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Abstract
Infrastructure networks such as power, communication, gas, water, and transportation rely
on one another for their proper functioning. Such infrastructure networks are subject to
diverse disruptive events, including random failures, malevolent attacks, and natural disas-
ters, which could significantly affect their performance and adversely impact economic
productivity. Moreover, the proliferation of interdependencies among infrastructure net-
works has increased the complexity associated with recovery planning after a disruptive
event. Consequently, providing solution approaches to restore interdependent networks
following the occurrence of a disruptive event has attracted many researchers in the last
decade. The goal of this paper is to help decision makers plan for recovery following the
occurrence of a disruptive event, to procure strategies that center not only on recovering the
system promptly, but also such that the weighted average performance of the system is
maximized during the recovery process (i.e., enhancing its resilience). Accordingly, this
paper studies the interdependent network restoration problem (INRP) and proposes a
resilience-driven multi-objective optimization model to solve it. The proposed model aims
to: (i) prioritize the restoration of the disrupted components for each infrastructure network,
and (ii) assign and schedule the prioritized networks components to the available work
crews, such that the resilience of the system of interdependent infrastructure networks is
enhanced considering the physical interdependency among them. The proposed model is
formulated using mixed-integer programming (MIP) with the objectives of: (i) enhancing
the resilience of the system of interdependent infrastructure networks, and (ii) minimizing
the total costs associated with the restoration process (i.e., flow, restoration, and disruption
costs). Moreover, the proposed model considers partial disruptions and recovery of the
disrupted network components, and partial dependence between nodes in different net-
works. The proposed model is illustrated through a system of interdependent infrastructure
networks after multiple hypothetical earthquakes in Shelby County, TN, United States.
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1 Introduction

Modern societies depend on the continuous and proper functioning of critical
infrastructure networks such as transportation, telecommunications, electric pow-
er, natural gas, and water distribution, among others. Such infrastructure net-
works provide the fundamental services that support the economic productivity,
security, and quality of life of citizens. However, infrastructure networks are
subject to be affected by different types of disruptive events, including random
failures, malevolent attacks, and natural disasters. Hence, for several years, the
United States, as well as many countries around the globe, have been interested
in effectively preparing for and responding in a timely manner to such disruptive
events (e.g., “secure, functioning, and resilient critical infrastructures” (White
House 2013)). Therefore, it is increasingly important to not only protect current
infrastructure networks against disruption, but to be able to restore them once
they have been disrupted.

Several works in the literature have studied the restoration problem of an
infrastructure network. They provide methods and algorithms with different objec-
tives to restore the functionality of an infrastructure network following the occur-
rence of a disruptive event (e.g., Xu et al. 2007; Yan and Shih 2009; Matisziw et al.
2010; Nurre et al. 2012; Aksu and Ozdamar 2014; Vugrin et al. 2014; Kamamura
et al. 2015; Fang et al. 2016; Hu et al. 2016; Fang and Sansavini 2017; Fu et al.
2017). However, infrastructure networks are not isolated from each other, but rather
they rely on one another in different ways for their proper functioning. Hence, they
exhibit interdependency, where two infrastructure networks are said to be interde-
pendent if there is a bidirectional relationship between them through which the state
of each infrastructure is dependent on the state of the other (Rinaldi et al. 2001).
Rinaldi et al. (2001) classified the interdependencies between infrastructure net-
works into four categories: (i) physical interdependency, an output from an infra-
structure network is an input to another one and vice versa, (ii) cyber interdepen-
dency, if an infrastructure network depends on information transmitted through an
information infrastructure, (iii) geographical interdependency, if two infrastructure
networks are affected by the same local disruptive event, and (iv) logical interde-
pendency, all other types of interdependencies. In this paper, the authors consider
the physical interdependency among different infrastructure networks. However,
the work in this paper could be extended to consider other types of interdepen-
dencies such as geographical interdependency, which could be incorporated in this
work by considering the co-location of disrupted components from multiple inter-
dependent infrastructure networks. Moreover, other types of interdependencies
(i.e., cyber and logical) could be incorporated as well as long as they can be
described in a similar manner by the logic discussed in this work.

Rinaldi (2004) categorized the models and techniques that consider interdepen-
dencies among infrastructure networks into six broad categories: (i) aggregate supply
and demand tools (e.g., Lee et al. 2007; Min et al. 2007; Caschili et al. 2015), (ii)
dynamic simulations (e.g., Hernandez-Fajardo and Dueñas-Osorio 2013; Zhang et al.
2016), (iii) agent-based models (e.g., Panzieri et al. 2004; Oliva et al. 2010), (iv)
physics-based models (e.g., An et al. 2003; Unsihuay et al. 2007), (v) population
mobility models (e.g., Casalicchio et al. 2009), and (vi) Leontief input-output models
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(e.g., Haimes and Jiang 2001; Reed et al. 2009). The model proposed in this paper falls
in the aggregate supply and demand tools category by Rinaldi (2004), which evaluates
the total demands, in the form of services or commodities, for an infrastructure network
in a region and the ability to supply them. In addition, it is classified as a network-based
approach according to a similar categorization by Ouyang (2014) for the approaches of
modeling and simulation in infrastructure networks considering their interdepen-
dencies. The network-based approach (Ouyang 2014) describes the infrastructures as
networks of nodes, links, and inter-links (i.e., nodes represent the different components
of the infrastructures, links represent the physical relationship between the nodes, and
inter-links represent the interdependencies among different infrastructures).

Interdependencies across critical infrastructure networks can improve their opera-
tional efficiency since they generally lead to greater centralization of control, hence
they play a significant role in the continuous, reliable operation of infrastructure
network (Rinaldi et al. 2001). However, the proliferation of interdependencies among
infrastructure networks may potentially cause them to be highly vulnerable to disrup-
tion. Consequently, if the operability of an infrastructure network is affected by the
occurrence of a disruptive event, this could lead to cascading inoperability in some or
all dependent infrastructure networks due to their interdependencies (Little 2002;
Wallace et al. 2003; Buldyrev et al. 2010; Eusgeld et al. 2011). The high vulnerability
of the infrastructure networks, due to their increased interdependencies, has been
shown through several recent worldwide events, including the 1998 Canada ice storm
(Chang et al. 2007), the 2001 US World Trade Center attack (Mendonça and Wallace
2006), the 2003 North American blackout (U.S.-Canada Power System Outage Task
Force 2004), and the 2010 Chile earthquake and tsunami (Wen et al. 2011), among
others. Therefore, it is crucial for decision makers to account for interdependencies
between infrastructure networks when preparing the plans for their recoverability to
obtain a realistic analysis of their performance (Holden et al. 2013). In addition,
performing restoration activities for each infrastructure network independently could
lead to improper utilization of available resources, wasted time, and may even cause
further disruptions when improperly scheduled (Baidya and Sun 2017). As a result, the
restoration of such interdependent infrastructure networks following a disruptive event
has become more challenging for decision makers as the increase in interdependency
among infrastructure networks magnifies the complexity associated with planning for
their post-disruption recovery and operation.

The National Infrastructure Protection Plan (DHS 2013) highlights the importance
of addressing the risks associated with the interdependencies among different infra-
structure networks as being “essential to enhancing critical infrastructure security and
resilience”. Hence, it is important to have resilient infrastructure networks accounting
for the interdependencies between them, thus the motivation of this paper. The
Infrastructure Security Partnership (2011) defined resilient infrastructure networks as
the infrastructure networks that would “prepare for, prevent, protect against, respond or
mitigate any anticipated or unexpected significant threat or event” and “rapidly recover
and reconstitute critical assets, operations, and services with minimum damage and
disruption”.

This paper addresses the interdependent networks restoration problem (INRP). INRP
seeks to find the minimum-cost restoration strategy of a system of interdependent networks
following the occurrence of a disruptive event that enhances its resilience considering the
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availability of time and resources. The goal of this paper is to help decision makers plan for
recovery following the occurrence of a disruptive event, to procure strategies that center not
only on recovering the system promptly, but also such that the weighted average perfor-
mance of the system is maximized during the recovery process (i.e., enhancing its
resilience). Accordingly, to solve the INRP, the authors propose a resilience-driven
multi-objective optimization model, formulated using mixed-integer programming
(MIP). Hence, the primary objective of this work is to: (i) prioritize the restoration of the
disrupted components for each infrastructure network, and (ii) assign and schedule the
prioritized networks components to the available work crews, such that the resilience of the
system of interdependent infrastructure networks is enhanced considering a reduction in the
performance of disrupted components based on multiple different disruption scenarios and
taking into consideration the physical interdependency among networks. By studying the
resilience of the interdependent infrastructure networks in this work, the authors unveil the
effects on their performance of both the magnitude of the disruptive event (i.e., network
vulnerability) and the trajectory of recovery of their disrupted components (i.e., network
recoverability). Note that in this paper we focus on improving the resilience of the system
through actions that are made only after a disaster has occurred, as this mimics a plethora of
realistic situations where disasters occur unexpectedly, and where all the decision center on
actions that can recover the system efficiently. However, the proposed post-disaster model
could be easily extended to also consider mitigation actions, such as retrofitting compo-
nents or increasing the availability of resources.

This paper builds upon initial work by Almoghathawi et al. (2019), which assumes
(i) a binary status of the networks components (i.e., either fully disrupted or
undisrupted), (ii) a restoration with a non-preemptive recovery process (i.e., work
crews cannot switch between components during restoration), and (iii) completion
dependence between nodes in interdependent networks (i.e., a dependent node cannot
function unless the node or nodes that it depends on are completely functioning). This
paper addresses these limitations and also explores recovery strategies based on
different assumptions and considerations related to the assignment of the available
work crews and the functionality of disrupted networks components.

The remainder of the paper is organized as follows. Section 2 provides brief
background about the restoration of interdependent networks, including an overview
of network resilience and some of the most relevant works in the literature. Section 3
presents the proposed optimization model to solve the INRP, including notation,
assumptions, objectives, and constraints used. In Section 4, an illustrative example is
presented through a system of interdependent infrastructure networks in Shelby Coun-
ty, TN, affected by hypothetical earthquakes of different magnitude. Different consid-
erations for the recovery process of the disrupted networks components are discussed in
Section 5. Finally, Section 6 provides concluding remarks and suggests some relevant
ideas for future work.

2 Background

In this section, the authors discuss the most relevant works in the literature that study
the restoration of interdependent networks. Moreover, the authors give an overview
regarding the resilience of networks.
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2.1 Interdependent Network Restoration

The literature has recently addressed the restoration problem of interdependent net-
works. Accordingly, several approaches have been developed that could best be
described with two groups: (i) infrastructure-specific approaches, which consider the
physics of different infrastructures (e.g., DC power flow model) and hence could be
applied on these infrastructure networks only, and (ii) general approaches, which could
be applied to any system of interdependent infrastructure networks.

As for the infrastructure-specific approaches for the interdependent network resto-
ration, Coffrin et al. (2012) studied the problem of restoring two physically interde-
pendent infrastructure networks, power and gas networks. They integrated two
network-specific flow models (i.e., a linearized DC flow model for the power network
and a maximum flow model for the gas network) using MIP with the objective of
maximizing the weighted sum of interdependent demand over the restoration time
horizon and solved them using a randomized adaptive decomposition approach. The
proposed models aim to find: (i) the set of disrupted components to be restored, and (ii)
the restoration order of the selected disrupted components. However, the proposed
model did not consider different restoration durations for the disrupted networks
components in addition for being developed for specific types of infrastructure net-
works. Baidya and Sun (2017) provided an optimization-based restoration strategy that
aims to prioritize the restoration activities between two physically interdependent
networks, power system and communication networks, considering their physics-
based properties. The proposed approach is formulated using MIP with the objective
of activating every node in both networks with the minimum number of activation/
energization of branches. Tootaghaj et al. (2017) focused on the cascading disruptions
impact on the physically interdependent power grid and communication network
considering disruptions in power networks only. Accordingly, they proposed a two-
phase recovery approach: (i) avoid further cascade, for which they formulate the
minimum cost flow assignment problem using linear programming (LP) with the
objective of finding a DC power flow setting that stops the cascading failure at
minimum cost, and (ii) provide a recovery schedule, for which they formulate the
recovery problem using MIP with the objective of maximizing the total amount of
delivered power over the recovery horizon and solve it using two heuristic approaches:
a shadow-pricing heuristic and a backward algorithm.

Regarding the general approaches for setting up the restoration of interdependent
networks, Lee et al. (2007) proposed an interdependent layer network model using MIP
that accounts for different interdependencies among the infrastructure networks. The
objective of the model is to minimize the flow costs along with the slack costs but not
including the cost associated with the restoration process of the disrupted components.
Moreover, it focuses only on determining the set of disrupted components (i.e., links)
of the interdependent infrastructure networks that need to be recovered to restore the
performance of each of the infrastructure networks to the functionality level prior to the
occurrence of a disruptive event. Hence, the proposed model does not specify the time
at which they need to be restored (i.e., the prioritizing of the restoration process for the
disrupted components) or which work crew is assigned to restore which disrupted
component. In addition, the model assumes binary status of network components (i.e.,
disrupted or not disrupted). On the other hand, Gong et al. (2009) focused only on the
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scheduling problem of a predetermined set of disrupted components for interdependent
infrastructure networks with predefined due dates for them. They provided a multi-
objective restoration planning model, using MIP, to find the optimal restoration
schedule for disrupted components and solved it using a logic-based benders decom-
position approach. The objective of the model is to minimize the weighted sum of the
cost, tardiness, and makespan that are associated with the restoration process of the
disrupted components. Cavdaroglu et al. (2013) and Sharkey et al. (2015) integrated the
two approaches by Lee et al. (2007) and Gong et al. (2009) by providing a MIP model
that integrates: (i) determining the set of disrupted components (i.e., links) to be
restored, along with (ii) assigning and scheduling them to work crews, and solved it
using a suggested heuristic solution method. The objective of this model is to minimize
the total cost of flow, unsatisfied demand, and installation and assignment that is
associated with the full restoration of a set of infrastructure networks accounting for
the interdependencies among them. However, they assumed binary status of network
components (i.e., disrupted or not disrupted) which could be restored with a non-
preemptive recovery process. Holden et al. (2013) proposed an extended network-flow
approach to simulate the performance of a set of infrastructure networks at a local scale
(i.e., community scale) considering the physical interdependency among them. Hence,
they provided an optimization model using LP that aims to find the optimal perfor-
mance of the infrastructure networks such that the total cost associated with production,
storage, commodity flow, discharge, and shortage (i.e., unsatisfied demand) is mini-
mized. However, the proposed approach does not explicitly discuss what are the set of
disrupted networks components, their restoration durations, and their restoration
priorities. Also, the approach does not consider the availability of the work crews;
hence determine their restoration schedule. Di Muro et al. (2016) studied the recovery
problem of the system of physically interdependent networks in the presence of
cascading failures to mitigate its breakdown. They considered restoring the disrupted
network components (i.e., nodes) that are located at the boundary of the largest
connected component (i.e., functional network) and reconnect them to it considering
the probability of recovery that halts the cascade for interdependent networks. They
developed a stochastic model for the competition between the cascading failures and
the restoration strategy for the disrupted components and solved it theoretically using
random node percolation theory. However, they considered a random recovery strategy
for the disrupted nodes. In addition, they have not considered the availability of work
crews. González et al. (2016) studied the interdependent network design problem
considering their physical and geographical interdependencies. They formulated an
MIP model to determine: (i) the set of disrupted components to be restored, and (ii) the
order of their restoration, with the objective of minimizing the overall cost associated
with preparing geographical locations, restoration of disrupted components, unbalance
from disconnection, and flow. However, the model does not specify which work crews
should restore particular disrupted components. Moreover, they assumed binary status
of network components (i.e., disrupted or not disrupted). Zhang et al. (2018) provided
an optimization model that determines the optimal allocation of restoration resources
for a set infrastructure networks that are physically interdependent such that its
resilience is enhanced. The proposed model aims to: (i) allocate limited resources to
interdependent infrastructure networks, and (ii) determine the optimal budget for
restoration following a specific disruptive event, solved using a genetic algorithm
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approach. However, their work focuses only on the allocation of restoration resources
(i.e., budget) for a set of infrastructure networks following a disruptive event.

In this paper, the authors propose a general resilience-driven multi-objective opti-
mization model to solve the INRP using MIP with the objectives of: (i) maximizing the
resilience of the system of interdependent infrastructure networks, and (ii) minimizing
the total costs associated with the restoration process (i.e., flow, restoration, and
disruption costs). The proposed model expands on Almoghathawi et al. (2019), by
not only considering: (i) binary status of the networks components (i.e., either fully
disrupted or undisrupted), (ii) complete dependence between nodes (i.e., a dependent
node cannot be functioning unless the node or nodes that it depends on are completely
functioning), and (iii) non-preemptive recovery process, but also considering: (iv)
partial disruptions for the disrupted network components, (v) partial recovery of the
disrupted network components considering their different restoration rates which
allows for a preemptive recovery process, and (vi) partial dependence between nodes
(i.e., a dependent node could be partially functioning if the node or nodes it depends on
are partially functioning as well). Furthermore, the proposed optimization model takes
into account the availability of the time and network-specific resources (i.e., a set of
available resources or work crews or that are specific to each network). Different
recovery strategies are explored considering different assumptions for work crews
and disrupted component functionality. The proposed optimization model focuses on
maximizing the resilience of the interdependent infrastructure networks to retain their
performance level prior to the disruption. Hence, the disrupted networks components
might: (i) not be all restored, especially if they do not influence the resilience of the
other networks, or (ii) restored partially, if they could be functioning partially. Next
section gives and overview regarding network resilience and how it can be quantified.

2.2 Network Resilience

Resilience is generally defined as the ability of an entity or system to withstand, adapt
to, and recover from a disruptive event in a timely manner (Barker et al. 2017).
Resilience has been quantified by several different approaches that exist in the literature
(Hosseini et al. 2016), including: the normalized shaded area underneath the perfor-
mance function curve of a system (Cimellaro et al. 2010), topological measures
(Rosenkrantz et al. 2009), the ratio of the probability of failure and recovery (Li and
Lence 2007), among others. In this paper, the authors consider the paradigm proposed
by Henry and Ramirez-Marquez (2012) to describe and quantify the resilience of a
system or a network based on its performance, as shown in Fig. 1, which is considered
by several papers in the literature (e.g., Barker et al. 2013; Baroud et al. 2014; Pant
et al. 2014). In this work, the proposed model aims to maximize the weighted average
performance of the system between the occurrence of a disruptive event and when the
system has been fully recovered, in addition to procuring a quick recovery. Thus, the
proposed model seeks to determine the distribution, crew assignment, and recovery
strategies that maximize the performance of the system immediately after a disruptive
event (i.e., minimizing the effects of such event) and during its recovery process. That
is, the proposed model determines the set of post-disruption actions that would lead to
the maximum resilience achievable, as it simultaneously seeks to reduce the damage
propagation effects and the recoverability of the system.
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Figure 1 shows three transition states with regard to the operation within a network:
(i) the original state, S0, which is the state of the network from time t0 until the
occurrence of a disruptive event, ej at time te, (ii) the disrupted state, Sd, which is the
state resulted following the maximum disruption that occurred during the period (te, td)
and will last until the recovery process starts at time ts, and (iii) the recovered state, Sf,
which is the state of the network upon the completion of the recovery process at time tf,
which is not necessarily be same as S0 as it could be lower or higher than S0. The
performance of the network (e.g., flow, connectivity, unsatisfied customers, or delay)
across these different states over time is measured by the function φ(t), which describes
the behavior of the network: (i) prior to the occurrence of a disruptive event, φ(t0), (ii)
after being disrupted, φ(td), and (iii) after being recovered to a desired level, φ(tf). Note
that the performance of the system (network) following a disruptive event, φ(td), could
decrease as a result of the disruption (e.g., flow, connectivity, utilization of asset), as
illustrated in Fig. 1 (Henry and Ramirez-Marquez 2012).

Henry and Ramirez-Marquez (2012) define network resilience, denoted by Я, as the
time dependent ratio of the recovered performance of the network over the maximum
loss in its performance following a disruptive event, ej, from a set J of possible
disruptive events (i.e., Я(t) = Recovery(t)/Loss(td), td < t). Hence, Я(t) quantifies the
resilience of the network at time t, td < t < tf, as shown in Fig. 1. There are two primary
dimensions of the system (network) resilience: (i) vulnerability, or the magnitude of
damage to a network caused by a disruptive event (Jönsson et al. 2008), and (ii)
recoverability, or the speed at which a disrupted network recovers to a desired level
of performance following the occurrence of a disruptive event (Rose 2007).

Hence, network resilience can be demonstrated when the performance of the
network at S0, φ(t0), is affected by a disruptive event, ej, at time te. Starting at this
time, the network performance degrades until time td. Then, the network will stay at the
disrupted state Sd, which has an associated performance level of φ(td), until the
restoration process commences at time ts. The restoration process continues until the
network reaches the desired state Sf, which has an associated performance level of φ(tf).
Thus, the resilience at time t (i.e., ts < t < tf), Я(t), for networks with decreasing
performance when disrupted depicted in Fig. 1, can be mathematically represented

Fig. 1 Illustration of decreasing network performance, (φ), across different transition states over time
(adapted from Henry and Ramirez-Marquez (2012))
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by Eq. (1), where φ(t| ej) −φ(td| ej) represent the recovery of the network performance
at time t, and φ(to) −φ(td| ej) represent the loss of the network performance up to time
td. Hence, Eq. (1) considers both the vulnerability and recoverability of the network.
That is, the numerator of Eq. (1) shows the speed of network recovery to a desired level
of performance (i.e., recoverability), and the denominator of Eq. (1) presents the
magnitude of loss to the network caused by e j, (i.e., vulnerability).

According to Eq. (1), the value of the network resilience, Яφ(t| ej), at time t given the
occurrence of a disruptive event, ej, is between 0 and 1 (i.e., Яφ(t| ej) ∈ [0, 1]), where
Яφ(t| ej) = 1 indicates the network is fully resilient. In this work, the authors consider the
flow as the measure for the performance of networks. Hence, the performance of the
networks in or study decreases following the occurrence of a disruptive event, as shown
in Fig. 1. That is, the maximum flow of an interdependent infrastructure network from
its multiple supply nodes to its multiple demand nodes is considered to be the function
by which the network performance is measured, and its resilience is determined, using
Eq. (1).

3 Optimization Model

In this paper, the authors propose a multi-objective resilience-driven optimization
model for solving the INRP using MIP, aiming to maximize the resilience of the
collective set of networks while minimizing the costs associated with the restoration
process.

3.1 Assumptions

There are several assumptions and considerations for the proposed optimization model
to solve the INRP:

– Each infrastructure network consists of a set of components (used to generally refer
to nodes and links) that are subjected to be partially or completely disrupted.

– Each disrupted component in each infrastructure network can be restored with
different restoration rates (i.e., recovery durations are not fixed for all disrupted
components).

– Each disrupted component in each infrastructure network could be partially recov-
ered according to their restoration rates, which allow for a preemptive recovery
process. Accordingly, different work crews can work to restore the same disrupted
network component at different time periods.

– A single work crew can work on restoring a disrupted network component at a
time.

– Each supply node, demand node, and link in each infrastructure network has a
known supply capacity, demand, and flow capacity, respectively.

(1)
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– The flow costs through each link, disruption (i.e., unmet demand) costs, and
restoration costs for disrupted components in each infrastructure network are
known and fixed.

– The physical interdependence among different infrastructure networks is consid-
ered. That is, for a node in an infrastructure network to be operational, it requires a
specific node from another infrastructure network to also be operational. Conse-
quently, the proposed model considers cascading effects as a result of such
interdependency. However, cascading disruptions that occur during the restoration
process are not considered in this work and are considered for future work. Hence,
the model could be extended to consider failures propagation time to capture such
cascading disruption.

– The model allows for partial interdependencies considering the partial status of
disruption or the partial recovery of a disrupted component, where a node could be
functioning partially if the other node upon which it depends is also functioning
partially. However, the case where partially functional components might cause
cascading effects on dependent components is not considered. On the other hand, if
it is known in advance that a component would fail as a direct consequence of
another node failing due to its partial functionality, then such could be incorporated
in the proposed model through the interdependency parameter.

– The number of available work crews for each infrastructure network (i.e.,
infrastructure-specific resources) for the restoration of its disrupted components
is known and could be different from one infrastructure network to another, where
each work crew in each infrastructure network can work on a single disrupted
component at a time.

– Regardless of the extent of disruption, the network flows are under control (but
subject to functionality constraints).

3.2 Notation

The sets, parameters, and decision variables of the proposed optimization model to
solve the INRP are shown in Tables 1, 2, and 3, respectively.

As shown in Table 1, Rk represents the available work crews for each infrastructure
network for restoration. In this work, the transition of a work crew from one disrupted
component to another in two consecutive time periods is not considered, though the
model could be extended to account for such behavior.

The restoration rates of nodes and links, γkit and δkijt, respectively, represent the
percentage of recovery of each component that can be accomplished during time period
t ∈ T. Moreover, as stated in Table 2, terms aki and bkij refer to the number of units in

node i ∈Nk and link(i, j) ∈ Lk, respectively, which can work independently from each
other. Consequently, the status of nodes and links is represented by the operational
units in each one of them. That is, if a network component has more than one unit, it
could be functioning partially depending on the number of operational units in that
component following a disruption in two cases: (i) if it is not completely disrupted, or
(ii) after a partial recovery. On the other hand, in case if a disrupted network component
cannot be operational unless it is fully recovered, the number of units in this
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network component is assumed to be one, since the component cannot be function-
ing partially.

The amount of unmet demand at node i∈Nk
d in network k ∈K at time t ∈ T is

determined by the flow reaching to that demand point. Moreover, the number of
operational units in node i ∈Nk and link (i, j) ∈ L′k in network k ∈K at time t ∈ T is
determined by the their status (i.e., ykit and z

k
ijt), respectively. Furthermore, the proposed

model considers the capacity of disrupted components based on which the flow through
such components is affected. If a component is completely disrupted, its capacity is

Table 1 Sets of the restoration model

T Time periods in the restoration horizon, T={1,…,τ}

K Interdependent infrastructure networks, K

N Nodes

L Links

N′ Disrupted nodes

L′ Disrupted links

Nk Nodes in network k∈K, ⋃k∈KNk=N

Lk Links in network k∈K, ⋃k∈KLk=L
Rk Available resources for network k∈K
Nk

s Supply nodes in network k∈K, Nk
s⊆N

k

Nk
d Demand nodes in network k∈K, Nk

d⊆N
k

N′k Disrupted nodes in network k∈K, N′k⊆Nk, ⋃k∈KN′k=N′
L′k Disrupted links in network k∈K, L′k⊆Lk, ⋃k∈KL′k=L′
Ψ Interdependent nodes (i.e., i; kð Þð ; i ; k

� �Þ∈Ψ indicates that node i∈Nk in network k∈K requires node i∈
Nk in network k∈K to be operational)

Table 2 Parameters of the restoration model for network k ∈K

ski Supply capacity at node i∈Nk
s

dki Demand at node i∈Nk
d

ckij Capacity of link (i, j)∈Lk

Qk
o Total slacks at all demand nodes in before the disruption

Qk
d Total slacks at all demand nodes in after the disruption

f kij Unitary flow cost through link (i, j)∈Lk

pkit Penalty of unmet demand in node i∈Nk
d at time t∈T

gkit Fixed restoration cost for node i∈N′k at time t∈T
hkijt Fixed restoration cost for link (i, j)∈L′k at time t∈T
γkit Restoration rate of node i∈N 0

k at time t∈T, γkit∈ 0; 1½ �
δkijt Restoration rate of link (i, j)∈L′k at time t∈T, δkijt∈ 0; 1½ �
yki0 Initial operational status of node i∈N 0

k after a disruption

zkij0 Initial operational status of link (i, j)∈L′k after a disruption
aki Number of units in node i∈Nk, aki ∈

þ

bkij Number of units in link (i, j)∈Lk, bkij∈þ
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reduced to 0 (i.e., no flow can go thought this component until it is restored).
Accordingly, the model tries to retain the optimal configuration of the network prior
to the occurrence of the disruptive event with the goal of enhancing the resilience
measure of the system of networks to a desired level with the minimum cost associated
with the restoration process. Hence, there could be some disrupted components that are
not restored if they have no influence on the resilience of the system or their restoration
cost is higher than what they could save in flow cost. As a result, the flow from a supply
node to a demand node could go through a different route than the route used prior to
disruption and may change at any point during the restoration.

3.3 Objectives

The proposed mathematical model for solving the INRP focuses on optimizing
two main objectives: (i) maximizing a measure of resilience for the collective set
of networks, and (ii) minimizing the total costs associated with the restoration
process. The two objectives are explained in more detail in the following
sections.

3.3.1 Resilience Objective

The authors assume that resilience is a function of unmet demand, qkit, or the extent to
which demand in node i of network k is not being met at time t considering a reduction
in performance of disrupted networks components; hence network performance is
based on multiple different disruption scenarios. Accordingly, slacks represent the loss
in the maximum flow, and reducing them to a desired level represents a means to
measure the effectiveness of the restoration process. Hence, the first objective function,
the resilience of the system of interdependent infrastructure networks, is represented
mathematically by Eq. (2), where μk

t is the weight of network k ∈K at time t ∈ T.
Moreover, Qk

o refers to the total original slacks at all demand nodes in network k ∈K at

time t0 and Qk
d refers to the total slacks at all demand nodes in network k ∈K at time td

following a disruptive event, e j, as shown in Fig. 1. Hence, Qk
d−∑i∈Nk

d
qkit

� �
represents

Table 3 Decision variables of the restoration model for network k ∈K at time t ∈ T

ukit Amount of supply at node i∈Nk
s

qkit Amount of unmet demand, called slack, at node i∈Nk
d

xkijt Amount of flow through link (i, j)∈Lk

ykit A continuous variable that represents the status of node i∈Nk

zkijt A continuous variable that represents the status of link (i, j)∈L′k

αk
it Number of operational units in node i∈Nk

βk
ijt Number of operational units in link (i, j)∈L′k

vkrit A binary variable that equals 1 if work crew r∈Rk is working on the restoration of node i∈N′k; and 0
otherwise

wkr
ijt A binary variable that equals 1 if work crew r∈Rk is working on the restoration of link (i, j)∈L′k; and 0

otherwise
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the recovery of network k ∈K at time t ∈ T and Qk
d−Q

k
0

� �
represents the total loss in

network k ∈K following a disruptive event.

max ∑
k∈K

∑
τ

t¼1
μk
t

Qk
d−∑i∈Nk

d
qkit

Qk
d−Q

k
o

" #
ð2Þ

Equation (2) represents an improvement to the resilience-driven objective function
from Almoghathawi et al. (2019) and Almoghathawi and Barker (2019), in which the
dynamics of recovery was not captured.

3.3.2 Cost Objective

Three different costs associated with the restoration process are considered in the
optimization model for solving the INRP: (i) flow cost, (ii) disruption cost (i.e.,
penalties of unmet demand), and (iii) restoration cost. The flow cost is a unitary cost
for the flow through link (i, j) ∈ Lk in network k ∈K. The disruption cost is a unitary cost
of unmet demand at node i∈Nk

d in network k ∈K. The restoration cost is a fixed cost for
restoring node i ∈N′k and link (i, j) ∈ L′k in network k ∈K based on their restoration

rates, γkit and δkijt, respectively. Hence, the system cost (second objective function) can

be represented mathematically by Eq. (3).

min ∑
k∈K

∑
t∈T

∑
i; jð Þ∈Lk

f kijx
k
ijt þ ∑

i∈Nk
d

pkitq
k
it þ ∑

r∈Rk

∑
i∈N 0

k

gkitγ
k
itv

kr
it þ ∑

i; jð Þ∈L0k
hkijtδ

k
ijtw

kr
ijt

24 350@ 1A ð3Þ

Not explicitly considered in the cost objective is the travel cost of work crews (e.g.,
from optimal resource location sites (Mooney et al. 2019)). However, the current model
could be extended to consider it, by keeping track of the origin and destination of each
work crew.

3.4 Constraints

Several sets of constraints are considered in the proposed optimization model
for solving the INRP: (i) network flow constraints, (ii) restoration constraints,
(iii) interdependence constraints, (iv) logical link constraints for the network
flow with restoration, and (v) constraints governing the nature of the decision
variables. All sets of constraints are explained and formulated in the following
sections.

3.4.1 Network Flow Constraints

For each infrastructure network, the flow conservation at each of its (i) supply nodes,
i∈Nk

s , (ii) transshipment nodes, i∈Nkn Nk
s ;N

k
d

� �
, and (iii) demand nodes, i∈Nk

d is
represented by constraints (4),(5), and (6), respectively. Constraints (7) ensure that
the flow through link (i, j) ∈ Lk in network k ∈K at time t ∈ T does not exceed its
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capacity. Constraints (8) ensure that the amount of slack or unmet demand, qkit, at node
i∈Nk

d in network k ∈K at time t ∈ T does not exceed the required demand at that node.

∑
i; jð Þ∈Lk

xkijt− ∑
j;ið Þ∈Lk

xkjit ¼ ukit;∀i∈N
k
s ; k∈K; t∈T ð4Þ

∑
i; jð Þ∈Lk

xkijt− ∑
j;ið Þ∈Lk

xkjit ¼ 0;∀i∈Nkn Nk
s∪N

k
d

� �
; k∈K; t∈T ð5Þ

∑
i; jð Þ∈Lk

xkijt− ∑
j;ið Þ∈Lk

xkjit−q
k
it ¼ −dki ;∀i∈N

k
d; k∈K; t∈T ð6Þ

xkijt−c
k
ij≤0;∀ i; jð Þ∈Lk ; k∈K; t∈T ð7Þ

qkit−d
k
i ≤0;∀i∈N

k
s ; k∈K; t∈T ð8Þ

In this work, we consider a single link between any two nodes in a network (i.e., in
each direction). That is, a multigraph scenario is not considered where there exists more
than one link between the same two nodes and some of which could be redundant.
However, they could be incorporated in the proposed model by creating duplicates of
the relevant nodes and links, and then create a one-to one interdependency between
those two nodes.

3.4.2 Restoration Constraints

Work crew r ∈ Rk in infrastructure network k ∈K can work on the restoration of a single
disrupted network component, node i ∈N′k or link (i, j) ∈ L′k, as shown in constraints
(9). Constraints (10) and (11) ensure that for network k ∈K, only a single work crew is
assigned to work on the restoration of node i ∈N′k and link (i, j) ∈ L′k, respectively, at
time t ∈ T. The recovery status of node i ∈N′k and link (i, j) ∈ L′k in network k ∈K is
determined by constraints (12) and (13), respectively, which represent the status of the
disrupted components after the occurrence of a disruptive event along with the recovery
progress of these disrupted components by the available work crews in that network.

∑
i∈N 0k

vkrit þ ∑
i; jð Þ∈L0k

wkr
ijt ≤1;∀k∈K; t∈T ; r∈R

k ; ð9Þ

242 Almoghathawi Y., González A. D., Barker K.



∑
r∈Rk

vkrit ≤1;∀i∈N
0k ; k∈K; t∈T ð10Þ

∑
r∈Rk

wkr
ijt ≤1;∀ i; jð Þ∈L0k ; k∈K; t∈T ð11Þ

ykit ≤y
k
i0 þ ∑

r∈Rk

∑
t

l¼1
γkilv

kr
il ;∀i∈N

0k ; k∈K; t∈T ð12Þ

zkijt ≤z
k
ij0 þ ∑

r∈Rk
∑
t

l¼1
δkijlw

kr
ijl;∀ i; jð Þ∈L0k ; k∈K; t∈T ð13Þ

3.4.3 Interdependence Constraints

The physical interdependence among the different infrastructure networks is captured

by constraints (14). This set of constraints ensure that for a node i∈Nk in network k∈K
to be operational at time t ∈ T, node i ∈Nk in network k ∈K must be operational at time
t ∈ T as well, where i; kð Þð ; i ; k

� �Þ∈Ψ .
yk
it
−ykit ≤0;∀ i; kð Þ; i ; k

� �� �
∈Ψ ; t∈T ð14Þ

In this work considerate is assumed that for a dependent node to be operational, the other
node or nodes upon which it depends must be operational. However, the proposed
model could be easily generalized by adding a new parameter that captures all different
cases of interdependencies (González et al. 2016): (i) a node can be operational if the
other node or set of nodes that it depends on is operational, (ii) a node can be operational
if at least one of the nodes that it depends on is operational, (iii) a node can be operational
if a specific node or group of nodes from the set of the nodes that it depends on is
operational, and (iv) a node depends partially on the functionality of a set of nodes.

3.4.4 Logical Link Constraints of Network Flow to Restoration

The number of operational units, αk
it and βk

ijt, in node i ∈N′k and link (i, j) ∈ L′k in

network k ∈K at time t ∈ T, respectively, are based on their operational state and
determined by constraints (15) and (16), respectively. For example, in a transportation
network, if a highway has four lanes, then the number of units in this highway will be
four where each lane represents 25% of that highway. So, if the highway is completely
disrupted and then recovered 50%, then two lanes will be operational. However, if it is
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60% recovered, then again still two lanes will be working until the link is 75%
recovered such that a third lane will then be available, and so on. Hence, the amount
of supply at node i∈Nk

s in network k ∈K could be affected by how many units are
operational at that node, as governed by constraints (17). Also, the flow through link (i,
j) ∈ Lk in network k ∈K is determined by the capacity of the link as well as the number
of the operational units in the nodes at both ends on that link as shown in constraints
(18) and (19). Furthermore, the capacity of link (i, j) ∈ L′k in network k ∈ K is
determined by the number of the operational units in the link itself which is captured
by constraints (20).

aki y
k
it ≥α

k
it;∀i∈N

0k ; k∈K; t∈T ð15Þ

bkijz
k
ijt ≥β

k
ijt;∀ i; jð Þ∈L0k ; k∈K; t∈T ð16Þ

ukit−s
k
i αk

it=a
k
i

� �
≤0;∀i∈Nk

s ; k∈K; t∈T ð17Þ

xkijt−c
k
ij α

k
it=a

k
i

� �
≤0;∀ i; jð Þ∈Lk ; i∈Nk ; k∈K; t∈T ð18Þ

xkijt−c
k
ij αk

jt=a
k
j

� �
≤0;∀ i; jð Þ∈Lk ; j∈Nk ; k∈K; t∈T ð19Þ

xkijt−c
k
ij βk

ijt=b
k
ij

� �
≤0;∀ i; jð Þ∈L0k ; k∈K; t∈T ð20Þ

3.4.5 Constraints on the Nature of Decision Variables

For infrastructure network k ∈K, the amount of supply, skit, slack for unmet demand,

slkit, and flow through link (i, j) ∈ Lk, xkijt, must be non-negative at time t ∈ T, as shown in
constraints (21), (22), and (23), respectively. Constraints (24) and (25) represent the
status of node i ∈N′k and link (i, j) ∈ L′k in network k ∈K at time t ∈ T, respectively,
which is continuous depending on the magnitude of damage occurred at each one of
them and their recovery progress. The number of operational units in node i ∈Nk and
link (i, j) ∈ L′k in network k ∈K at time t ∈ T must be non-negative integer, see con-
straints (26) and (27), respectively. Finally, constraints (28) and (29) represent the
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binary restoration variables for node i ∈N′k and link (i, j) ∈ L′k in network k ∈K at time
t ∈ T, respectively.

ukit ≥0;∀i∈N
k
s ; k∈K; t∈T ð21Þ

qkit ≥0;∀i∈N
k
s ; k∈K; t∈T ð22Þ

xkijt ≥0;∀ i; jð Þ∈Lk ; k∈K; t∈T ð23Þ

0≤ykit ≤1;∀i∈N
k ; k∈K; t∈T ð24Þ

0≤zkijt ≤1;∀ i; jð Þ∈L0k ; k∈K; t∈T ð25Þ

αk
it∈ 0f g∪ℤþ;∀i∈Nk ; k∈K; t∈T ð26Þ

βk
ijt∈ 0f g∪ℤþ;∀ i; jð Þ∈L0k ; k∈K; t∈T ð27Þ

vkrit ∈ 0; 1f g;∀i∈N 0k ; k∈K; t∈T ; r∈Rk ð28Þ

wkr
ijt∈ 0; 1f g;∀ i; jð Þ∈L0k ; k∈K; t∈T ; r∈Rk ð29Þ

4 Illustrative Example

In this section, the proposed optimization model to solve the INRP is illustrated through
a realistic, well-known case in the literature, system of interdependent infrastructure
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networks in Shelby County, TN, in the United States. This county, which contains the
city of Memphis, is constantly under earthquake hazard due to its proximity to the New
Madrid Seismic Zone. Hence, in this example, we study the restoration strategies of
such system considering the impact on it by multiple hypothetical earthquakes.

4.1 Data

The system of networks considered in this paper consists of two interdependent
infrastructure networks in Shelby County, TN: water and power. The topologies used
were adapted from González et al. (2016) and Hernandez-Fajardo and Dueñas-Osorio
(2011). In particular, there are 256 network components that form this system of
interdependent networks (i.e., 109 nodes and 147 links). The water network is com-
posed of 49 nodes and 71 links, while the power network is composed of 60 nodes and
76 links. The two infrastructure networks are shown in Fig. 2.

4.2 Experiment

This work explores the four different magnitudes for hypothetical earthquake scenarios
in Shelby County, TN presented by González et al. (2016), Mw ∈ {6, 7, 8, 9}, consid-
ering the different failure probabilities of each component (node or link) in the system
of interdependent networks with each hypothetical earthquake scenario. Accordingly,
the average number of the disrupted network components, as well as their percentage of
the total number of components for the system of interdependent infrastructure net-
works, for each hypothetical earthquake scenario, considering 1000 disaster realizations
for each magnitude, are shown in Table 4.

In this work, the demands at node i∈Nk
d in network k ∈K is assumed proportional to

the population surrounding it (González et al. 2016). Also, the unitary flow cost and
fixed restoration cost for link (i, j) ∈ Lk and (i, j) ∈ Lk, respectively, are assumed
proportional to their lengths. Moreover, the cost of unmet demand (i.e., disruption
cost) in node i∈Nk

d is considered to be greater than the maximum feasible total flow and
restoration costs to set the priorities for the restoration strategy of the proposed model
(i.e., satisfying the unmet demand first). In addition, the number of units in each of the
network components is considered to be equal 1, (i.e., aki , b

k
ij =1). That is, a disrupted

network component will not be operational unless it is fully restored. It is assumed that

μk = 1/ ∣K∣, τ = 18, Rk = 6, and γkit; δ
k
ijt∼U 0; 1ð Þ. Naturally, the chosen values of the

parameters considered in this work could easily accommodate other assumptions to
reflect more realistic operating and accounting scenarios. The proposed optimization
model was solved using Python 2.7 with Gurobi 7.5. Figure 3 illustrates the improve-
ment of the interdependent network resilience measure throughout the restoration
process for the four different hypothetical earthquake scenarios from Table 4.

As stated earlier in Section 2.1, the proposed optimization model for solving the
INRP focuses on enhancing the resilience of the interdependent infrastructure
networks to regain their performance level prior to the disruption. Hence, the
disrupted networks components might: (i) not all be restored, especially if they do
not influence the resilience of the other networks, or (ii) restored partially, if they
could be functioning partially. This point is illustrated in Fig. 4 for the example of

246 Almoghathawi Y., González A. D., Barker K.



the system of interdependent infrastructure networks in Shelby County, TN, con-
sidering different magnitudes of hypothetical earthquakes, Mw ∈ {6, 7, 8, 9}.
Figure 4 shows: (i) the cumulative number of restored components over the

Fig. 2 Graphical representations of the, a power, b water, and c interdependent water and power networks in
Shelby County, TN (adapted from González et al. 2016)
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restoration time horizon, and (ii) the percentage of the number of restored compo-
nents to the number of disrupted components, for a disaster realization for each
hypothetical earthquake scenario. Observed from Fig. 4 is that not all the disrupted
components are restored for the system of interdependent infrastructure networks
(i.e., 4 components are restored (40.0%) with Mw = 6, 19 components are restored
(70.4%) with Mw = 7, 36 components are restored (72.0%) with Mw = 8, and 56
components are restored (67.5%) with Mw = 9).

5 Exploring Different Recovery Considerations

As shown in Section 3.1, the proposed optimization model for solving the INRP takes
into account some assumptions and considerations related to the assignment of work
crews and the functionality of network components. However, this section offers some
extensions, considerations, and strategies to those assumptions and considerations, that
could be incorporated in the proposed optimization model.

5.1 Recovery Acceleration

In the proposed optimization model, it is assumed that only a single work crew can
work on restoring a disrupted component at time t ∈ T. However, since some network

Table 4 Disruption size considering different magnitudes for hypothetical earthquake scenarios

Magnitude N′∪L′ Disruption percentage

6 13 5.08%

7 31 12.11%

8 58 22.66%

9 90 31.16%

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

R
e
s
il
ie
n
c
e

Time

Fig. 3 Network resilience with hypothetical earthquakes of different magnitudes
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components could be critical and have high influence on their performance (or the
performance of other networks), having multiple work crews working on restoring
them at the same time could help in expediting the restoration process for the compo-
nents themselves as well as their networks. In addition, the number of work crews that
can work at the same time could differ from one time to another according to the
criticality and the need as determined by decision makers. Hence, to allow for such
consideration, constraints (10) and (11) are replaced by constraints (30) and (31),

respectively, where θki is the maximum number of work crews allowed to work at
the same time on node i ∈N′k in network k ∈K at t ∈ T. Similarly, ρkij is the maximum

number of work crews allowed to work at the same time on link (i, j) ∈ L′k in network
k ∈K at t ∈ T.

∑
r∈Rk

vkrit ≤θ
k
it;∀i∈N

0k ; k∈K; t∈T ð30Þ

Fig. 4 Restored network components over time in terms of a magnitude (bars) and b percentage (lines) with
hypothetical earthquakes of different magnitudes
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∑
r∈Rk

wkr
ijt ≤ρ

k
ijt;∀ i; jð Þ∈L0k ; k∈K; t∈T ð31Þ

Figure 5 shows the improvements of the resilience of the interdependent networks with
the recovery progress considering two scenarios where (i) a single work crew (referred
to as “one WC”), and (ii) multiple work crews (or “multiple WCs”) can work on node
i ∈N′k or link (i, j) ∈ L′k in network k ∈K at time t ∈ T. For illustrative purposes, each
disrupted network component is assumed to have the option of having any number of
the available work crews to work on its restoration at the same time at any time, that is

θkit and ρkijt are equal to the number of the available work crews in network k ∈K (i.e.,

θkit, ρ
k
ijt= κ). Moreover, four different magnitudes for hypothetical earthquake scenarios

are considered (i.e., Mw ∈ {6, 7, 8, 9}) as shown in Fig. 5. As it can be observed from
Fig. 5, the difference in the resilience measure of the interdependent networks between
the two work crew assignment strategies reduces as the disruption is larger. Hence,
though assigning multiple work crews to the same disrupted network component could
aid in faster recovery, there are more critical network components that need to be
restored to achieve a higher level of resilience. Therefore, different work crews are
assigned to different disrupted network components, not the same component.

5.2 Network Components Functionality

Recall that aki and bkij represent the number of units in node i ∈Nk and link (i, j) ∈ Lk in
network k ∈K, respectively. Such numbers of units could be one or multiple depending
on the nature of the network and the functionality of its components. Accordingly, the
number of unit in a network component could be one if the network component cannot

Fig. 5 Network resilience considering different work crew scenarios with hypothetical earthquakes of
magnitude a Mw= 6, b Mw= 7, c Mw= 8, and d Mw= 9
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be operational until it is completely restored. On the other hand, there could be multiple
units in a network component if the component can be functioning partially following a
disrupted event if it is not completely disrupted or after a partial recovery. While the initial
illustration in Fig. 3 assumed that the number of units in each component was 1, it could be
assumed that aki ; b

k
ij∼U 1; 4ð Þ such that they could be functioning partially when they are

partially disrupted or partially recovered. Although the values of these parameters (i.e., for
aki and b

k
ij) are considered for illustrative purpose, other assumptions could be captured by

the proposed model to reflect a more realistic network scenario. Figure 6 shows the
improvement in the resilience of the interdependent networks with the recovery progress
considering two assumptions: (i) aki ; b

k
ij ¼ 1, “one unit”, and (ii) aki ; b

k
ij∼U 1; 4ð Þ, “multi-

ple units”, for node i ∈Nk and link (i, j) ∈ Lk in network k ∈K, respectively. In this work,
we consider one scenario for the number of multiple units considered for nodes and links
(i.e., the number of multiple units for any component is not changing from time to time,
rather it is considered the same throughout the whole study).

As shown in Fig. 6, considering partial functioning of the disrupted networks components
results in a better level of resilience for the of the system of interdependent networks through
the recovery time horizon. However, the two different assumptions reach to the level of
having a fully resilient system of interdependent networks at the same time. It should be noted
that the notion of a “units” is a function of the type of network not a recovery strategy, and that
the illustration in Fig. 6 may not be appropriate for actual water and electric power networks.

5.3 Recovery Task Assignment

As discussed in Section 5.1, the proposed optimization model for solving the INRP
assures that only one work crew is working to restore node i ∈N′k or link (i, j) ∈ L′k in

Fig. 6 Network resilience considering different recovery (i.e., number of units) assumptions with hypothetical
earthquakes of magnitude a Mw= 6, b Mw= 7, c Mw= 8, and d Mw= 9
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network k ∈K at time t ∈ T. However, there could be different work crews working on
the same network component at different time periods, especially when the restoration
rate and cost are specific to the work crew. To illustrate this idea, the authors consider
work crew-based restoration costs and rates shown in Table 5.

To assign restoration tasks of a network component that requires multiple time
periods for its restoration to the same work crew, new assignment variables must be
added. These decision variables are used to assign the recovery tasks of node i ∈Nk or

link (i, j) ∈ Lk in network k ∈K to the available work crews. Hence, bvkri is a binary
variable that equals 1 if node i ∈N′k in network k ∈K is assigned to work crew r ∈ Rk;

and 0 otherwise. Similarly, bwkr
ijl is a binary variable that equals 1 if link (i, j) ∈ L′k in

network k ∈K is assigned to work crew r ∈ Rk; and 0 otherwise. As such, constraints
(32)–(35) are added to the proposed model.

vkrit ≤bvkri ;∀i∈N 0k ; k∈K; t∈T ; r∈Rk ð32Þ

wkr
ijt ≤bwkr

ij ;∀ i; jð Þ∈L0k ; k∈K; t∈T ; r∈Rk ð33Þ

∑
r∈Rk

bvkri ≤1;∀i∈N
0k ; k∈K ð34Þ

∑
r∈Rk

bwkr

ij ≤1;∀ i; jð Þ∈L0k ; k∈K ð35Þ

Though only a single work crew can work on node i ∈ N′k or link (i, j) ∈ L′k in
network k ∈ K at time t ∈ T (i.e., the original assumption of the proposed
optimization model), two strategies are considered for the work crew assignment:
(i) the same work crew works on the same disrupted network component at any time
(referred to as “same WC”), and (ii) different work crews could work on the same
disrupted network component at different time periods (or “different WCs”).
Figure 7illustrates the improvement in the resilience of the interdependent networks

Table 5 Modified restoration parameters for work crew r ∈ Rk in network k ∈K

gkrit Fixed restoration cost for node i∈N′k at time t∈T
hkrijt Fixed restoration cost for link (i, j)∈L′k at time t∈T
γkrit Restoration rate of node i∈N 0

k at time t∈T, γ
kr
it ∈ 0; 1½ �

δkrijt Restoration rate of link (i, j)∈L′k at time t∈T, δkrijt∈ 0; 1½ �
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with the recovery progress for these two strategies considering γkrit ; δ
kr
ijt∼U 0; 1ð Þ. The

resilience measure for the system of interdependent networks is very similar for
both strategies, as shown in Fig. 7, and that is due to the number of units being
equal to 1 (i.e., aki , b

k
ij =1). That is, a disrupted network component will not be

operational unless it is fully restored. However, since the authors are considering
different restoration rates for different work crews, which result in different resto-
ration cost for the disrupted network components accordingly, the restoration cost
for both strategies are compared. Hence, Fig. 8 shows the restoration cost for both
strategies, normalized by the lowest restoration cost (i.e., considering the original
assumption, different work crews, of the proposed optimization model), where the
steady state of the cost indicates that the system of interdependent networks has
reached the maximum level of resilience (i.e., Я = 1 for the example). Considering
different work crews to restore a network component at different time periods could
result in a lower restoration cost due to the different recovery rates of the available
work crews, as shown in Fig. 8. The difference in the restoration cost between the
two strategies for work crew assignment reduces as the disruption worsens, which is
due to the size of the disruption (i.e., number of disrupted network components) and
the number of available work crews during the recovery process.

In general, the variation in the improvement of the interdependent network
resilience measure depends on: (i) the status (i.e., disruption size) of the
disrupted networks components as well as their networks, (ii) the nature of the
interdependency among the infrastructure networks, (iii) the number of available
work crews for each infrastructure network, and (iv) and variation in the resto-
ration rates for the work crews; hence the variation in restoration costs of the
disrupted networks components.

Fig. 7 Network resilience considering different work crew (WC) assignment strategies with hypothetical
earthquakes of magnitude a Mw= 6, b Mw= 7, c Mw= 8, and d Mw= 9
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5.4 Recovery Process

There are two different cases for the recovery process of the disrupted network
component regarding the work crews: (i) preemptive recovery, and (ii) non-
preemptive recovery. The proposed optimization model for solving the INRP considers
the preemptive recovery process, where a work crew can move from one disrupted
component to another in different time periods without having achieved full restoration
of the previous disrupted component (e.g., a work crew can work on the restoration of
node i ∈N′k in network k ∈K at time t ∈ T and then work on the restoration of node j ∈
N′k in network k ∈K at time t + 1 ∈ T). However, for a non-preemptive recovery process,
a work crew is not allowed to move from a disrupted component to another unless they
complete the restoration of the previous one. To consider a non-preemptive recovery
process with the assumption that the disrupted network components need to reach a
desired level of functionality, new parameters are added to represent the recovery
durations of the disrupted components to reach a desired level of recovery. Hence,
mk

i is the recovery duration for node i ∈N′k in network k ∈K (i.e., mk
i ¼ ζki −yki0

� ��
=γkrit e) where ζki ∈ 0; 1½ � is the desired level of functionality for node i ∈N′k in network

k ∈K (i.e., ζki ≥yki0). Likewise, nkij is the recovery duration for link (i, j) ∈ L′k in network

k ∈K (i.e., nkij ¼ ηkij−zkij0
� �l

=δkrijte) where ηkij∈ 0; 1½ � is the desired level of functionality

for link (i, j) ∈ L′k in network k ∈K (i.e., ηkij≥zkij0). That is, the recovery duration of a

disrupted component represents the required number of time periods that a work crew
needs to work on the restoration of that disrupted component until it reaches a desired
level of recovery based on the restoration rate per time period (i.e., the percentage of
recovery of that disrupted component that can be accomplished during time period t by

Fig. 8 Normalized restoration cost considering different work crew (WC) assignment strategies with hypo-
thetical earthquakes of magnitude a Mw= 6, b Mw= 7, c Mw= 8, and d Mw= 9
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that work crew). For example, if the desired level of recovery is 100%, the status of the
disrupted component after a disruption is 0%, and the restoration rate is 25%, the
recovery duration of that disrupted component is 4 time periods [(100–0)/25]=4, and so
on. Since the proposed optimization model is dealing with time periods for the
restoration duration of the disrupted components, the recovery durations for the
disrupted nodes and links (i.e., mk

i and nkij, respectively) are rounded up to the nearest

integer value. Moreover, constraint (9) is replaced by constraint (36) with the consid-
eration of the recovery tasks assignment constraints in Section 5.3.

∑
i∈N 0k

∑
min τ ;tþmk

i −1f g
l¼t

vkril =m
k
i þ ∑

i; jð Þ∈L0k
∑

min τ ;tþnkij−1f g
l¼t

wkr
ijl=n

k
ij≤1;∀k∈K; t∈T ; r∈R

k ð36Þ

Similar to the result in Section 5.3, the interdependent network resilience measure is
very similar for the two different recovery process assumptions due to the number of
units being equal to 1 (i.e., aki , b

k
ij =1). Figure 9 shows the restoration cost considering the

two different cases for the recovery process (preemptive and non-preemptive recovery
processes) normalized by the restoration cost resulting from the original preemptive
assumption. Hence, considering a preemptive recovery assumption during the recovery
process could lead to a lower restoration cost over time, as shown in Fig. 9. Moreover,
the difference in the restoration cost of the two assumptions by the work crew is small as
each of the disrupted network components in this example has one unit only (i.e., a
disrupted network component cannot be operational unless it is completely restored).

On the other hand, when the disrupted network components have multiple units each
(i.e., they can be functioning partially), the difference in the restoration cost could be
substantial. In addition, the resilience measure for the system of interdependent

Fig. 9 Normalized restoration cost considering different assumptions for the recovery process with hypothet-
ical earthquakes of magnitude a Mw= 6, b Mw= 7, c Mw= 8, and d Mw= 9
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networks could be different when considering preemptive and non-preemptive assump-
tions since the disrupted network components could be functioning partially or have
some partial recovery.

6 Concluding Remarks

This paper explores the interdependent network restoration problem (INRP), which
seeks to find the minimum-cost restoration strategy of a system of interdependent
networks following the occurrence of a disruptive event that enhances its resilience
considering the availability of time and resources, and then proposes an optimization
model to solve this problem. In particular, the proposed model: (i) prioritizes the
restoration of the disrupted components for each infrastructure network, and (ii) assigns
and schedule the prioritized networks components to the available work crews, such
that the resilience of the system of interdependent infrastructure networks is enhanced
considering the physical interdependency among them. Moreover, the proposed opti-
mization model provides the status of the disrupted network components over the
recovery trajectory (i.e., the percentage of a disrupted component that is recovered at
the end of each time period). In addition, in case a disrupted component can function
partially, the proposed model provides the percentage of its functionality depending on
the nature of the disrupted component.

The proposed optimization model for solving the INRP considers: (i) partial disrup-
tions for the disrupted network components, (ii) partial recovery of the disrupted
network components, and (iii) partial dependence between nodes in different networks.
Furthermore, four different recovery strategies considering different assumptions re-
garding work crew assignment and recovery process have been explored. These
strategies include: (i) recovery acceleration (i.e., assigning more than one work crew
to restore the same disrupted component at the same time), (ii) network component
functionality (i.e., recovering a disrupted component partially), (iii) recovery tasks
assignment (i.e., assigning the same work crew to recover a disrupted component at
any time), and (iv) recovery process (i.e., considering a preemptive or non-preemptive
recovery process).

The proposed optimization model is illustrated with a realistic system of interde-
pendent power and water infrastructure networks in Shelby County, TN. These inter-
dependent infrastructure networks are located in the New Madrid Seismic Zone, which
puts them at risk of earthquake hazards. Accordingly, different magnitudes for hypo-
thetical earthquake scenarios of magnitudes, Mw ∈ {6, 7, 8, 9}, are considered to study
the restoration strategies of such system considering the impact on it by the multiple
hypothetical earthquake scenarios. Since the proposed optimization model focuses on
enhancing the resilience of the system of interdependent networks to retain their
performance level prior to the disruption, not all the disrupted networks components
might be restored. In addition, different recovery strategies could have different impacts
on the improvement of the resilience of set of the interdependent networks along with
the recovery progress or the restoration cost of the disrupted components. Moreover,
several other factors could affect the progress of improvement for the resilience of the
system of interdependent infrastructure networks, the recovery time of the system, and
the total cost associated with the recovery process: (i) the disruption size, (i.e., number
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of disrupted components in each infrastructure network), (ii) the nature of the interde-
pendencies among the infrastructure networks, (iii) the recovery durations of the
disrupted components and (iv) the number of available work crews for each infrastruc-
ture network during the restoration process (i.e., the number of available work crews,
the restoration rate of each work crew). Furthermore, the available time and budget for
the restoration process can decide the maximum level of resilience that the system of
interdependent infrastructure networks can reach.

As for future work, the proposed model could be extended to consider the location of
facilities from which work crews dispatch to the locations of their assigned disrupted
networks components. That is, finding the optimal location of these facilities from a set of
candidate sites considering the cost of establishing such facilities along with the travel
distance and cost for the work crews. In addition, the proposed model considers the
physical interdependency among infrastructure networks. However, other types of inter-
dependency could be considered such as geographical interdependency. Geographical
interdependency could be incorporated in the proposed model by considering the prepa-
ration of spaces that are shared by disrupted components from multiple interdependent
infrastructure networks prior to the commencement of their restoration activities. Further-
more, instead of assigning the same weight to each infrastructure network to determine the
resilience of the system of interdependent networks, a new method could be utilized for
trading off one infrastructure network versus another and their weights could be adjusted
accordingly. We will explore restoration priorities, including a sensitivity analysis of
network and component weights, as well as exploring component importance measures
for focusing restoration efforts (Almoghathawi and Barker 2019). Moreover, the proposed
model could be extended to quantify objectives related not just to infrastructure resilience
but also to the economic impact onmultiple industries (Darayi et al. 2017) or the resilience
of the communities that interact with these infrastructure networks. Additionally, the
proposed model and recovery strategies could be extended to account for cascading
disruptions that could be resulted from partially disrupted network components. Finally,
a solution approach for the proposed model could be developed provide optimal -or near
optimal- results in a faster time, particularly for very large-scale systems of interdependent
networks. Finally, studying the vulnerability of the components in each infrastructure
network could help in identifying those that are critical to reinforce or protect prior to any
disruption, thus potentially leading a shorter time to achieve full resilience as well as a
lower cost associated with the restoration process. Therefore, a tradeoff between the
vulnerability and restoration of the interdependent infrastructure networks could be
studied to find the optimal strategy for investment.
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