec-
tion onto a feasible set per iteration as well as without the assumption on the weakly 
sequential continuity of the mapping. Moreover, the convergence rate is obtained 
under strong pseudomonotonicity and Lipschitz continuity assumptions of the vari-
ational inequality mapping.

The paper is organized as follows. In Sect. 2, we recall some basic definitions and 
results. In Sect.  3, we present and analyze the convergence of the proposed algo-
rithms. Finally in Sect. 4, we present some numerical experiments to illustrate the 
performance of the proposed method.

2 � Preliminaries

Lemma 2.1  ([Cottle and Yao (1992), Lemma 2.1]) Consider the problem VI(C, F) with 
C being a nonempty, closed, convex subset of a real Hilbert space H and F ∶ C → H 
being pseudo-monotone and continuous. Then, x∗ is a solution of VI(C, F) if and only if

wn = xn + 𝛼n(xn − xn−1),

yn = PC(wn − 𝜆nFwn),

Tn ∶= {x ∈ H ∶ ⟨wn − 𝜆nFwn − yn, x − yn⟩ ≤ 0},

xn+1 = PTn
(wn − 𝜆nFyn),

𝜆n+1 =

⎧
⎪⎨⎪⎩
min{𝜇

‖wn − yn‖2 + ‖xn+1 − yn‖2
2⟨Fwn − Fyn, xn+1 − yn⟩ , 𝜆n} if ⟨Fwn − Fyn, zn − yn⟩ > 0,

𝜆n otherwise.

⟨Fx, x − x∗⟩ ≥ 0 ∀x ∈ C.
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Lemma 2.2  Let H be a real Hilbert space. Then the following results hold: 

	 (i)	 ‖x + y‖2 = ‖x‖2 + 2⟨x, y⟩ + ‖y‖2 ∀x, y ∈ H;

	 (ii)	 ‖x + y‖2 ≤ ‖x‖2 + 2⟨y, x + y⟩ ∀x, y ∈ H.

Definition 2.1  Let T ∶ C → H be an operator, where C is a closed and convex subset 
of a real Hilbert space H. Then

–	 T is called L-Lipschitz continuous with L > 0 if 

–	 T is called monotone if 

–	 T is said to be pseudo-monotone if 

 It is called �-strongly pseudo-monotone if there is 𝛿 > 0 such that 

–	 T is said to be weakly sequentially continuous if, for each sequence {xn} in C, 
{xn} converges weakly to a point x ∈ C , then {Txn} converges weakly to Tx.

–	 T is called weakly closed on C if for any {xn} ⊂ C, xn ⇀ x, and T(xn) ⇀ y, then 
T(x) = y.

–	 T is said to have ∗-property on C, if the function ‖T(x)‖ is weakly lower-
semicontinuous (w.l.s.c.) on C,  i.e., for any {xn} ⊂ C, xn ⇀ x,

A relation between the weakly sequential continuity, weak closedness and ∗-prop-
erty are revealed in the following simple statement.

Lemma 2.3 

	 (i)	 Any weakly sequentially continuous operator is weakly closed and have the ∗
-property.

	 (ii)	 A weakly closed operator, mapping bounded subsets into bounded subsets, is 
weakly sequentially continuous.

	 (iii)	 An operator having the ∗-property and mapping bounded subsets into bounded 
subsets is not necessarily weakly sequentially continuous, and hence is not 
necessarily weakly closed.

‖Tx − Ty‖ ≤ L‖x − y‖ ∀x, y ∈ C.

⟨Tx − Ty, x − y⟩ ≥ 0 ∀x, y ∈ C.

⟨Tx, y − x⟩ ≥ 0 ⟹ ⟨Ty, y − x⟩ ≥ 0.

⟨Tx, y − x⟩ ≥ 0 ⟹ ⟨Ty, y − x⟩ ≥ �‖y − x‖2.

‖T(x)‖ ≤ lim inf
n→∞

‖T(xn)‖.
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Proof  i. Suppose T is weakly sequentially continuous on C. Then it is weakly closed 
by definition. Further, let C ∋ xn ⇀ x, then T(xn) ⇀ T(x), and due to the weak lower 
continuity of the norm, one gets ‖T(x)‖ ≤ lim infn→∞ ‖T(xn)‖, which means the ∗- 
property of T.

ii. Assume that T is weakly closed and maps bounded subsets into bounded sub-
sets. Let xn ⇀ x, than the sequence {xn} is bounded, hence, the set {T(xn)} is also 
bounded. Let � be a weak cluster point of {T(xn)}. There exists a weakly conver-
gent subsequence T(xnk ) ⇀ � . Since xnk ⇀ x, by the weak closedness of T,  one gets 
� = T(x). Thus, T(xn) ⇀ T(x).

iii. Let H be a real Hilbert space with an orthonormal basis {en} and C be a  
closed ball centered at 0 with radius r ∶=

√
2. Define the operator T ∶ C → H  

by T(x) ∶= ‖x‖x. Obviously, T maps bounded subsets into bounded sub-
sets. Further, T has the ∗-property. Indeed, let xn ⇀ x, then ‖T(x)‖ = ‖x‖2 ≤�
lim inf

n→∞ ‖x
n
‖�2 ≤ lim inf

n→∞ ‖x
n
‖2 = lim inf

n→∞ ‖T(x
n
)‖ . On the other hand, T 

is not weakly sequentially continuous. Indeed, let xn = en + e1. Then xn ⇀ e1, and 
for n ≥ 2 , T(xn) =

√
2(en + e1) ⇀

√
2e1 ≠ T(e1) = 2e1.

Lemma 2.4  (Saejung and Yotkaew (2012)) Let {an} be a sequence of nonnegative 
real numbers, {�n} be a sequence of real numbers in (0, 1) with 

∑∞

n=1
�n = ∞ and 

{bn} be a sequence of real numbers. Assume that

If lim supk→∞ bnk ≤ 0 for every subsequence {ank} of {an} satisfying lim inf
k→∞

(a
n
k
+1 − a

n
k

) ≥ 0 then limn→∞ an = 0.

Definition 2.2  (Ortega and Rheinboldt (1970)) Let {xn} be a sequence in H. 

	 (i)	 {xn} is said to converge R-linearly to x∗ with rate � ∈ [0, 1) if there is a constant 
c > 0 such that 

	 (ii)	 {xn} is said to converge Q-linearly to x∗ with rate � ∈ [0, 1) if 

3 � Main results

In this work, we assume the following conditions:

Condition 1  The feasible set C is nonempty, closed, and convex.

Condition 2  The mapping F ∶ H → H is L-Lipschitz continuous, pseudomonotone 
on H. However, the information of L is not necessary to be known.

an+1 ≤ (1 − �n)an + �nbn ∀n ≥ 1.

‖xn − x∗‖ ≤ c�n ∀n ∈ ℕ.

‖xn+1 − x∗‖ ≤ �‖xn − x∗‖ ∀n ∈ ℕ.
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Condition 3  The solution set Sol(C, F) is nonempty.

The proposed algorithm is of the form:

Algorithm 3.1

Initialization: Let {�n} be a sequence of nonnegative real numbers satisfying ∑∞

n=1
𝛼n < +∞ . Let 𝜃 > 0 , 𝜏1 > 0 , � ∈ (0, 1) and x0, x1 ∈ H be arbitrary. We 

assume that {�n} , {�n} and {�n} are three positive sequences such that 
{𝜃n} ⊂ [0, 𝜃) and �n = o(�n) , i.e., limn→∞

�n

�n
= 0 , where {𝛾n} ⊂ (0, 1) satisfies the 

following conditions:

Iterative Steps: Calculate xn+1 as follows:

Step 1. Given the iterates xn−1 and xn (n ≥ 1) , choose �n such that 0 ≤ 𝜃n ≤ 𝜃̄n , 
where

Step 2. Set un = (1 − �n)(xn + �n(xn − xn−1)) and compute

Step 3. Compute

where Tn ∶= {x ∈ H�⟨un − �nFun − qn, x − qn⟩ ≤ 0}.

Update

Set n ∶= n + 1 and go to Step 1.

Remark 3.1  As noted in Liu and Yang (2020), the sequence generated by (5) is 
allowed to increase from iteration to iteration. Hence, our results in this work are 
different from those in Yang et al. (2018), Yang (2021).

Lemma 3.5  (Liu and Yang (2020)) Assume that Condition 2 holds. Let {�n} be the 
sequence generated by (5). Then

lim
n→∞

�n = 0,

∞∑
n=1

�n = ∞.

(4)𝜃̄n =

⎧⎪⎨⎪⎩

min

�
𝜃,

𝜖n

‖xn−xn−1‖

�
if xn ≠ xn−1,

𝜃 otherwise.

qn = PC(un − �nFun).

xn+1 = PTn
(un − �nFqn),

(5)𝜏n+1 ∶=

�
min{𝜇

‖un−qn‖2+‖xn+1−qn‖2
2⟨Fun−Fqn,xn+1−qn⟩ , 𝜏n + 𝛼n} if ⟨Fun − Fqn, xn+1 − qn⟩ > 0,

𝜏n + 𝛼n otherwise.
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where � =
∑∞

n=1
�n . Moreover

Theorem 3.1  Assume that Conditions 1–3 hold. If the mapping F ∶ H → H satis-
fies the ∗-property then the sequence {xn}, generated by Algorithm 3.1, converges 
strongly to an element z ∈ Sol(C,F) , where z = PSol(C,F)(0).

Proof  To improve readability, we split the proof of our main theorem into some 
parts.

Claim 1.

Since z ∈ C ⊂ Tn and PTn
 is firmly nonexpansive, see, for example Reich and Shafrir 

(1987), we have

This implies that

Since z is the solution of VI, we have ⟨Fz, x − z⟩ ≥ 0 for all x ∈ C . By the pseu-
domontonicity of F on C we have ⟨Fx, x − z⟩ ≥ 0 for all x ∈ C . Taking x ∶= qn ∈ C 
we get

Thus,

From (7) and (8) we obtain

lim
n→∞

�n = � with � ∈

[
min

{
�1,

�

L

}
, �1 + �

]
,

(6)2⟨Fun − Fqn, xn+1 − qn⟩ ≤ �

�n+1
(‖un − qn‖2 + ‖xn+1 − qn‖2).

‖xn+1 − z‖2 ≤ ‖un − z‖2 − (1 − �
�n

�n+1
)‖qn − un‖2 − (1 − �

�n

�n+1
)‖xn+1 − qn‖2.

‖xn+1 − z‖2 = ‖PTn
(un − �nFqn) − PTn

z‖2 ≤ ⟨xn+1 − z, un − �nFqn − z⟩
=

1

2
‖xn+1 − z‖2 + 1

2
‖un − �nFqn − z‖2 − 1

2
‖xn+1 − un + �nFqn‖2

=
1

2
‖xn+1 − z‖2 + 1

2
‖un − z‖2 + 1

2
�2
n
‖Fqn‖2 − ⟨un − z, �nFqn⟩

−
1

2
‖xn+1 − un‖2 − 1

2
�2
n
‖Fqn‖2 − ⟨xn+1 − un, �nFqn⟩

=
1

2
‖xn+1 − z‖2 + 1

2
‖un − z‖2 − 1

2
‖xn+1 − un‖2 − ⟨xn+1 − z, �nFqn⟩.

(7)‖xn+1 − z‖2 ≤ ‖un − z‖2 − ‖xn+1 − un‖2 − 2⟨xn+1 − z, �nFqn⟩.

⟨Fqn, z − qn⟩ ≤ 0.

(8)⟨Fqn, z − xn+1⟩ =⟨Fqn, z − qn⟩ + ⟨Fqn, qn − xn+1⟩ ≤ ⟨Fqn, qn − xn+1⟩.
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Since qn = PTn
(un − �nFun) and xn+1 ∈ Tn we have

It follows from (6) that

Combining (10) and (11), we obtain

Substituting (12) into (9) we obtain

Claim 2. The sequence {xn} is bounded. Indeed, we have

On the other hand, since (4) we have

which implies that limn→∞

�
(1 − �n)

�n

�n
‖xn − xn−1‖ + ‖z‖

�
= ‖z‖ , hence there exists 

M > 0 such that

Combining (13) and (14) we obtain

(9)

‖xn+1 − z‖2 ≤ ‖un − z‖2 − ‖xn+1 − un‖2 + 2�n⟨Fqn, qn − xn+1⟩
= ‖un − z‖2 − ‖xn+1 − qn‖2 − ‖qn − un‖2 − 2⟨xn+1 − qn, qn − un⟩
+ 2�n⟨Fqn, qn − xn+1⟩

= ‖un − z‖2 − ‖xn+1 − qn‖2 − ‖qn − un‖2 + 2⟨un − �nFqn − qn, xn+1 − qn⟩.

(10)

2⟨un − �nFqn − qn,xn+1 − qn⟩
= 2⟨un − �nFun − qn, xn+1 − qn⟩ + 2�n⟨Fun − Fqn, xn+1 − qn⟩
≤ 2�n⟨Fun − Fqn, xn+1 − qn⟩.

(11)2�n⟨Fun − Fqn, xn+1 − qn⟩ ≤ �
�n

�n+1
‖un − qn‖2 + �

�n

�n+1
‖qn − xn+1‖2.

(12)2⟨un − �nFqn − qn, xn+1 − qn⟩ ≤ �
�n

�n+1
‖un − qn‖2 + �

�n

�n+1
‖qn − xn+1‖2.

‖xn+1 − z‖2 ≤ ‖un − z‖2 − (1 − �
�n

�n+1
)‖qn − un‖2 − (1 − �

�n

�n+1
)‖xn+1 − qn‖2.

(13)

‖un − z‖ = ‖(1 − �n)(xn + �n(xn − xn−1)) − z‖
= ‖(1 − �n)(xn − z) + (1 − �n)�n(xn − xn−1) − �nz‖
≤ (1 − �n)‖xn − z‖ + (1 − �n)�n‖xn − xn−1‖ + �n‖z‖
= (1 − �n)‖xn − z‖ + �n[(1 − �n)

�n

�n
‖xn − xn−1‖ + ‖z‖].

�n

�n
‖xn − xn−1‖ ≤

�n

�n
→ 0,

(14)(1 − �n)
�n

�n
‖xn − xn−1‖ + ‖z‖ ≤ M.
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Moreover, we have limn→∞(1 − 𝜇
𝜏n

𝜏n+1
) = 1 − 𝜇 >

1 − 𝜇

2
 , hence there exists n0 ∈ ℕ 

such that 1 − 𝜇
𝜏n

𝜏n+1
> 0 ∀n ≥ n0. By Claim 1 we obtain

Thus

Therefore, the sequence {xn} is bounded.

Claim 3.

Indeed, we have ‖un − z‖ ≤ (1 − �n)‖xn − z‖ + �nM , this implies that

where M1 ∶= max{2(1 − �n)M‖xn − z‖ + �nM
2 ∶ n ∈ ℕ} . Substituting (16) into 

Claim 1 we get

Or equivalently

Claim 4.

∀n ≥ n0. Indeed, using Lemma 2.2 ii) and (15) we get

‖un − z‖ ≤ (1 − �n)‖xn − z‖ + �nM.

(15)‖xn+1 − z‖ ≤ ‖un − z‖ ∀n ≥ n0.

‖xn+1 − z‖ ≤ (1 − �n)‖xn − z‖ + �nM

≤ max{‖xn − z‖,M} ≤ ... ≤ max{‖xn0 − z‖,M}.

(1 − �
�n

�n+1
)‖qn − un‖2 + (1 − �

�n

�n+1
)‖xn+1 − qn‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + �nM1.

(16)

‖un − z‖2 ≤ (1 − �n)
2‖xn − z‖2 + 2�n(1 − �n)M‖xn − z‖ + �2

n
M2

≤ ‖xn − z‖2 + �n[2(1 − �n)M‖xn − z‖ + �nM
2]

≤ ‖xn − z‖2 + �nM1,

‖xn+1 − z‖2 ≤ ‖xn − z‖2 + �nM1 − (1 − �
�n

�n+1
)‖qn − un‖2 − (1 − �

�n

�n+1
)‖xn+1 − qn‖2.

(1 − �
�n

�n+1
)‖qn − un‖2 + (1 − �

�n

�n+1
)‖xn+1 − qn‖2

≤ ‖xn − z‖2 − ‖xn+1 − z‖2 + �nM1.

‖xn+1 − z‖2 ≤ (1 − �n)‖xn − z‖2 + �n

�
2(1 − �n)‖xn − z‖�n

�n
‖xn − xn−1‖

+ �n‖xn − xn−1‖
�n

�n
‖xn − xn−1‖ + 2‖z‖‖un − xn+1‖ + 2⟨−z, xn+1 − z⟩

�
,
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Claim 5. {‖xn − z‖2} converges to zero.
Indeed, by Lemma 2.4 it suffices to show that lim supk→∞⟨−z, xnk+1 − z⟩ ≤ 0 

and lim supk→∞ ‖unk − xnk+1‖ ≤ 0 for every subsequence {‖xnk − z‖} of {‖xn − z‖} 
satisfying

For this purpose, suppose that {‖xnk − z‖} is a subsequence of {‖xn − z‖} such that 
lim infk→∞(‖xnk+1 − z‖ − ‖xnk − z‖) ≥ 0. Then

By Claim 3 we obtain

‖xn+1 − z‖2 ≤ ‖un − z‖2 ∀n ≥ n0 = ‖(1 − �n)(xn − z)

+ (1 − �n)�n(xn − xn−1) − �nz‖2 ∀n ≥ n0

≤ ‖(1 − �n)(xn − z) + (1 − �n)�n(xn − xn−1)‖2
+ 2�n⟨−z, un − z⟩ ∀n ≥ n0

≤ (1 − �n)
2‖xn − z‖2 + 2(1 − �n)�n‖xn − z‖‖xn − xn−1‖

+ �2
n
‖xn − xn−1‖2 + 2�n⟨−z, un − xn+1⟩

+ 2�n⟨−z, xn+1 − z⟩ ∀n ≥ n0

≤ (1 − �n)‖xn − z‖2 + �n

�
2(1 − �n)‖xn − z‖�n

�n
‖xn − xn−1‖

+ �n‖xn − xn−1‖
�n

�n
‖xn − xn−1‖

+ 2‖z‖‖un − xn+1‖ + 2⟨−z, xn+1 − z⟩
�

∀n ≥ n0.

lim inf
k→∞

(‖xnk+1 − z‖ − ‖xnk − z‖) ≥ 0.

lim inf
k→∞

(‖xnk+1 − z‖2 − ‖xnk − z‖2) = lim inf
k→∞

[(‖xnk+1 − z‖ − ‖xnk − z‖)
(‖xnk+1 − z‖ + ‖xnk − z‖)] ≥ 0.

lim sup
k→∞

�
(1 − �

�nk

�nk+1
)‖unk − qnk‖2 + (1 − �

�nk

�nk+1
)‖xnk+1 − qnk‖2

�

≤ lim sup
k→∞

�
‖xnk − z‖2 − ‖xnk+1 − z‖2 + �nkM1

�

≤ lim sup
k→∞

�
‖xnk − z‖2 − ‖xnk+1 − z‖2

�
+ lim sup

k→∞

�nkM1

= − lim inf
k→∞

�
‖xnk+1 − z‖2 − ‖x

nk

− z‖2
�

≤ 0.
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This implies that

Thus

Now, we show that

Indeed, using limn→∞ �n = 0 we have

From (17) and (19), we get

Since the sequence {xnk} is bounded, it follows that there exists a subsequence {xnkj } 
of {xnk} , which converges weakly to some z∗ ∈ H , such that

Using (19), we get

Using (17), we obtain

Now, we show that z∗ ∈ Sol(C,F) . Indeed, since qnk = PC(unk − �nkFunk ) , we have

or equivalently

Consequently

lim
k→∞

‖qnk − unk‖ = 0 and lim
k→∞

‖xnk+1 − qnk‖ = 0.

(17)lim
k→∞

‖xnk+1 − unk‖ = 0.

(18)‖xnk+1 − xnk‖ → 0 as k → ∞.

(19)

‖xnk − unk‖ = ‖(1 − �nk )(xnk + �nk (xnk − xnk−1)) − xnk‖
= ‖�nk (xnk − xnk−1) − �nk (xnk + �nk (xnk − xnk−1))‖
≤ �nk‖xnk − xnk−1‖ + �nk‖xnk + �nk (xnk − xnk−1)‖

= �nk

�nk

�nk

‖xnk − xnk−1‖ + �nk‖xnk + �nk (xnk − xnk−1)‖ → 0.

‖xnk+1 − xnk‖ ≤ ‖xnk+1 − unk‖ + ‖xnk − unk‖ → 0.

(20)lim sup
k→∞

⟨−z, xnk − z⟩ = lim
j→∞

⟨−z, xnkj − z⟩ = ⟨−z, z∗ − z⟩.

unk ⇀ z∗ as k → ∞,

xnk ⇀ z∗ as k → ∞.

⟨unk − �nkFunk − qnk , x − qnk⟩ ≤ 0 ∀x ∈ C,

1

�nk

⟨unk − qnk , x − qnk⟩ ≤ ⟨Funk , x − qnk⟩ ∀x ∈ C.
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Being weakly convergent, {unk} is bounded. Then, by the Lipschitz continuity of F, 
{Funk} is bounded. As ‖unk − qnk‖ → 0 , {qnk} is also bounded and �nk ≥ min{�1,

�

L
} . 

Passing (21) to limit as k → ∞ , we get

Moreover, we have

Since limk→∞ ‖unk − qnk‖ = 0 and F is L-Lipschitz continuous on H, we get

which, together with (22) and (23) implies that

Next, we choose a sequence {�k} of positive numbers decreasing and tending to 0. 
For each k, we denote by Nk the smallest positive integer such that

Since {�k} is decreasing, it is easy to see that the sequence {Nk} is increasing. Fur-
thermore, for each k, since {qNk

} ⊂ C we can suppose FqNk
≠ 0 (otherwise, qNk

 is a 
solution) and, setting

we have ⟨FqNk
, vNk

⟩ = 1 for each k. Now, we can deduce from (24) that for each k

From F is pseudomonotone on H, we get

This implies that

Now, we show that limk→∞ �kvNk
= 0 . Indeed, since unk ⇀ z∗ and lim

k→∞‖unk − qnk‖ = 0, we obtain qNk
⇀ z∗ as k → ∞ . By {qn} ⊂ C , we obtain z∗ ∈ C . 

Since F has ∗-property, we have

(21)
1

�nk

⟨unk − qnk , x − qnk⟩ + ⟨Funk , qnk − unk⟩ ≤ ⟨Funk , x − unk⟩ ∀x ∈ C.

(22)lim inf
k→∞

⟨Funk , x − unk⟩ ≥ 0 ∀x ∈ C.

(23)
⟨Fqnk , x − qnk⟩ = ⟨Fqnk − Funk , x − unk⟩ + ⟨Funk , x − unk⟩ + ⟨Fqnk , unk − qnk⟩.

lim
k→∞

‖Funk − Fqnk‖ = 0

lim inf
k→∞

⟨Fqnk , x − qnk⟩ ≥ 0.

(24)⟨Fqnj , x − qnj⟩ + �k ≥ 0 ∀j ≥ Nk.

vNk
=

FqNk

‖FqNk
‖2 ,

⟨FqNk
, x + �kvNk

− qNk
⟩ ≥ 0.

⟨F(x + �kvNk
), x + �kvNk

− qNk
⟩ ≥ 0.

(25)⟨Fx, x − qNk
⟩ ≥ ⟨Fx − F(x + �kvNk

), x + �kvNk
− qNk

⟩ − �k⟨Fx, vNk
⟩.
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Since {qNk
} ⊂ {qnk} and �k → 0 as k → ∞ , we obtain

which implies that limk→∞ �kvNk
= 0.

Now, letting k → ∞ , then the right-hand side of (25) tends to zero by F is uni-
formly continuous, {uNk

}, {vNk
} are bounded and limk→∞ �kvNk

= 0 . Thus, we get

Hence, for all x ∈ C we have

By Lemma 2.1, we get

Since (20) and the definition of z = PSol(C,F)(0) , we have

Combining (18) and (26), we have

Hence, by (27), limn→∞

�n

�n
‖xn − xn−1‖ = 0 , limk→∞ ‖xnk+1 − unk‖ = 0 , Claim 5 and 

Lemma 2.4, we have limn→∞ ‖xn − z‖ = 0, which was to be proved.

Remark 3.2  It should be noted that if the operator F is monotone, the ∗ property is 
redundant, see Denisov et al. (2015), Vuong (2018).

4 � Convergence Rate

In this section we establish a convergence rate for the so-called relaxed inertial 
subgradient extragradient method. Actually, we consider the following modifica-
tion of Algorithm 3.1:

0 < ‖Fz∗‖ ≤ lim inf
k→∞

‖Fqnk‖.

0 ≤ lim sup
k→∞

‖�kvNk
‖ = lim sup

k→∞

�
�k

‖Fqnk‖

�
≤

lim supk→∞ �k

lim infk→∞ ‖Fqnk‖
= 0,

lim inf
k→∞

⟨Fx, x − qNk
⟩ ≥ 0.

⟨Fx, x − z∗⟩ = lim
k→∞

⟨Fx, x − qNk
⟩ = lim inf

k→∞
⟨Fx, x − qNk

⟩ ≥ 0.

z∗ ∈ Sol(C,F).

(26)lim sup
k→∞

⟨−z, xnk − z⟩ = ⟨−z, z∗ − z⟩ ≤ 0.

(27)

lim sup
k→∞

⟨−z, xnk+1 − z⟩ ≤ lim sup
k→∞

⟨−z, xnk − z⟩
= ⟨−z, z∗ − z⟩
≤ 0.
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Algorithm 4.2
Let {�n} be a sequence of nonnegative real numbers which satisfies 

∑∞

n=1
�
n

< +∞ . Given � ∈ [0, 1), � ∈ (0,
1

2
), � ∈ (0, 1) and 𝜏1 > 0 , Let x0, x1 ∈ H be arbi-

trary. Let

where Tn ∶= {x ∈ H�⟨un − �nFun − qn, x − qn⟩ ≤ 0},

Update

Throughout this section, the operator F is assumed to be L-Lipschitz continuous on 
H and �-strongly pseudo-monotone on C. We now prove that the iterative sequence 
generated by Algorithm  4.2 converges strongly to the unique solution of problem 
(VI) with an R-linear rate.

Theorem 4.2  Assume that F ∶ H → H is L-Lipschitz continuous on H and �-strongly 

pseudo-monotone on C. Let � ∈

[
0,

�

L + �

)
 , � ∈

(
�

1 + �

L

�
,
1 − �

1 + �

)
 and 𝜏1 >

𝜇

L
 . 

Then the sequence {xn} generated by Algorithm 4.2 converges in norm with an R-lin-
ear convergence rate to the unique element z in Sol(C,F).

Proof  Since ⟨Fz, qn − z⟩ ≥ 0 , the �-strong pseudo-monotonicity of F on C yields the 
inequality

This implies that

Now, using (28) and a similar argument as in Claim 1 of Theorem 3.1, we get

un = xn + �(xn − xn−1),

qn = PC(un − �nFun),

zn = PTn
(un − �nFqn),

xn+1 = (1 − �)xn + �zn.

𝜏n+1 ∶=

⎧⎪⎨⎪⎩
min{𝜇

‖un − qn‖2 + ‖zn − qn‖2
2⟨Fun − Fqn, zn − qn⟩ , 𝜏n + 𝛼n} if ⟨Fun − Fqn, zn − qn⟩ > 0,

𝜏n + 𝛼notherwise.

⟨Fqn, qn − z⟩ ≥ �‖qn − z‖2.

(28)
⟨Fqn, z − zn⟩ = ⟨Fqn, z − qn⟩ + ⟨Fqn, qn − zn⟩ ≤ −�‖qn − z‖2 + ⟨Fqn, qn − zn⟩.

‖zn − z‖2 ≤ ‖un − z‖2 − (1 − �
�n

�n+1
)‖qn − un‖2 − (1 − �

�n

�n+1
)‖zn − qn‖2 − 2��n‖qn − z‖2

≤ ‖un − z‖2 − (1 − �
�n

�n+1
)‖qn − un‖2 − 2��n‖qn − z‖2.
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Since 𝜃 <
𝛿

L + 𝛿
 , it follows that

therefore there always exists

From 𝜇 <
1 − 𝜃

1 + 𝜃
, one finds 

1 − 𝜇

2
>

𝜃

1 + 𝜃
 and 𝜇 >

𝜃

1 + 𝜃

L

𝛿
 implies that 𝛿

𝜇

L
>

𝜃

1 + 𝜃
 . 

Fix � ∈
(

�

1 + �
, min

{
1 − �

2
, �

�

L

})
 . We have

and

Therefore, there exists N ∈ ℕ such that for all n ≥ N , we get

On the other hand, we have

We also have

Therefore, we get

𝜃

1 + 𝜃

L

𝛿
<

1 − 𝜃

1 + 𝜃

� ∈

(
�

1 + �

L

�
,
1 − �

1 + �

)
.

lim
n→∞

(1 − 𝜇
𝜏n

𝜏n+1
) = 1 − 𝜇 > 2𝜖

lim
n→∞

𝛿𝜏n = 𝛿𝜏 ≥ 𝛿min

{
𝜏1,

𝜇

L

}
= 𝛿

𝜇

L
> 𝜖.

‖zn − z‖2 ≤ ‖un − z‖2 − 2�‖qn − un‖2 − 2�‖qn − z‖2
≤ ‖un − z‖2 − �‖un − z‖2
= (1 − �)‖un − z‖2.

‖xn+1 − z‖2 = ‖(1 − �)xn + �zn − z‖2
= ‖(1 − �)(xn − z) + �(zn − z)‖2
= (1 − �)‖xn − z‖2 + �‖zn − z‖2 − (1 − �)�‖xn − zn‖2

= (1 − �)‖xn − z‖2 + �‖zn − z‖2 − 1 − �

�
‖xn+1 − xn‖2

≤ (1 − �)‖xn − z‖2 + �(1 − �)‖un − z‖2 − 1 − �

�
‖xn+1 − xn‖2 ∀n ≥ N.

‖un − z‖2 = ‖(1 + �)(xn − z) − �(xn−1 − z)‖2
= (1 + �)‖xn − z‖2 − �‖xn−1 − z‖2 + �(1 + �)‖xn − xn−1‖2.
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Since � ∈ (0,
1

2
), it implies 

1 − 𝛾

𝛾
> 1 . Hence, we obtain

This follows that

We now show that

and

Indeed, since � ∈ (
�

1 + �
, min

{
1 − �

2
, �

�

L

}
) , this implies that 𝜖 > 𝜃

1 + 𝜃
 , or, 

1 − 𝜖 <
1

1 + 𝜃
 that is (1 − 𝜖)(1 + 𝜃) < 1 , hence 1 − �(1 − (1 − �)(1 + �)) ∈ (0, 1) . It 

is easy to see that

Therefore, we deduce

Letting an ∶= ‖xn − z‖2 + ‖xn − xn−1‖2 and � ∶= (1 − �(1 − (1 − �)(1 + �))) , we get

‖xn+1 − z‖2 ≤ (1 − �)‖xn − z‖2 + �(1 − �)[(1 + �)‖xn − z‖2 − �‖xn−1 − z‖2

+ �(1 + �)‖xn − xn−1‖2] − 1 − �

�
‖xn+1 − xn‖2 ∀n ≥ N

≤ (1 − �(1 − (1 − �)(1 + �)))‖xn − z‖2 − �(1 − �)�‖xn−1 − z‖2

+ �(1 − �)�(1 + �)‖xn − xn−1‖2 − 1 − �

�
‖xn+1 − xn‖2 ∀n ≥ N

≤ (1 − �(1 − (1 − �)(1 + �)))‖xn − z‖2 + �(1 − �)�(1 + �)‖xn − xn−1‖2

−
1 − �

�
‖xn+1 − xn‖2 ∀n ≥ N.

‖xn+1 − z‖2 + ‖xn+1 − xn‖2 ≤ ‖xn+1 − z‖2 + 1 − �

�
‖xn+1 − xn‖2

≤ (1 − �(1 − (1 − �)(1 + �)))‖xn − z‖2
+ �(1 − �)�(1 + �)‖xn − xn−1‖2 ∀n ≥ N.

‖xn+1 − z‖2 + ‖xn+1 − xn‖2 ≤ (1 − �(1 − (1 − �)(1 + �)))

�
‖xn − z‖2

+
1

(1 − �(1 − (1 − �)(1 + �))))
�(1 − �)�(1 + �)‖xn − xn−1‖2

�
∀n ≥ N.

1 − �(1 − (1 − �)(1 + �)) ∈ (0, 1)

1

1 − �(1 − (1 − �)(1 + �))
�(1 − �)�(1 + �) ∈ (0, 1).

1

1 − �(1 − (1 − �)(1 + �))
�(1 − �)�(1 + �) ∈ (0, 1).

‖xn+1 − z‖2 + ‖xn+1 − xn‖2 ≤ (1 − �(1 − (1 − �)(1 + �)))[‖xn − z‖2 + ‖xn − xn−1‖2] ∀n ≥ N.
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Thus, the sequence 
{
xn
}
 converges R-linearly to z, as desired.

Remark 4.3  It should be emphasized that we obtain the linear convergence rate of 
Algorithm 4.2 instead of the strong convergence as in Shehu et al. (2021).

Remark 4.4  In Theorem 4.2, the ∗ - property of F is not assumed.

5 � Numerical Illustrations

In this section, we present some numerical experiments in solving variational ine-
quality problems. In the first example, we compare the proposed algorithm with 
three well-known algorithms including Algorithm 1 of Yang et al. (2018), Algo-
rithm 3.1 of Yang (2021), and the subgradient extragradient algorithm (SEGM) 
of Censor et al. (2012a) and illustrate the convergence of the proposed algorithm. 
In the second example, we compare the proposed algorithm with Algorithm  1  
of Yang et  al. (2018), Algorithm  3.1 of Yang (2021) and [Shehu et  al. (2021), 
Algorithm 1].  In the last example, we compare the proposed algorithm with Algo-
rithm 3.1 of Yang (2021) and [Shehu et al. (2021), Algorithm 1]. All the numeri-
cal experiments are performed on an HP laptop with Intel(R) Core(TM)i5-6200U  
CPU 2.3GHz with 4 GB RAM. The programs are written in Matlab 2015a.

Remark 5.5  We usually choose �n = �0 for Algorithm 3.1 of Yang (2021) because 
�n and �n have similar roles in their algorithm as well as in our proposed algorithm. 
Similarly, we take � = �0 for the subgradient extragradient algorithm of Censor et al. 
(2012a).

In the numerical experiments, we choose parameters as follows:

Example 1  Assume that F ∶ ℝ
m
→ ℝ

m is defined by F(x) = Mx + q with M = NN
T+

S + D , N is an m × m matrix, S is an m × m skew-symmetric matrix, D is an m × m 
diagonal matrix, whose diagonal entries are positive (so M is positive definite), q is 
a vector in ℝm , and

‖xn+1 − z‖2 ≤ an+1 ≤ �an ≤ �n−N+1aN =
�

�N
aN�n.

Proposed algorithm: �0 = 0.5, �n =

�
min{�0,

�2
n

‖xn−xn−1‖} if xn ≠ xn−1,

�0 otherwise.

Algorithm 3.1: �n = �0 = 0.5.

C ∶= {x ∈ ℝ
m ∶ xi ≥ −1, i = 1,⋯ ,m}.
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It is clear that F is monotone and Lipschitz continuous with the Lipschitz constant 
L = ‖M‖ . For q = 0 , the unique solution of the corresponding variational inequality 
is x∗ = 0.

For the experiment, all entries of B, S and D are generated randomly from a nor-
mal distribution with mean zero and unit variance. The process is started with the 
initial x0 = (1, ..., 1)T ∈ ℝ

m and x1 = 0.9x0 . To terminate algorithms, we use the 
condition Dn = ‖xn − x∗‖2 ≤ � with � = 10−6 or the number of iterations ≥ 2000 for 
all algorithms. We choose � = 0.5 for the proposed algorithm, Algorithms 1 of Yang 
et al. (2018), Algorithm 3.1 of Yang (2021) and �n =

1

n+1
 for the proposed algorithm. 

Case 1: We take � =
0.7

‖M‖ for the subgradient extragradient algorithm of Censor et al. 
(2012a) and �0 =

0.7

‖M‖ for Algorithm 1 of Yang et al. (2018), Algorithm 3.1 of Yang 
(2021) and the proposed algorithm. The numerical results are described in Table 1 
and Figs. 1 and 2.

Case 2: We take � =
0.9

‖M‖ for the subgradient extragradient algorithm of Censor 

et al. (2012a) and �0 =
0.9

‖M‖ for Algorithm 1 of Yang et al. (2018), Algorithm 3.1 of 
Yang (2021) and the proposed algorithm. The numerical results are described in 
Table 2 and Figs. 3 and 4.

Tables 1 and 2 and Figs. 1–4 give the errors of the proposed algorithm, algorithm 
of Censor et al. (2012a), Algorithm 1 of Yang et al. (2018), Algorithm 3.1 of Yang 

Table 1   Numerical results 
obtained by other algorithms

Methods m = 50 m = 100

Sec. Iter. Error. Sec. Iter. Error.

Proposed Alg 0.11 31 9.9773e-07 0.75 43 9.4795e-07
Algorithm 1 5.8 2000 0.0029 34 2000 0.0384
Algorithm 3.1 5.9 2000 4.9922e-05 35 2000 0.0043
SEGM 5.6 2000 0.0012 30 2000 0.0272

Fig. 1   Comparison of all algo-
rithms with m = 50
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(2021) as well as their execution times. They show that the proposed algorithm 
is less time consuming and more accurate than those of Yang et  al. (2018), Yang 
(2021), Censor et al. (2012a).

In Fig. 5 we illustrate the convergence rate of the proposed algorithm for different 
choices of the � with � =

0.7

‖M‖ ,� = 0.5,m = 50 and �n =
1

n+1
.

Fig. 2   Comparison of all algo-
rithms with m = 100

Table 2   Numerical results 
obtained by other algorithms

Methods m = 50 m = 100

Sec. Iter. Error. Sec. Iter. Error.

Proposed Alg 0.12 34 9.3168e-07 0.76 45 9.8653e-07
Algorithm 1 5.62 2000 0.0034 34 2000 0.0409
Algorithm 3.1 5.7 2000 8.2121e-05 35 2000 0.0054
SEGM 5.59 2000 3.6547e-04 30 2000 0.0184

Fig. 3   Comparison of all algo-
rithms with m = 50
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In Fig. 6 we illustrate the convergence rate of the proposed algorithm for different 
choices of the �n with � =

0.7

‖M‖ ,� = 0.5,m = 50 and � = 0.5.
Figures 5 and 6 show that the rate of convergence of the proposed algorithm in gen-

eral depends strictly on the convergent rate of sequence of �n and �.

Example 2  In the second example, we study an important Nash–Cournot oligopolistic 
market equilibrium model, which was proposed originally by Murphy et al. (1982) as a 
convex optimization problem. Later, Harker reformulated it as a monotone variational 
inequality in Harker (1984). We provide only a short description of the problem, for more 
details we refer to Facchinei and Pang (2003), Harker (1984), Murphy et al. (1982). There 
are N firms, each of them supplies a homogeneous product in a non-cooperative fashion. 
Let qi ≥ 0 be the ith firm’s supply at cost fi(qi) and p(Q) be the inverse demand curve, 
where Q ≥ 0 is the total supply in the market, i.e., Q =

∑N

i=1
qi . A Nash equilibrium solu-

tion for the market defined above is a set of nonnegative output levels (q∗
1
, q∗

2
, ...q∗

N
) such 

that q∗
i
 is an optimal solution to the following problem for all i = 1, 2.....N:

Fig. 4   Comparison of all algo-
rithms with m = 100

Fig. 5   Convergence rate of the 
proposed algorithms for differ-
ent choice of the �
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where

A variational inequality equivalent to (29) is (see Harker (1984))

where F(q∗) = (F1(q
∗),F2(q

∗), ...FN(q
∗)) and

As in the classical example of the Nash-Cournot equilibrium Harker (1984), Murphy 
et al. (1982), we consider an oligopoly with N firms, each with the inverse demand 
function p and the cost function fi take the form

Each entry of ci, Li and �i are drawn independently from the uniform distributions 
with the following parameters

We choose � = 0.5, � = �0 = 0.01 for the proposed algorithm, Algorithm 1 of Yang 
et al. (2018), Algorithm 3.1 of Yang (2021), �n =

1

n+1
 for the proposed algorithm and 

(29)max
qi≥0

qip(qi + Q∗
i
) − fi(qi)

Q∗
i
=

N∑
j=1,j≠i

q∗
j
.

find (q∗
1
, q∗

2
, ...q∗

N
) ∈ ℝ

N
+

such that ⟨F(q∗), q − q∗⟩ ≥ 0 ∀q ∈ ℝ
N
+
,

Fi(q
∗) = f �

i
(q∗

i
) − p

(
N∑
j=1

q∗
j

)
− q∗

i
p�

(
N∑
j=1

q∗
j

)
.

p(Q) = 50001∕1.1Q−1∕1.1 and fi(qi) = ciqi +
�i

�i + 1
L

−1

�i

i
q

�i+1

�i

i
.

ci ∼ U(1, 100), Li ∼ U(0.5, 5), �i ∼ U(0.5, 2).

Fig. 6   Convergence rate of the 
proposed algorithm for different 
choice of the �

n
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� = 0.9, �n = � = 0.4 for Shehu et al. [Shehu et al. (2021), Algorithm 1]. The process 
is started with the initial x0 = 10 ∗ (1, ..., 1)T ∈ ℝ

N and x1 = 0.9 ∗ x0 and stopping 
conditions is Residual ∶= ‖un − qn‖ ≤ 10−10 or the number of iterations ≥ 200 for all 
algorithms. The numerical results are described in Table 3 and Figs. 7 and 8.

Example 3  Consider the following fractional programming problem:

subject to x ∈ X ∶= {x ∈ ℝ
m ∶ bTx + b0 > 0} , where Q is an m × m symmetric 

matrix, a, b ∈ ℝ
m , and a0, b0 ∈ ℝ . It is well known that f is pseudoconvex on X 

when Q is positive-semidefinite. We consider the following cases:
Case 1:

min f (x) =
xTQx + aTx + a0

bTx + b0

Q =

⎛⎜⎜⎜⎝

5 − 1 2 0

−1 5 − 1 3

2 − 1 3 0

0 3 0 5

⎞⎟⎟⎟⎠
, a =

⎛⎜⎜⎜⎝

1

−2

−2

1

⎞⎟⎟⎟⎠
, b =

⎛⎜⎜⎜⎝

2

1

1

0

⎞⎟⎟⎟⎠
, a0 = −2, b0 = 4.

Table 3   Numerical results are obtained by other algorithms

Methods N = 500 N = 1000

Sec. Iter. Error. Sec. Iter. Error.

Proposed Alg 0.038 35 5.8688e-11 0.042 38 5.6226e-11
Algorithm 1 0.054 98 9.9443e-11 0.089 103 9.9463e-11
Algorithm 3.1 0.1278 200 7.4879e-08 0.15 200 3.6203e-07
Algorithm 1 of 

Shehu et al.
0.045 79 9.2591e-11 0.060 81 8.7509e-11

Fig. 7   Comparison of all algo-
rithms with N = 500
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We minimize f over C ∶= {x ∈ ℝ
4 ∶ 1 ≤ xi ≤ 10, i = 1,⋯ , 4} ⊂ X . It is easy to 

verify that Q is symmetric and positive definite in ℝ4 and consequently, f is pseudo-
convex on X.

We choose � = 0.5, � = �0 = 0.5 for the proposed algorithm and Algorithm 3.1 of 
Yang (2021), � = 0.9, �n = � = 0.4, �n =

1

n
√
n
 for [Shehu et al. (2021), Algorithm 1] 

and �n =
1

n
√
n
, �n =

1

� �(n+� ��)
, where � � = 106, � �� = 105 for the proposed algorithm.

The process is started with the initial x0 = (20,−20, 20,−20)T and x1 = 0.9 ∗ x0 
and stopping conditions is Residual ∶= ‖un − qn‖ ≤ 10−10 or the number of itera-
tions ≥ 1000 for all algorithms. The numerical results are described in Fig. 9 and 
Table 4.

Case 2: In the second experiment, we make the problem even more challenging.  
Let matrix A ∶ ℝ

m×m
→ ℝ

m×m , vectors c, d, y0 ∈ ℝ
m and c0, d0 be  generated from  

a normal distribution with mean zero and unit variance. We put e = (1, 1,⋯ , 1)T

Fig. 8   Comparison of all algo-
rithms with N = 1000

Fig. 9   Comparison of all 
algorithms
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∈ ℝ
m,Q = A

T
A + I, a ∶= e + c, b ∶= e + d, a0 = 1 + c0, b0 = 1 + d0 . We minimize f 

over C ∶= {x ∈ ℝ
m ∶ 1 ≤ xi ≤ 10, i = 1,⋯ ,m} ⊂ X . Because Matrix Q is symmet-

ric and positive definite in ℝm , f is pseudo-convex on X.
The process is started with the initial x0 ∶= m ∗ y0 and x1 = 0.9 ∗ x0 , stop-

ping conditions and parameters as in Case 1. The numerical results are described in 
Figs. 10 and 11 and Table 5.

Table 4   Numerical results 
obtained by other algorithms

Method Sec. Iter. Residual

Proposed Alg 0.16846 50 8.9822e-11
Algorithm 3.1 0.4882 147 9.1113e-11
Algorithm 1 of Shehu 

et.al.
0.19165 59 8.8626e-11

Fig. 10   Comparison of all algo-
rithms with m = 30

Fig. 11   Comparison of all algo-
rithms with m = 50
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