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Abstract
In this study, we aim to optimally locate multiple types of charging stations, e.g., fast-
charging stations and slow-charging stations, for maximizing the covered flows under a
limited budget while taking drivers’ partial charging behavior and nonlinear demand
elasticity into account. This problem is first formulated as a mixed-integer nonlinear
programming model. Instead of generating paths and charging patterns, we develop a
compact formulation to model the partial charging logic. The proposed model is then
approximated and reformulated by a mixed-integer linear programming model by piece-
wise linear approximation. To improve the computational efficiency, we employ a refined
formulation using an efficient Gray codemethod, which reduces the number of constraints
and binary auxiliary variables in the formulation of the piecewise linear approximate
function effectively. The ε-optimal solution to the proposed problem can be therefore
obtained by state-of-the-art MIP solvers. Finally, a case study based on the highway
network of Zhejiang Province of China is conducted to assess the model performance and
analyze the impact of the budget on flow coverage and optimal station selection.

Keywords Charging station location . Partial charging . Nonlinear elastic demand .

Piecewise linear approximation . Gray code

1 Introduction

Electric vehicles (EVs) have gained much attention from the public over the past
decades. As a green transport mode, EVs have high energy efficiency and generate
significantly fewer emissions compared to traditional transport modes such as gasoline
vehicles, yielding a variety of environmental and social benefits. However, the limited
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driving range and scarce charging facilities hinder the wide adoption of EVs, especially
for long-distance trips, during which drivers may need to charge several times to ensure
the journey. In addition, steep roads, the variation of driving speed, and the use of auto
electrical parts, etc. would lead to more energy consumption and thus call for more
frequent charging than normal (De Cauwer et al. 2015). To promote the adoption of
EVs, many governments have substantially invested in building public charging
facilities. The State Power Grid of China, for example, plans to invest RMB ¥1.1
billion in the charging station construction in Zhejiang Province by the end of 2020
(XinhuaNet 2018).

There are multiple types of charging facilities in the market. These charging stations
can be classified into two main types by the power rate used, i.e., fast-charging stations
and slow charging stations (Morrow et al. 2008). Fast-charging stations usually use
power of over 50kWh, while slow-charging stations use power of less than 20kWh.
Compared with a slow-charging station, a fast-charging station offers a much higher
charging efficiency but incurs larger procurement and installation cost. For example, a
fast-charging station can fully charge a 60kWh battery within an hour, while a slow-
charging station needs several hours to fully charge it (Yilmaz and Krein 2012). As for
the construction cost, according to the report of the U.S. Energy Department, the costs
of building a fast-charging station and a slow-charging station are $8.5 million and
$4.25 million, respectively (NREL 2012). In light of the huge investment and charac-
teristics of different types of charging stations, it is imperative to develop an optimi-
zation model of deploying multiple types of charging stations so as to fulfill as many
charging demands as possible under a limited budget.

1.1 Literature Review

Over the past years, many studies have focused on the refueling facility location
problem for EVs and other alternative fuel vehicles. Among these studies, Hodgson
(1990) was the first to develop a flow capturing location model (FCLM) to cover as
many flows as possible. A flow between an origin-destination(OD) pair was assumed
to be covered if there was at least one refueling station along its travel path. Kuby and
Lim (2005) extended the FCLM by developing a flow refueling location model
(FRLM) where drivers may need to refuel the energy several times to complete a
journey. Both the FCLM and FRLM assumed that drivers would travel on the shortest
path between an OD pair. Kim and Kuby (2012) later put forward a deviation flow
refueling location model (DFRLM) to characterize drivers’ detour behavior for charg-
ing. Specifically, drivers were allowed to travel along any deviation path other than the
shortest path as long as the distance of the deviation path did not exceed a pre-specified
maximal acceptable distance deviation. Since then, many follow-up studies have been
conducted on top of FRLM and RFRLM (Capar et al. 2013; Guo et al. 2018; He et al.
2018; Kuby and Lim 2007; Lim and Kuby 2010; Upchurch et al. 2009; Wang and Lin
2009; Xu et al. 2020; Yang et al. 2017).

All the aforementioned studies assumed that EVs would be fully charged upon a
charging station. This assumption is reasonable for a battery-swapping station where a
depleted battery is swapped to a fully charged one within a few minutes but may not be
so for a charging station. In the real world, drivers prone to partially their vehicles at
visited stations along the trip. This is because fully charging is costly and time
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consuming due to the limitation of battery and charging technologies. Fully charging en
route largely increases travel time and charging cost, likely leading to late arrival at
destinations. Besides, waiting hours at charging stations could make drivers uncom-
fortable. It is more practical to utilize dwelling time at origins and destinations to fully
refuel the battery. These facts have been observed by many empirical and analytical
studies such as Lin and Greene (2011); Xu et al. (2017); Chen et al. (2017); Meng et al.
(2019); Quirós-Tortós et al. (2018); Quirós-Tortós et al. (2015); Wang et al. (2021);
Yuan et al. (2019). Although it is more realistic, to the best of our knowledge, so far, no
studies have considered drivers’ partial charging behavior in the deployment of charg-
ing stations. Assuming fully charging provides significant convenience for modeling.
In particular, all possible travel paths feasible to deviation tolerance are pre-generated
and then a path selection model subject to station deployment is established. Under the
fully charging assumption, once a path is given, the total charging cost and travel time
can be computed by tracking the change of SOC node by node, and the charging
amount at the visited station is obtained by the criterion of fully charging. However,
this is not the case for partial charging. Since we do not know the charging amount at
each station, it is impractical to calculate the charging cost and charging time. On this
occasion, the charging amount is a decision variable to be optimized and the location
model cannot be developed via path pre-generation. This motivates us to devise a
compact model to formulate partial charging behavior without resort to path and
charging pattern generation.

Moreover, in the real world, travel demand is generally affected by some external
factors, e.g., travel costs. Travelers may switch to other economic transport modes if
traveling with EVs is costly (Souche 2010). Among the limited relevant studies, only a
few studies have considered nonlinear demand elasticity in the context of refueling
station location problem (e.g., Capar et al. (2013); Kim and Kuby (2012)). However,
their model is based on path pre-generation. On this occasion, the property (i.e., linear
or nonlinear) of the elastic demand function does not affect model solving and the
resultant model is a linear MIP model. The reason is that since all feasible travel paths
are pre-generated, the travel cost of a particular path is also known a prior. Therefore,
the flows along a path are obtained by substituting the travel cost of that path to the
elastic demand function. The flow volume of a certain path is essentially a parameter in
this case. On the contrary, getting rid of the enumeration method, formulating travel
cost and flow volume as decision variables under nonlinear relationship yields a
nonlinear MIP model. How to solve the nonlinear MIP model effectively and efficient-
ly deserves further investigation.

1.2 Objective and Contributions

To fill the above research gaps, we investigate the multi-type charging station location
(MCSL) problem while considering path deviation, partial charging, and nonlinear
elastic demand. We consider a generalized travel cost (GTC) comprised of travel time
on the path, charging time and charging fee at the traversed stations. Drivers could take
a deviation path other than the shortest path as long as the GTC of the deviation path is
within a pre-specified tolerance, which is often referred to as path deviation in the
literature. Additionally, instead of fully charging each time, drivers are allowed to
charge as much as needed to make the GTC as small as possible. As for the nonlinear
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elastic demand, the flows between an OD pair are assumed to decline nonlinearly with
respect to the GTC. Our goal is to maximize the covered flows of all OD pairs by
determining the deployment of multi-type charging stations under a limited budget. To
achieve this objective, we first formulate a mixed-integer nonlinear programming
model. Instead of generating paths and charging patterns, we develop a compact
formulation to model the partial charging logic. The proposed model is then approx-
imated and reformulated by a mixed-integer linear programming model by piecewise
linear approximation. To improve the computational efficiency, we employ a refined
formulation using Gray code method, which effectively reduces the number of con-
straints and binary auxiliary variables in the formulation of the piecewise linear
approximate function. The ε-optimal solution1 to the MCSL problem is finally obtained
by solving the formulation using a state-of-the-art MIP solver.

In all, the contributions of this study are multidimensional. First, we make the first
attempt to incorporate drivers’ partial charging behavior and nonlinear elastic demand
in the charging station location problem. Second, instead of path and charging pattern
enumeration, a compact formulation is put forward to model the partial charging logic.
Last, the nonlinearity resulting from the elastic demand is addressed by piecewise linear
approximation formulated using an efficient Gray code method.

The remainder of this paper is organized as follows. The related notations, assump-
tions, and problem descriptions are illustrated in Section 2. A mixed-integer nonlinear
programmingmodel is formulated in Section 3. Section 4 elaborates the piecewise linear
approximation with a Gray codemethod. A case study based on the highway network of
Zhejiang Province and impact analysis of the budget are presented in Section 5.
Section 6 concludes the paper with recommendations for future research directions.

2 Assumptions, Notations and Problem Description

We consider an intercity road network G ¼ N ;Að Þ, where N and A are sets of nodes
and directed links, respectively. The electricity consumption and travel time of link (i,
j) ∈ A, i, j ∈ N are denoted by eij and dij, respectively, which are assumed to be known
in advance. All OD pairs are grouped into a setW. The origin and destination of an OD
pair w ∈ W are denoted by o(w) and d(w) ∈ N, respectively. Note that the traffic flows
between locations A and B are often bi-directional: one is from A to B and the other is
from B to A, referred to as a round trip. Generally, to enable round trips, we can use
two direction-supplementary flows of an OD pair as the model input. The EVs are
assumed to be homogeneous in terms of the battery capacity, denoted by E. For an OD
pair w, the state-of-charge(SOC) of EVs is assumed to be no more than Eo before
departing from o(w) and no less than ED after arriving at d(w), where both Eo and ED

are pre-defined. Kindly note that we can set EO and ED to be any value and our model is
still applicable as EO and ED are parameters. If EVs are of different types and battery
capacities, from a modeling point of view, we can introduce several types of flows
between an origin and a destination. A certain type of flows between a particular OD
pair corresponds to a vehicle type, battery capacity, and even SOC at origins and

1 The ε-optimal solution refers to the solution that the difference between its objective function value and the
optimal objective function value is within the exogenously given tolerance ε > 0.
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destinations. In other words, we can augment the set of OD pairs by vehicle types,
capacities, and even battery levels.

We consider locating multi-type charging stations at a set of candidate locations,
denoted by I ⊆ N. The types of stations are denoted by set K and the cost of building
type k ∈ K station at location i ∈ I is bi, k. The charging efficiency and charging price of
different stations vary, which will be illustrated in the following subsection. The total
budget for building public charging stations is represented by B. For simplicity, we
assume that the charging stations are uncapacitated and there is at most one type of
station at a candidate location. The “uncapacitated” herein means that an EV can be
charged upon entering a station. In other words, the drivers do not need to queue for
service. With this assumption, it is reasonable to define the GTC by the sum of
charging cost, charging time, and travel time. Incorporating queueing process requires
other sophisticated techniques such as queueing theory. Many facility location studies
thus adopt “uncapacitated” assumptions for the consideration of modeling (e.g., Capar
et al. (2013); Kim and Kuby (2012); Kuby and Lim (2007); Yang and Sun (2015)).
Likewise, the focal point of this research is not the modeling queueing process.
Therefore, we also use this assumption.

The following subsections elaborate on the partial charging logic, the generalized
travel cost, and the nonlinear elastic demand. The notations used throughout this study
can be found in Appendix 1.

2.1 Partial Charging Logic

To model drivers’ partial charging behavior without resorting to path and charging
pattern enumeration, we need to formulate the partial charging logic explicitly. The
partial charging logic refers to the locations chosen for charging and the corresponding
charging amount at these stations for each OD pair. To this purpose, we define the
following decision variables and auxiliary variables to specify where and how much to
charge. Among these variables, we have three binary decision variables as follows: (i)yi,
k, ∀ i ∈ I, k ∈ K denoting whether type k station is built at location i; (ii)rwi ;∀i∈I ;w∈W
indicating whether EVs are charged at location i for OD pair w; and
(iii)xwij ;∀ i; jð Þ ∈A;w∈W representing whether link (i, j) is traversed for OD pair w.
We also have a continuous decision variable pwi ;∀i∈I ;w∈W which represents the
charging amount at location i for OD pair w and a continuous auxiliary variable ewi ;∀
i∈N ;w∈W that expresses the vehicle SOC of flows between OD pair w after charging
at location i ∈ I (for i ∉ I, it represents the SOC upon arriving at location i). Given
these variables, drivers’ partial charging behavior can be formulated as follows.

∑
j∈N : i; jð Þ∈A

eijxwij ≤ ewi ≤ E; ∀w ∈W ; i ∈ N ð1Þ

rwi ≤ ∑
k∈K

yi;k ; ∀w ∈W ; i ∈ I ð2Þ

pwi ≤ Erwi ; ∀w ∈W ; i ∈ I ð3Þ
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ewj −p
w
j −e

w
i þ eij

≤M 1−xwij
� �

≥M xwij−1
� �

8<
: ∀w ∈W ; j ∈ I ; i∈N : i; jð Þ∈ A ð4Þ

ewj −e
w
i þ eij

≤M 1−xwij
� �

≥M xwij−1
� �

8<
: ∀w ∈W ; j∈NnI ; i ∈N : i; jð Þ∈ A ð5Þ

where M is a sufficiently large positive number.
It can be seen that Eq. (1) ensures the link feasibility. Eq. (2) suggests that drivers

can only charge at the locations where charging stations are built. Eq. (3) indicates that
the charging amount cannot exceed the battery capacity if any. Equation (4) establishes
the SOC relationship between a candidate location and its adjacent locations. Specif-
ically, if link (i, j) is traversed for OD pair w, i.e., xwij ¼ 1, then Eq. (4) reduces to

ewj −pwj ¼ ewi −eij, where the left-hand-side(LHS) represents the SOC before charging

at location j and the right-hand-side(RHS) expresses the SOC upon arriving at location
j. The LHS and the RHS are equivalent in essence. As for the case of xwij ¼ 0, Eq. (4)

becomes redundant. Likewise, Eq. (5) works for the locations that are not candidate
locations, i.e., N\I.

2.2 Generalized Travel Cost

Without loss of generality, we consider a generalized travel cost (GTC) comprised of
three components, i.e., travel time on the path, charging time and charging fee at the
traversed stations. Drivers are assumed to have a pre-specified value of time (VOT),
denoted by ν. The cost converted from the travel time on the path for OD pair w using
the VOT can be represented as follows:

dw ¼ ∑
i∈N

∑
j∈N : i; jð Þ∈A

νdijxwij ; ∀w ∈W ð6Þ

As for the cost resulting from charging activities, we consider both a fixed charging
cost and a variable cost. Specifically, for station type k and charging amount p, the cost
incurred by charging can be represented by ck + μkp, where ck is the fixed cost of
charging at type k station and μk is the charging-amount-dependent cost of charging at
type k station per unit amount of charging. The cost incurred by charging over the entire
trip for OD pair w can be represented by charging locations, charging amount, and
station type as follows:

cw ¼ ∑
i∈I

∑
k∈K

yi;k ckrwi þ μkp
w
i

� �
; ∀w ∈W ð7Þ
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Based on the above descriptions, the GTC of OD pair w will become

tw ¼ dw þ cw; ∀w ∈W ð8Þ

2.3 Path Deviation and Nonlinear Elastic Demand

The drivers of an OD pair are assumed to have a pre-specified tolerance for the path
cost deviation. In other words, only the paths whose cost deviation from the GTC of the
shortest path between that OD pair is within the tolerance can be chosen by the drivers.
For OD pair w, let Tw denote the GTC of the shortest path in the network and let δw

represent drivers’ tolerance for path cost deviation. The GTC of a feasible path cannot
exceed (1 + δw)Tw. In addition, we also consider drivers’ demand elasticity by
assuming that the flows between an OD pair decline nonlinearly with respect to the
GTC. In the spirit of the inverse distance function proposed by Kim and Kuby (2012)
to describe demand elasticity in the context of refueling station location problems, we
employ an inverse cost function in this study. Specifically, the nonlinear elastic demand
function for OD pair w takes the following form:

f w twð Þ ¼ Fwe−θ
w tw−Twð Þ; ∀w ∈W ; tw ∈ Tw; 1þ δwð ÞTw½ � ð9Þ

where Fw is the flow volume when the GTC equals Tw, i.e., the maximum flow volume.
If travelers need to pay more than the minimum GTC to complete trips, the flow
volume will decrease. The minimum GTC is defined as below. First, we site fast-
charging stations at all candidate locations. Then, we compute the GTC of each OD
pair under such generous charging resources. Since the GTC cannot be further reduced
by providing more charging resources, we define the resultant GTC in this setting as the
minimum GTC. The parameter θw indicates the degree of drivers’ demand elasticity,
and a large value of θw implies that the flow volume decreases fast as the GTC
increases. Both Fw and θw can be obtained by an empirical or analytical analysis of
historical data. Figure 1 illustrates the proposed nonlinear elastic demand function, in
which the flow volume declines nonlinearly with respect to the GTC.

In operations management (e.g., Wang et al. (2004) and Whitin (1955)) and
marketing science (e.g., Noble and Gruca (1999) and Soysal and Krishnamurthi
(2012)), it is prevalent to model customers’ purchasing willingness and product prices
by a nonlinear function, referred to as nonlinear elastic demand. It captures the variation
of customers’ demand regarding the change of costs. In the context of facility location
problems, the number of travelers willing to use EVs is “demand” and the GTC is
“cost”. Consequently, it is assumed that the flows between an OD pair are assumed to
decline nonlinearly with respect to the GTC”. In fact, this assumption – nonlinear
elastic demand – has been adopted by many studies on transportation in various
problems (e.g., Cantarella (1997), Yang (1997), and Yang and Meng (1998)).

The objective of the MCSL problem is to deploy multiple types of public charging
stations in an intercity road network under a limited budget so that (i) the flows between
each OD pair travel on a path satisfying tw ≤ (1 + δw)Tw if any; (ii) the flow volume of
an OD pair follows the nonlinear elastic demand function with respect to the GTC; and
(iii) the covered flow volume of all OD pairs is maximized. Given that the objective is
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to maximize the covered flows, for a particular layout of charging stations, the
optimality of the model implies that drivers will travel on a range-feasible path with
the minimal GTC among all feasible deviation paths, which aligns with the travel
behavior of drivers.

3 Optimization Model Building

3.1 Model Formulation

In view of the situation in which some OD pairs may be uncovered due to the limited
budget and driving range, we introduce a binary auxiliary variable πw, ∀ w ∈ W to
represent whether OD pair w is covered. The MCSL problem can be formulated by the
following model:

[OP ∙ I]:

max DemandI ¼ ∑
w ∈W

f w twð Þπw ð10Þ

subject to Eqs. (1)–(9) and

∑
i∈I

∑
k∈K

bi;kyi;k ≤ B ð11Þ

∑
k∈K

yi;k ≤ 1; ∀i ∈ I ð12Þ

Fig. 1 Illustration of the nonlinear elastic demand function
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∑ j∈N : i; jð Þ∈Ax
w
ij−∑ j∈N : j;ið Þ∈Ax

w
ji ¼

πw; ∀i ¼ o wð Þ
0; ∀i∈N∖ o wð Þ; d wð Þf g

−πw; ∀i ¼ d wð Þ

8<
: ∀w ∈W ð13Þ

ewo wð Þ ≤ Eo; ∀w ∈W : o wð Þ∉ I ð14Þ

ewo wð Þ−p
w
o wð Þ ≤ Eo; ∀w ∈W : o wð Þ∈ I ð15Þ

ewd wð Þ ≥ EDπ
w; ∀w ∈W ð16Þ

ewd wð Þ≥EDπ
w; ∀w ∈W ð17Þ

xwij ;π
w∈ 0; 1f g; ∀w ∈W ; i; j ∈ N : i; jð Þ∈A ð18Þ

yi;k ; r
w
i ∈ 0; 1f g; ∀w ∈W ; i ∈ I ; k ∈ K ð19Þ

pwi ; e
w
j ; t

w ∈ℝþ; ∀w ∈W ; i ∈ I ; j ∈ N ð20Þ

where ℝ+ denotes the set of non-negative real numbers.
The objective function shown by Eq. (10) represents the total covered flow volume

of all OD pairs. Constraint (11) restricts that the total cost of building charging stations
cannot exceed the pre-defined budget. Constraint (12) indicates that at most one type of
station will be built at a candidate location. Constraint (13) is for flow conservation.
Constraints (14)–(16) require that the SOC is no more than Eo before departure and no
less than ED after arrival. Note that if the origin of an OD pair is a candidate location,
i.e., o(w) ∈ I, the SOC may be replenished by the amount of pwo wð Þ as shown in

Constraint (15). Constraint (17) indicates drivers’ tolerance for path cost deviation.
Constraints (18)–(20) specify the domains of decision variables xwij , yi, k, r

w
i , p

w
i and

auxiliary variables πw, ewi , tw.

3.2 Model Properties

The proposed formulation for drivers’ partial charging behavior explicitly models the
charging location choices and charging amount without resorting to path and charging
pattern enumeration. Furthermore, it is linear and has a polynomial number of
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constraints. Specifically, the number of constraints in the formulation is fixed given a
network. It overcomes the prohibitively large memory consumption as reported by Kim
and Kuby (2012), which resulted from the exponential growth of constraints with
respect to drivers’ tolerance and EV driving range.

The model [OP ∙ I] is nonlinear due to the nonlinear objective function and the
bilinear terms in Eq. (7). Fortunately, the bilinear terms can be easily linearized by
introducing two kinds of continuous proxy variables (c1w;i;k ¼ μkp

w
i yi;k and

c2w;i;k ¼ ckrwi yi;k ; ∀w ∈W ; i ∈ I ; k ∈KÞ and imposing the following linear constraints:

cw ¼ ∑
i∈I

∑
k∈K

c1w;i;k þ c2w;i;k ; ∀w ∈W ð21Þ

c1w;i;k ≥ 0

c1w;i;k ≤μkEyi;k
c1w;i;k ≥ μkp

w
i þ μkE yi;k−1

� �
c1w;i;k ≤ μkp

w
i

8>>><
>>>: ∀w ∈W ; i ∈ I ; k ∈K ð22Þ

c2w;i;k ≥0
c2w;i;k ≤ckyi;k

c2w;i;k ≥ck rwi þ yi;k−1
� �

c2w;i;k ≤ckr
w
i

8>>><
>>>: ∀w ∈W ; i∈I ; k∈K ð23Þ

We shall then show that the approximation of the bilinear terms is also exact at the
boundaries. The term c1w;i;k ¼ μkp

w
i yi;k contains a continuous variable p

w
i and a binary

variable yi, k. If yi, k = 0, then c1w;i;k ¼ 0. In this case, Eq. (22) becomes

c1w;i;k ≥0
c1w;i;k ≤0

c1w;i;k ≥μkp
w
i −μkE

c1w;i;k ≤μkp
w
i

8>>><
>>>:

which indicates c1w;i;k ¼ 0. If yi, k = 1, then c1w;i;k ¼ μkp
w
i . On this occasion, Eq. (22) is

c1w;i;k ≥0
c1w;i;k ≤μkE
c1w;i;k ≥μkp

w
i

c1w;i;k ≤μkp
w
i

8>>><
>>>:
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which implies that c1w;i;k ¼ μkp
w
i . Clearly, Eq. (22) is identical to c1w;i;k ¼ μkp

w
i yi;k .

With a similar approach, we can prove Eq. (23) is equivalent to c2w;i;k ¼ ckrwi yi;k .
Particularly, when yi, k = 0, we have

c2w;i;k ≥0
c2w;i;k ≤0

c2w;i;k ≥ck rwi −1
� �

c2w;i;k ≤ckr
w
i

8>>><
>>>:

suggesting c2w;i;k ¼ 0; when yi, k = 1, we have

c2w;i;k ≥0
c2w;i;k ≤ck
c2w;i;k ≥ckr

w
i

c2w;i;k ≤ckr
w
i

8>>><
>>>:

which means c2w;i;k ¼ ckrwi .
As for the nonlinear objective function, we will employ a piecewise linear approx-

imation method to address its nonlinearity, which will be elaborated in the next section.

4 Solution Approach

In this section, we employ a piecewise linear approximation method to address the
nonlinearity in the objective function of the model [OP ∙ I]. A Gray code method is
employed to establish the approximation function. Compared with the traditional
piecewise linear formulation to approximate nonlinear function, the Gray code method
uses significantly fewer binary auxiliary variables and constraints, thereby improving
computational efficiency.

4.1 Piecewise Linear Approximation

Piecewise linear approximation is a classic solution approach to nonlinear optimization
problems, which has been applied in many transportation problems (Daganzo and
Laval 2005; Ekström et al. 2012; Farhi 2012; Przybyla et al. 2015). In particular, a
univariate continuous function can be approximated by a piecewise linear function with
the approximation error being controlled by the number of linear segments (Wolsey
and Nemhauser 1999). For instance, we consider the nonlinear elastic demand function
for OD pair w, i.e., fw(tw), tw ∈ [Tw, (1 + δw)Tw], which is to be approximated by a
piecewise linear function f w twð Þ as shown in Fig. 2. To this end, we need to first
generate V(w) breakpoints, denoted by twn ; n ¼ 1;…;V wð Þ, based on the required
solution quality to specify the piecewise linear function f w twð Þ (see Subsection 4.2).
The flow volumes corresponding to each breakpoint are f w twn

� �
; n ¼ 1;…;V wð Þ.

Then it follows that any tw ∈ [Tw, (1 + δw)Tw] can be represented by
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tw ¼ ∑V wð Þ
n¼1 λ

w
n t

w
n ð24Þ

∑V wð Þ
n¼1 λ

w
n ¼ 1 ð25Þ

λw
n ∈ℝþ; n ¼ 1;…;V wð Þ ð26Þ

Notice that in Eqs. (24)–(26) the values of λw
n are not unique. However, if we have

tw∈ twn ; t
w
nþ1

� �
and λw

n such that tw ¼ λw
n t

w
n þ λw

nþ1t
w
nþ1 and λw

n þ λw
nþ1 ¼ 1, then it

follows that f w twð Þ ¼ λw
n f

w twn
� � þλw

nþ1 f
w twnþ1

� �
. In other words,

f w twð Þ ¼ ∑V wð Þ
n¼1 λ

w
n f

w twn
� � ð27Þ

if at most two of λw
n are positive and if two of λw

n are positive, they must be adjacent.
This condition is referred to as SOS2 condition in the literature. The SOS2 condition is
often formulated by introducing the binary auxiliary variables ξn, n = 1,…, V(w) − 1
(where ξn equals 1 if tw∈ twn ; t

w
nþ1

� �
and 0 otherwise) as shown in Fig. 2 and imposing

the following constraints:

λw
1 ≤ ξ1 ð28Þ

λw
n ≤ ξn−1 þ ξn; n ¼ 2;…;V wð Þ−1 ð29Þ

Fig. 2 Illustration of the piecewise linear approximate function
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λw
V wð Þ ≤ ξV wð Þ−1 ð30Þ

∑V wð Þ−1
n¼1 ξn ¼ 1 ð31Þ

ξn ∈ 0; 1f g; n ¼ 1;…;V wð Þ−1 ð32Þ

Although the piecewise linear approximation is easy to apply to various nonlinear
problems, its low computational efficiency is widely criticized due to introducing too
many additional binary auxiliary variables and constraints in the formulation of SOS2
condition. Specifically, if we use V(w) breakpoints to specify a piecewise linear
approximate function, then V(w) − 1 binary auxiliary variables and V(w) + 1 con-
straints are required to formulate SOS2 condition. Many studies have been conducted
to find more efficient reformulation of SOS2 condition, among which the Gray code
method is very promising. The Gray-code method was developed by Vielma and
Nemhauser (2011). It approximates nonlinear functions with significantly fewer aux-
iliary binary variables and constraints in comparison with the classic formulation of
piecewise linear approximation. In fact, their reformulation of SOS2 condition using
Gray code method requires only ⌈log2(V(w) − 1)⌉ binary auxiliary variables and
2⌈log2(V(w) − 1)⌉ linear constraints. Thus, we will employ the Gray code method to
address the nonlinearity of the objective function.

To reformulate SOS2 condition by Gray code method, we need to introduce a type
of special parameters, i.e., Gray code. It is a class of specially ordered multi-digit
vectors with binary elements such that any two adjacent Gray codes differ in only one
digit. Figure 3 illustrates Gray codes with a different number of digits, e.g., 4 two-digit
Gray codes and 16 four-digit Gray codes. It can be seen that any adjacent Gray codes,
e.g., the eighth four-digit Gray code {0, 1, 0, 0}. and the ninth four-digit Gray code
{1, 1, 0, 0}, only differ in one digit.

To apply the Gray code method, the feasible path cost range of OD pair w, i.e., [Tw,
(1 + δw)Tw], is first partitioned into V(w) − 1 intervals by V(w) pre-generated
breakpoints. Each interval is then labeled by a Gray code in sequence. Therefore, we
need a total of V(w) − 1 Gray codes. To have such number of Gray codes, we need to
generate these Gray codes with at least ⌈log2(V(w) − 1)⌉ digits. Let Gn, n = 1, …,
V(w) − 1 denote the sequential Gray codes with ⌈log2(V(w) − 1)⌉ digits that we
generated. For the nth interval, which is specified by the breakpoints twn and twnþ1, this
interval is labeled by the Gray code Gn as shown in Fig. 2.

To reformulate SOS2 condition using the Gray code method, we need to further
introduce a binary auxiliary variable ξwz and two sets H+(z, w) and H−(z, w) for each
OD pair and each digit, i.e., ∀w ∈ W, z = 1,…, ⌈log2(V(w) − 1)⌉, which are defined as
follows:

Hþ z;wð Þ ¼ n ¼ 1;…;V wð Þj
n ¼ 1∧Gw

2;z ¼ 1
� �

∪ Gw
n−1;z ¼ 1∧Gw

n;z ¼ 1
� �

∪ n ¼ V wð Þ∧Gw
V wð Þ−1;z ¼ 1

� �
8<
:

9=
;;

∀w ∈W ; z ¼ 1;…; log2 V wð Þ−1ð Þd e
ð33Þ
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H− z;wð Þ ¼ n ¼ 1;…;V wð Þj
n ¼ 1∧Gw

2;z ¼ 0
� �

∪ Gw
n−1;z ¼ 0∧Gw

n;z ¼ 0
� �

∪ n ¼ V wð Þ∧Gw
V wð Þ−1;z ¼ 0

� �
8<
:

9=
;

∀w ∈W ; z ¼ 1;…; log2 V wð Þ−1ð Þd e
ð34Þ

where Gw
n;z denotes the value of the zth digit of the nth Gray code for OD pair w. Then

SOS2 condition can be enforced by the following inequalities:

∑
n∈Hþ z;wð Þ

λw
n ≤ ξwz ; ∀w ∈W ; z ¼ 1;…; log2 V wð Þ−1ð Þd e ð35Þ

∑
n∈H− z;wð Þ

λw
n ≤ 1−ξwz ; ∀w ∈W ; z ¼ 1;…; log2 V wð Þ−1ð Þd e ð36Þ

ξwz ∈ 0; 1f g; ∀w ∈W ; z ¼ 1;…; log2 V wð Þ−1ð Þd e ð37Þ

Hereafter, we use a sample example to illustrate the Gray code method. Suppose we use
10 pre-generated breakpoints to specify a piecewise linear approximate function, the
feasible path cost range is first partitioned into 9 intervals and each interval is then
labeled by a Gray code. Therefore, we need at least 4 digits for these 9 Gray codes. The

Fig. 3 Example of Gray codes
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generation of Gray code is a recursive procedure. To generate the four-digit Gray
codes, we need to first generate all three-digit Gray codes. Specifically, given the two-
digit Gray codes {0, 0}, {0, 1}, {1, 1}, and {1, 0} as shown in Fig. 3, the first 4 three-
digit Gray codes can be obtained by adding “0” to the heads of {0, 0}, {0, 1}, {1, 1},
and {1, 0}, i.e., {0, 0, 0}, {0, 0, 1}, {0, 1, 1}, and {0, 1, 0}. By rearranging the two-
digit Gray codes in inverse order, we get {1, 0}, {1, 1}, {0, 1}, and {0, 0}. The last 4
three-digit Gray codes can be obtained by adding “1” to the heads of {1, 0}, {1, 1},
{0, 1}, and {0, 0}, i.e., {1, 1, 0}, {1, 1, 1}, {1, 0, 1}, and {1, 0, 0}. Since we use
four-digit Gray codes to label the intervals, 4 binary auxiliary variables are required.
According to Eqs. (33) and (34), we have H+(1) = {10}, H−(1) = {1, 2, 3, 4, 5, 6, 7,
8}, H+(2) = {6, 7, 8, 9, 10}, H−(2) = {1, 2, 3, 4}, H+(3) = {4, 5, 6}, H−(4) = {1,
2, 8, 9, 10}, H+(4) = {3, 7}, and H−(4) = {1, 5, 9, 10}. In this case, Constraints (35)
and (36) can be represented by:

λ10≤ξ1
λ1 þ λ2 þ λ3 þ λ4 þ λ5 þ λ6 þ λ7 þ λ8≤1−ξ1

λ6 þ λ7 þ λ8 þ λ9 þ λ10≤ξ2
λ1 þ λ2 þ λ3 þ λ4≤1−ξ2

λ4 þ λ5 þ λ6≤ξ3
λ1 þ λ2 þ λ8 þ λ9 þ λ10≤1−ξ3

λ3 þ λ7≤ξ4
λ1 þ λ5 þ λ9 þ λ10≤1−ξ4

8>>>>>>>>>><
>>>>>>>>>>:

ð38Þ

Based on the above discussions, the model [OP ∙ I] can be approximated and
reformulated by the piecewise linear approximation using the reformulation of SOS2
condition as follows:

[OP ∙ II]:

maxDemandII ¼ ∑
w∈W

f w ð39Þ

subject to Eqs. (1)–(6), (8), (9), (11)–(23), (33)–(36), and

f w¼∑V wð Þ
n¼1 λ

w
n f

w twn
� �

; ∀w ∈W ð40Þ

tw ¼ ∑V wð Þ
n¼1 λ

w
n t

w
n ; ∀w ∈W ð41Þ

∑V wð Þ
n¼1 λ

w
n ≤ πw; ∀w ∈W ð42Þ

λw
n ∈ℝþ; ξwz ∈ 0; 1f g; ∀w ∈W ; n ¼ 1;…;V wð Þ; z ¼ 1;…; log2 V wð Þ−1ð Þd e ð43Þ
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The objective function shown by Eq. (39) represents the approximate covered
flow volume of all OD pairs. Constraints (40)–(42) follow the traditional formu-
lation of the piecewise linear approximation except that the sum of λw

n is upper
bounded by πw as shown in Eq. (42). The domains of variables λw

n and ξwz are
defined by Constraint (43).

It can be seen that the model [OP ∙ II] is a mixed-integer linear programming model
and therefore, can be readily solved by state-of-the-art MIP solvers like CPLEX. In the
following subsection, we will elaborate on how to generate the breakpoints based on
the required solution quality.

4.2 Breakpoint Generation

In the aforementioned approximation method, a piecewise linear curve
overestimating the covered flow volume is generated for each OD pair. In theory,
with sufficiently many breakpoints, the approximate curve will be very close to the
objective function curve and the error can be controlled as small as possible.
However, this will result in more linear segments and more variables in the
expression of SOS2 condition, and in turn an over enlarged model that is compu-
tationally intensive. To balance the computational efficiency and solution quality,
in this subsection, we illustrate how to generate a reasonably sized set of
breakpoints to obtain the ε-optimal solution to the problem.

The idea that underlies the generation of a reasonably sized set of breakpoints is the
solution quality of the model [OP ∙ II] can be calibrated by controlling the approxi-
mation error of each piecewise linear approximate function f w twð Þ;w∈W , which can be
summarized by the following proposition:

Proposition 1 Let DemandI
*
and DemandII

*
denote the optimal objective values of the

models [OP ∙ I] and [OP ∙ II], respectively. Given a pre-defined positive tolerance ε, the
ε-optimal solution to the model [OP ∙ I] can be obtained by solving the model [OP ∙ II],
i.e.,

DemandI
*
≤DemandII

*
≤DemandI

* þ ε ð44Þ

if the generated breakpoints satisfy

εwn ≤
ε
Wj j ; ∀w∈W ; n ¼ 1;…;V wð Þ−1 ð45Þ

where εwn represents the approximation error in the interval twn ; t
w
nþ1

� �
for OD pair w.

The first inequality suggests the lower bound and the upper bound on the optimal
objective. In particular, it is no smaller than the optimal objective value and meanwhile
is no bigger than a pre-specified error plus the optimal objective. For the lower bound,
as shown in Fig. 2, it is trivial to find that the piecewise linear approximate function is
above the nonlinear curve except at breakpoints. Regarding the upper bound, we note
that the total approximation error is the sum of errors on all elastic demand functions.
The second inequality limits the approximation error on each elastic demand function
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within a given threshold. Hence, once Eq. (45) holds, we can conclude that the total
approximation error is also bounded by a given threshold. We then formally prove
Proposition 1 as below.

Proof LetW denote the set of covered OD pairs. Without loss of generality, we assume
that for an OD pair w∈W its real GTC tw falls into the interval specified by the

breakpoints twn* and twn*þ1, i.e., t
w∈ twn* ; t

w
n*þ1

h i
. Then we have

DemandI
* ¼ ∑

w∈W

f w twð Þ≤ ∑
w∈W

f w twð Þ ¼ DemandII
*

¼ ∑
w∈W

f w twð Þ þ εwn*
� �

≤ ∑
w∈W

f w twð Þ þ ε
Wj j

� 	

¼ DemandI
* þ

W



 



Wj j ε≤DemandI

* þ ε ð46Þ

This concludes the proof. □.
To generate a certain number of breakpoints that satisfy Condition (45) we will

employ an iterative procedure to search for new breakpoints one by one. Let Sw denote
the set of breakpoints for OD pair w. First, we initialize Sw by adding the endpoints of
the feasible path cost range, i.e., Tw and (1 + δw)Tw, into it. Then, we search the interval
that is specified by two adjacent breakpoints for a new breakpoint, which is associated
with the maximum approximation error in the interval. Specifically, given interval
twn ; t

w
nþ1

� �
, the maximum error in this interval can be obtained by solving the

following problem:

max
twn ≤ tw ≤ twnþ1

f w twð Þ−Fwe−θ
w tw−Twð Þ ð47Þ

It is easy to find that the target breakpoint is

btnw ¼ Tw−
1

θw
ln

−ϖw
n

Fwθw
ð48Þ

and the maximum approximation error in the interval is

bεwn ¼ ϖw
n
btwn þ σw

n

� �
−Fwe

−θw btwn −Tw

� �
ð49Þ

where ϖw
n and σw

n denote the slope and intercept of the linear function of f w twð Þ in
interval twn ; t

w
nþ1

� �
. If bεwn ≤ε= Wj j, this interval is labeled as qualified and will not be

examined anymore; otherwise, the point btwn will be added into the set Sw and the

interval is then divided into two parts bybtwn , i.e., twn ;btwn� �
and btwn ; twnþ1

� �
, both of which
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will be examined in a similar way next. The above procedure iteratively examines all
existing intervals until no new breakpoints can be found. The pseudo-code of the
breakpoint generation is outlined as follows:

5 Case Study

In this section, a case study based on the highway network of Zhejiang Province of
China is conducted to examine the applicability of the proposed model and solution
approach. The impact analysis of the budget on flow coverage and optimal station
selections is also performed. The model is coded in MATLAB 2019a calling IBM
ILOG CPLEX 12.9 on a personal desktop with Intel Core i7 4.0 GHz CPU.

5.1 Highway Network of Zhejiang Province and Parameter Settings

As reported by XinhuaNet (2018), the State Power Grid of China plans to invest RMB
¥1.1 billion in building public charging facilities in Zhejiang Province by the end of
2020. The proposed MCSL problem is expected to provide some practical insights into
deploying public charging stations for the investor. The highway network of Zhejiang
Province can be represented by a graph consisting of 34 nodes and 96 directed links as
shown in Fig. 4. The parameters of EVs are based on BYD-EV6, which is popular with
the Chinese market. Specifically, the EV battery capacity is 60kWh and the electricity
consumption rate is 0.2kWh/km (BYD 2018). According to the electricity consumption
rate, the speed of 120 km/h, and link distances, we can obtain the electricity consump-
tion and travel time of each link. Following the convention in the literature, the initial/
final SOC before/after departure/arrival is set to be no bigger/smaller than half of the
battery capacity, i.e., 30kWh. The reason for assuming the initial/final SOC no bigger/
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smaller than 50% of battery capacity is that this SOC setting enables round trips. In
particular, the drivers can travel from the destination to the origin along the same route
of the inbound trip if the aforesaid SOC condition is fulfilled. Many previous studies
also adopted this SOC setting to conduct numerical experiments, e.g., Kim and Kuby
(2012), Kuby and Lim (2005, 2007), and Lim and Kuby (2010).

All 34 nodes in the network are candidate locations for building charging stations.
The construction cost of a slow−/fast- charging station is set to be one/two unit cost for
simplicity. The drivers’ value of time is assumed to be $10/h. For slow−/fast- charging
stations, the charging-amount-dependent cost and the fixed charging cost are $0.5/
kWh/$1.8/kWh and $1/$1, respectively The largest 20 cities (more than one million
people) of Zhejiang Province are chosen as origins and destinations for generating OD
pairs and then 190 OD pairs are obtained. The flow volume of each OD pair is obtained
in the gravity model (Hodgson 1990) with the city population. To reduce trivial and
unrealistic cases, we exclude the cases of few flows and less electricity consumption
(no more than 30kWh). Finally, we remain 50 OD pairs with 23,497 flows, which
account for 88.7% of total flows. As for the degree of drivers’ demand elasticity θw, it is
obtained by assuming the flow volume declines from Fw to 0.2Fwas the GTC rises from
Tw to 1.5Tw.

The approximation error in the piecewise linear approximation using the Gray code
method is set to be 50, i.e., less than one for each OD pair. Based on this error
tolerance, the required numbers of breakpoints, Gray codes, digits of Gray codes,
continuous auxiliary variables, binary auxiliary variables, and linear constraints are
shown by Columns 2–7 of Appendix 2. The numbers of saved binary auxiliary
variables and constraints are presented by Columns 8 and 9 of Appendix 2. To analyze
the impact of budget on covered flows of all OD pairs, we set the budget to be {2, 4, 6,
8, …, 28}. To further investigate the influence of drivers’ tolerance for path cost
deviation, the tolerance is set to be {0, 20%, 50%}. The computational time limit
(elapsed time) of each instance is set to be 24 h. The experimental results of the 42
instances are displayed in Appendix 3.

Fig. 4 Highway network of Zhejiang Province of China
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5.2 Impact Analysis of Budget on Flow Coverage and Covered OD Pairs

Figures 5 and 6 present the flow coverage and the number of covered OD pairs under
three tolerances as the budget varying from 2 to 28 unit cost. When the tolerance equals
zero, drivers will travel on the shortest path in the network. When the tolerance
becomes 20% and 50%, drivers could take a deviation path as long as the path cost
deviation is within the tolerance. It can be seen that in Fig. 5 the flow coverage follows
an upward trend and has a near-concave shape, suggesting that the increment rate of
flow coverage decreases gradually, i.e., the marginal benefit of investment is declining.
In addition, given the same budget available, the flow coverage under a high tolerance
is usually bigger than that under a low tolerance. For example, given 10 unit cost, the
flow coverage under zero tolerance is only 49.03%, while these numbers under 20%
and 50% tolerances are 55.83% and 60.99%, respectively. From another point of view,
the planner needs less investment to attain the same flow coverage if drivers accept a
higher path cost deviation. For instance, if the target flow coverage is 60%, only 10 unit
cost is required under 50% tolerance while 12 unit cost is required under zero tolerance.
As for the number of covered OD pairs, it also embraces an upward trend but displays
fluctuation. It can be seen that in Fig. 6 the fluctuation is especially obvious under 50%
tolerance. Like the relationship of flow coverage under different tolerances, the number
of covered OD pairs under a high tolerance is usually bigger than that under a low
tolerance. Based on the above analysis, we can get some practical insights, i.e., a good
understanding of drivers’ tolerance for path cost deviation contributes to saving the
budget or satisfying more charging demands.

5.3 Impact Analysis of Budget on Optimal Station Selection

The number of slow−/fast- charging stations as the budget rises from 2 to 28 unit cost
under three tolerances is displayed by Figs. 7, 8, and 9. The number of fast-charging
stations increases with respect to the budget and tends to be stable after the budget
exceeds 16 unit cost. By contrast, the number of slow-charging stations fluctuates as the
budget varies from 2 to 16 unit cost and then rises almost linearly after the budget goes

Fig. 5 Flow coverage
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beyond 16 unit cost. Moreover, under three tolerances, the numbers of two types of
stations go across several times, yielding many intersection points. For instance, under
20% tolerance as shown in Fig. 8, there are 3 intersection points, i.e., 6, 9, and 18 unit
cost. The planner needs to locate more slow-charging stations if the budget is smaller
than 9 unit cost or bigger than 18 unit cost; otherwise, more fast-charging stations
should be built. In practice, the planner may prefer to build more slow-charging stations
since fast-charging stations generally call for more maintenance and operation costs.
Fortunately, the above results suggest that even if they need to cover all flows, only 7
fast-charging stations are required.

5.4 Impact Analysis of Driving Ranges on Flow Coverage and Station Deployment

In this section, we aim to investigate how the driving range (also battery capacity) of
EVs affects the covered flow volume as well as the deployment of sited charging
stations. To this end, we let the driving ranges of EVs be three values, namely 300 km,

Fig. 6 Covered OD pairs

Fig. 7 No. of stations under zero tolerance
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400 km, and 500 km. The drivers’ tolerance for travel cost deviation is assumed to be
0.5% of their minimum GTC and we then vary the total budget from 2 unit cost to 28
unit cost (increasing 2 unit cost sequentially). To vividly showcase the impact of
driving ranges on flow coverage, we visualize the experimental results under the three
given ranges on the same figure as follows (P.S.: FC_D300 denotes the curve of flow
coverage under the driving range of 300 km) (Figs. 10, 11, and 12).

Basically, the three curves perform a near-concave shape as the available budget
increases. In particular, they all first rise stably and then tend to be a constant, i.e.,
100% of flow coverage. The interesting point is that the flow coverage under a higher
driving range attains 100% of flow coverage more early, that is, all travelers’ charging
demand is fulfilled with a smaller investment. This fact aligns with our expectation that
with a longer driving range, there is no need for governments to build too many
charging facilities as EVs can cruise a long distance without being replenished en
route. This observation also provides valuable insights for governments into promoting

Fig. 8 No. of stations under 20% tolerance

Fig. 9 No. of stations under 50% tolerance
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Fig. 10 Variations of flow coverage under three driving ranges as the growth of budget

Fig. 11 Station deployment under range 300 km
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green transportation. Advancing battery technologies not only boosts the development
and adoption of EVs but also saves investment in building charging facilities, which is
green for the environment and economy. We also present the charging station distri-
butions under driving ranges of 300 km and 400 km and 14 unit budget below to see
how stations are sited under different driving ranges.

The blue circles denote fast-charging stations; the green circles represent slow-
charging stations; the black circles imply no charging stations at that node. Under the
driving range of 300 km, we site five fast-charging stations at locations 1, 2, 3, 4, 5, and
four slow-charging stations at locations 6, 8, 9, 23, while under the driving range of
400 km, we have four fast-charging stations located at 1, 2, 3, 22, and five slow-
charging stations located at 4, 5, 6, 8, 9, 23. All locations that fast-charging stations
locate are big cities of Zhejiang Province. For example, locations 1, 2, 3, 4, 5 are the
biggest five cities of Zhejiang, and locations 6, 8, 9, 23 are also med-size cities. This
observation coincides with our experience that fast-charging stations are generally sited
in big cities. Interestingly, when a larger driving range is accessible, we only have four
fast-charging stations and use the saved budget to build two additional slow-charging
stations. This could attribute to that when EVs can cruise a longer distance, drivers do

Fig. 12 Station deployment under range 400 km
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not need to refuel energy multiple times and slow-charging stations are also welcome
for them. This is an encouraging finding since slow-charging stations have less burden
on the electricity grid and incur fewer operational costs in the long run. This finding
also motivates the governments to explore more cutting-edge battery technologies.

6 Conclusions

In this study, we aim to optimally locate multi-type charging stations, e.g., fast-
charging stations and slow-charging stations, for maximizing the covered flows while
taking into account path deviation, partial charging, and nonlinear elastic demand. This
problem is first formulated as a mixed-integer nonlinear programming model and then
reformulated as a mixed-integer linear programming model by the piecewise linear
approximation. In addition, a compact formulation is put forward to model the partial
charging logic instead of generating paths and charging patterns. To improve the
computational efficiency, we employ a refined formulation of SOS2 condition using
Gray code method, which effectively reduces the number of constraints and binary
auxiliary variables in the formulation of the piecewise linear approximate function. A
breakpoint generation scheme is finally proposed according to the requirement of
solution quality. Finally, the applicability of the proposed model and the impact of
the budget on flow coverage and optimal station selections are examined based on the
highway network of Zhejiang Province of China.

Future studies may be undertaken in several directions. First, the efficiency of the
proposed model depends on the network size and the number of OD pairs. It is thus
necessary to develop an efficient algorithm applicable to large networks. For instance,
as pointed out by Vielma and Nemhauser (2011), a branch-and-cut algorithm could be
developed in which the Eqs. (35) and (36) play the role of valid inequalities. Second,
drivers may need to wait for charging due to limited charging spots. A queueing model
can be useful to incorporate waiting costs into the present model. Last, the fear of
batteries running out of power en-route, namely range anxiety, will affect drivers’
charging and routing behaviors. Hence, it is worthwhile to investigate the impact of
range anxiety in the future.

Appendix 1

Notation table

i, j indices for locations

w index for OD pair

k index for station type

o(w) index for the origin of OD pair w

d(w) index for the destination of OD pair w

(i, j) directed link from location i to location j

N set of nodes

I set of candidate locations for building charging stations
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i, j indices for locations

A set of directed links

W set of OD pairs

E battery capacity

B total budget

eij electricity consumption of link (i, j)

dij travel time on link (i, j)

Eo SOC upper bound before departing from origins

ED SOC lower bound after arriving at destinations

bi, k cost of building type k station at location i

ck fixed cost of charging at type k station

μk charging-amount-dependent cost per unit amount of charging at type k station

ν drivers’ value of time

Fw maximum flow volume of OD pair w

Tw minimum GTC of OD pair w

θw degree of demand elasticity for drivers of OD pair w

δw tolerance for path cost deviation for drivers of OD pair w

M a sufficiently large positive number

xwij a binary decision variable which equals 1 if link (i, j) is traversed for OD pair w and 0 otherwise

yi, k a binary decision variable which equals 1 if type k station is built at location i and 0 otherwise

pwi charging amount at location i for OD pair w

πw a binary auxiliary variable which equals 1 if OD pair w is covered and 0 otherwise

rwi a binary auxiliary variable which equals 1 if drivers of OD pair w charge at location i and 0 otherwise

ewi SOC upon arriving at location i∈ I or SOC after charging at i∉ I for OD pair w

tw GTC of OD pair w

f w twð Þ piecewise linear approximate function for OD pair w

V(w) number of breakpoints for OD pair w

n index for breakpoints

twn the nth breakpoint for OD pair w

f wn twn
� �

flow volume corresponding to twn , i.e., F
we−θ

w twn −T
wð Þ

λw
n a continuous auxiliary variable associated with twn

ξwz a binary auxiliary variable to reformulate SOS2 condition

Gw
n;z value of the zth digit of the nth Gray code for OD pair w

ε error tolerance in the piecewise linear approximation

Sw set of breakpoints for OD pair w

ϖw
n slope of the linear function of f w twn

� �
in interval twn ; t

w
nþ1

� �
σwn intercept of the linear function of f w twn

� �
in interval twn ; t

w
nþ1

� �
btwn point corresponding to the maximum error in interval twn ; t

w
nþ1

� �
bεwn maximum approximation error in interval twn ; t

w
nþ1

� �
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Appendix 2

Table 1 The information on the model inputs

OD No. of BP No. of
GC

No. of
DGC

No. of
CAV

No. of BAV No. of LC No. of SBAV No. of SC

01 29 28 5 29 5 10 24 20

02 21 20 5 21 5 10 16 12

03 15 14 4 15 4 8 11 8

04 15 14 4 15 4 8 11 8

05 13 12 4 13 4 8 9 6

06 12 11 4 12 4 8 8 5

07 12 11 4 12 4 8 8 5

08 9 8 3 9 3 6 6 4

09 9 8 3 9 3 6 6 4

10 23 22 5 23 5 10 18 14

11 19 18 5 19 5 10 14 10

12 18 17 5 18 5 10 13 9

13 16 15 4 16 4 8 12 9

14 11 10 4 11 4 8 7 4

15 11 10 4 11 4 8 7 4

16 9 8 3 9 3 6 6 4

17 9 8 3 9 3 6 6 4

18 8 7 3 8 3 6 5 3

19 8 7 3 8 3 6 5 3

20 8 7 3 8 3 6 5 3

21 8 7 3 8 3 6 5 3

22 18 17 5 18 5 10 13 9

23 13 12 4 13 4 8 9 6

24 11 10 4 11 4 8 7 4

25 10 9 4 10 4 8 6 3

26 9 8 3 9 3 6 6 4

27 8 7 3 8 3 6 5 3

28 8 7 3 8 3 6 5 3

29 8 7 3 8 3 6 5 3

30 16 15 4 16 4 8 12 9

31 14 13 4 14 4 8 10 7

32 14 13 4 14 4 8 10 7

33 13 12 4 13 4 8 9 6

34 10 9 4 10 4 8 6 3

35 9 8 3 9 3 6 6 4

36 8 7 3 8 3 6 5 3

37 8 7 3 8 3 6 5 3
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Table 1 (continued)

OD No. of BP No. of
GC

No. of
DGC

No. of
CAV

No. of BAV No. of LC No. of SBAV No. of SC

38 8 7 3 8 3 6 5 3

39 12 11 4 12 4 8 8 5

40 11 10 4 11 4 8 7 4

41 11 10 4 11 4 8 7 4

42 10 9 4 10 4 8 6 3

43 9 8 3 9 3 6 6 4

44 8 7 3 8 3 6 5 3

45 8 7 3 8 3 6 5 3

46 7 6 3 7 3 6 4 2

47 11 10 4 11 4 8 7 4

48 9 8 3 9 3 6 6 4

49 10 9 4 10 4 8 6 3

50 8 7 3 8 3 6 5 3

Total 582 532 184 582 184 368 348 264

Abbreviations: BP (breakpoints), GC (Gray codes), DGC (digits of Gray codes), CAV (continuous auxiliary
variables), BAV (binary auxiliary variables), LC (linear constraints), SBAV (saved binary auxiliary variables),
and SC (saved constraints)
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