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Abstract
Complex network theory is a multidisciplinary research direction of complexity science
which has experienced a rapid surge of interest over the last two decades. Its applica-
tions in land-based urban traffic network studies have been fruitful, but have suffered
from the lack of a systematic cognitive and integration framework. This paper reviews
complex network theory related knowledge and discusses its applications in urban
traffic network studies in several directions. This includes network representation
methods, topological and geographical related studies, network communities mining,
network robustness and vulnerability, big-data-based research, network optimization,
co-evolution research and multilayer network theory related studies. Finally, new
research directions are pointed out. With these efforts, this physics-based concept will
be more easily and widely accepted by urban traffic network planners, designers, and
other related scholars.
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1 Introduction

The importance of urban traffic network studies to urban economic and social devel-
opment is self-evident. The most far-reaching impact on the modern urban form has
been the development of traffic technologies such as the automobile, highway, metro
and subway. The expansion of these urban traffic networks have shaped the morphol-
ogy of modern cities, while the change of urban forms will in turn affect urban traffic
network structures. Here we define an “urban traffic network” as an urban land-based
traffic network, with emphasis on road and rail networks, and it both related with the
traffic flow and infrastructure. Air transport and waterway transport are not included. In
the urban traffic planning process, normally following this basic process: traffic survey,
background prediction, traffic forecasting, layout scheme design, and project evalua-
tion. Moreover, urban traffic network design is the most crucial point of layout scheme
design (Liu 2001), as it fundamentally determines the basis of the future urban
planning, economic development direction, and operational efficiency, while their
functional layout conspicuously affects the urban form (Fig. 1). The development of
traffic networks provides a strong guarantee for steady growth in the urban economy,
and the rational distribution of a traffic network can effectively promote the flow of
urban economic activities (Rodrigue et al. 2013). Due to the stability of urban
development and the difficulty of changing land-use patterns, the research and prove
of how the traffic network topology structure to affect urban traffic distribution has
earned much attention (Ducruet and Lugo 2013; Lammer et al. 2006; Wu et al. 2006a,
2006b). Hence, the designation and choice of new networks layout call for particular
concern.

Complex network theory is a multidisciplinary part of complexity science, which
has seen a surge of interest since Watts and Strogatz (1998) and Barabasi and Albert
(1999) described the collective dynamics of small-world networks, and the emergence
of scaling in random scale-free networks. A small-world network is structured with a

Fig. 1 The linkages between urban traffic networks and urban form
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high clustering coefficient and small average shortest distance, while a scale-free
network is a type of network in which the degree distribution of nodes obeys the
Power-law distribution. Complex networks theory has been widely used and led to
astonishing achievements in Empirical Science and Basic Science, being regarded as a
paradigm representative of complexity system science. It mainly concentrates on the
following aspects: the empirical research of the networks characteristics; network hub
nodes detection; dynamical changing and spreading processes; the seeking and detec-
tion of communities and groups; robustness and vulnerability; and multilayer network
theory and applications. We denote that the terms graph and network, node and vertex,
and link and edge are respectively synonymous in this context.

Research into complex networks provides an affordable and solvable method and
novel insight into analyzing a complex urban system, while urban traffic networks are
continually evolving. The paradigms of the small-world and scale-free networks
changed the stereotyped thinking of urban traffic networks. Before these two models
were proposed, urban traffic networks were normally addressed as either regular
networks or ER random networks (Erdos and Renyi 1960), as inherited from the
definitions of graph theory. However, recently scholars have recognized the importance
of complex network science, including Masud et al. (2008), who treated this theory as
an independent and key chapter in the book Operations Research and Management
Science Handbook. In urban studies, Neal (2012) described in The Connected City:
How Networks are Shaping the Modern Metropolis the application of network science
related indices in this specific direction. Additionally, Batty (2013), in The New Science
of Cities, related his vast experience in urban models and complexity research. Most
recently, Barthelemy (2018) announced his new book Morphogenesis of Spatial
Networks, which not only introduces some basic concepts of complex network theory,
but also introduces the Operations Research based idea “optimization” to the complex
network theory. These works have made significant contributions to the art of the
complex network research in modern urban science. Hence, we believe that the
complex network theory offers huge potential for urban studies.

As a favourable practice, many network analyses based studies have been conducted
to help urban and transportation planners to examine the structures and functions of the
urban traffic networks (Chan 2007; Domenech 2009; Erath et al. 2009; Gao et al. 2006;
Holme 2003; Scheurer et al. 2008; Sen et al. 2003). With an understanding of urban
traffic networks in the context of network science, we can better understand the reasons
for methodical urban form variation and then determine the potential parts of the future
development (Ding et al. 2015), while determining static and dynamic structural
characteristics can provide relevant references to the urban planning, design, optimi-
zation, and sustainable development and maintenance (Barthelemy and Flammini 2008,
2009; Batty 2007, 2012, 2013; Boccaletti et al. 2014; Boccaletti et al. 2006; Morris and
Barthelemy 2012).

The history and basic indicators and functions of such research have been reviewed
by many researchers (Barthelemy 2011; Derrible and Kennedy 2011; Ducruet and
Beauguitte 2014; Gao et al. 2006; Xie and Levinson 2009a). Also discussed was the
origin of graph theory, illustrating that after Euler opened the door of network science,
network science inherited and comprehensively combined with the characteristics of
the Scientific Management, System Science, Cybernetics, Information Technology,
Behavioural Science, Economics, Operations Research, and other disciplines. Based
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on these accomplishments, researchers have begun work on the ultimate goals of this
subject, which are the optimization of the network structure and maximizing network
performance. However, certain novel applications and new directions have been
generated, and some of these reviews did not consider the network growth and
evolution processes, which are critical in urban traffic network planning research;
further, the network optimization methods are not considered. So, on the basis of these
reviews, we aimed to fill these gaps, complement the above-mentioned contents and
complex network knowledge and classifications, and cover their applications in urban
traffic network studies in detail. With the perfection of our efforts, this novel concept in
urban planning may be more easily and widely accepted and used by urban planners,
designers, and other related scholars.

In section 2, inheriting and carrying forward these review papers, we reviewed these
novel applications of complex network theory in urban traffic network studies in
several directions, including network representation methods, topological and geo-
graphical indicators and their applications, the mining of the urban traffic network
communities, the network robustness and vulnerability and their applications, big-data-
based research, the optimization (both structural and flow related optimization), the co-
evolution research and the multilayer network theory with their applications. In the
conclusion, we illustrate the weak points and potential paths for the further research.

2 The Application of Complex Network Theory In Urban Traffic
Network Studies

This paper utilised several channels to identify relevant literature regarding urban traffic
network and complex network theory. Academic databases such as Science Direct
Journals, Scopus, Web of Science, and Google Scholar were utilised. Reference and
citation lists from key papers in the field were checked. Combinations of the following
search terms were used to find the relevant literature: complex network, urban traffic
network, rail network, road or street network. Theoretical studies that did not examine
the urban traffic networks or highlight the major limitations and those complex network
research more emphasise on Physics were excluded from search results. A total of 89
related articles were analysed, with references in Table 3.

Due to the influence and stimulation of the new network science, a new
generation of urban traffic network analysis expanded and developed from the main
spirit of the older ones. Truthfully, whether from a philosophical point of view or
the perspective of sociology, the cognition of the complex network science is based
on such a process. This includes the excavation of foundation structures, the
cognition of basic properties, attribute partition, evolutionary method and perfor-
mance optimization, and ultimately object control. Here, based on the six stages of
division of Haggett and Chorley (1969), the two levels of research of Gattuso and
Miriello (2005), and the five models of Barthelemy (2011), according to the
characteristics of the urban traffic network and the corresponding requirements as
well as cognitive logic, we reviewed most of the research directions of complex
network theory in urban traffic network research. Actually, these research directions
are always associated and it is difficult to divide them. However, they all place
particular emphasis on different points; hence, we should discuss them in detail and
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understand these different techniques. Although this makes this paper appear
segmented, the sections are strongly connected and complementary.

Considering the research topics, in Fig. 2a, we use R, S, B to describe objectives
including rail network, street network, and bus network respectively. We can see that
around forty typical papers analysed street networks. Another hot topic is rail network-
based research, with more than twenty papers having focused on the network properties
of the rail network and its combination with bus network and street network.

After that regarding the representation methods, in Fig. 2b we use P, D, M, and C for
Primal, Dual, Multilayer, and Community approaches respectively. With the simplicity
and authenticity of primal approach, the vast majority of research papers used this
technique to represent spatial networks.

For the basic network models used in references, in Fig. 2c we use R, E, S, W to
represent the regular, ER random network, scale-free, and small world models, respec-
tively. Analysis of these research papers indicates that many works about spatial scale-
free network have been done.

Then in Fig. 2d, we divide the complex network-related urban traffic network
research into several levels in terms of topological and geographic features, network
communities mining, network robustness and vulnerability, network optimization, co-
evolution research, multilayer network theory related studies, weighted research, hub
nodes or important links, network growth, and integrated studies (population, land-use

Fig. 2 Analysis of these related references
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integrated). More than 50% and 90% of these researches focus on the network
topological and geographic features, respectively. Extra efforts should give to the
network communities mining, network robustness and vulnerability, co-evolution
research, and multilayer network theory related studies.

2.1 The Networks Representation Methods

In network science, there are a large number of network representation methods.
Considering spatial networks, there are four basic network representation methods,
which are based on the network topological structure and simplicity of expression.
These methods, known as the primal approach (Space L) and the dual approach (Space
P), are more widely used compared with the multilayer approach (Space M) and the
community approach (Space C).

The primal approach, or Space L method, was recommended by Porta et al. (2006b)
and is the simplest and perceptual intuition method. Distance is measured, while simply
treating intersections as nodes, and streets as edges in the graph. It is easy to connect
with and directly used by the geographic coordinate system-based software like
ArcGIS, some further advanced spatial analysis can be directly applied, but the transfer
information and 3D based connection relationships can hardly represented. This ap-
proach is used by nearly all urban traffic network related analysis, especially when
considering distance (Dolev et al. 2010; Erath et al. 2009; Porta et al. 2009; Wang et al.
2011; Barthélemy and Flammini 2009).

The dual approach, or Space P method, see streets turned into nodes and intersec-
tions as edges. This definition was also proposed by Porta et al. (2006b), who also
discussed the relation between Space Syntax (Hillier 2007; Hillier et al. 1976) and dual
approach, the transfer information is shown intuitively, but when applying to real
projects, it needs additional elaboration and description, it deliberately ignores the
impact of distance. It is widely used when considering decision-making (Curtis and
Scheurer 2010), network transfer or turning ability (Hu et al. 2008), the connectivity
graph of urban streets (Jiang and Claramunt 2004a, 2004b), and network topological
structure-related research (Masucci et al. 2014).

The multilayer approach, or Space M method, was proposed by Buldyrev et al.
(2010) and treats different modes of traffic network as different layers, connected by the
cooperation strength (Ding et al. 2017). It is the closest approach to the real situation, as
the complex relationships between upper-layer and lower-layer can be clearly shown by
one graph; however, the measurement methods are still under development and not as
hot as planar network because of its representation and calculation complexity. Some-
times, it is used for the measure of traffic dynamics on multilayer networks (Du et al.
2014; Gu et al. 2011; Morris and Barthelemy 2012) and its optimization (Du et al.
2016).

The Space C approach is a complementary projection method in which vertices
denote some communities and an edge exists if two communities have at least one
overlapping points. Here, the community may represent assumed communities (like
bus services networks) or real communities, or treat a traffic or activity route as a node
or an edge, it can simplify the measurement from the macro perspectives but
oversimplified from the micro perspective. It is used for bus service networks (Sun
et al. 2015b; Xu et al. 2007) and clustering method simplification (Gleyze 2013).
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2.2 The Topological Indicators and Applications

Within the inevitable limitations and subject to the lower computing ability, limited data
accessibility, and the poorly-developed theories of the time, the pioneers of traffic
network science suffered a limited and heuristic point of view to explore their inner
characteristics. However, some brilliant works have emerged, such as the work of
Garrison and Marble (1961), Kansky (1963), Chorley (1967), Haggett et al. (1977), and
Sheffi (1985), their theories, methods and ideas have continually are still informing
research tendencies. After decades of improvement, scholars now know the particular
factors that affect the traffic hub nodes and network coverage and have identified
evaluation methods to consider both the topology and geography of networks (Garrison
and Marble 1961, 1964; Kansky 1963). This research is grounded on the definition of
network topological indicators (Table 1), which are mainly used to describe the basic
characterises of urban traffic networks.

Certain classical graph theory measure indices remain common and are still widely
used for some particular investigations (Ducruet & Beauguitte 2014). Without consid-
ering the real length and edge weights, Berge (1962), based on the equivalent properties
and characterises of a tree, demonstrated the number of loops, which can be measured
by the function of relations of nodes and edges, Ore (1963) gave a similar definition.
Based on this, Garrison and Marble made notable progress on the basis of network
design. For the description of the potential number of loops and edges, the ratio of
edges versus vertices, labelled as α, γ and β, respectively (Garrison 1960; Garrison and
Marble 1961, 1964). These three widely used indicators in the transport literatures
enable us to better understand different network characteristics. Other indexes like
overlap are also considered in some research (Aleta et al. 2016).

Most urban traffic network studies have illustrated these basic characteristics of
traffic networks. The basic network characteristics of more than 40 worldwide street
networks was measured by Buhl et al. (2006), the 20 largest German urban road
networks were examined by Lammer et al. (2006) and 40 urban street networks in
the USA were topologically measured and tested by Jiang (2007), there are many

Table 1 The topological indicators and applications

Indicators Functions References Related applications

The number
of loops

μ =M −N + s Berge (1962); Ore (1963) Buhl et al. (2006); Lammer et al. (2006);
Jiang (2007); Derrible and Kennedy
(2010a, 2010b); Quintero-Cano (2011);
Quintero et al. (2013)

The potential
number of
loops

α ¼ M−Nþ1
2N−5 Garrison (1960); Garrison and

Marble (1961); Garrison
and Marble (1964)

The potential
number of
edges

γ ¼ M
3 N−2ð Þ

The ratio of
edges
versus
vertices

β ¼ M
N

N is the number of nodes, the number of edges is denoted as M, s is the subgraph number
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related works not listed here. Derrible and Kennedy also made a noteworthy role in
network traffic analysis by using a new methodology to redraw metro networks into
graphs using two indicators: directness and structural connectivity (Derrible and
Kennedy 2010a, 2010b), they characterised 33 metro networks around the world,
reviewed the impact of network size, and discussed the implications for topology.
Quintero et al. (2013) focused on pre-existing network indicators, whereas Kansky
summarised the definitions of transit network properties (Kansky 1963), and in addition
presented several macro-level prediction models for transit infrastructure, traffic net-
work topology, transit route design, and transit performance and operations (Quintero-
Cano 2011).

2.3 The Geographical Indicators and Applications

Haggett and Chorley (1969) offered an early and extensive treatment of networks and
graph-based analysis of geographic networks. Based on the development progress of
graph theory, Peter Haggett defined the six stages in the analysis of nodal regional
systems (Fig. 3) in his book Locational Analysis in Human Geography (Haggett et al.
1977). He believed that regional analysis is the good approach to geography, in which
the results of the spatial and ecological analysis are combined. In other words, that
means networks structure and the human behaviour can be measured in one system.
Typically, these six meaningful processes are part of the fresh context of network
science with a hinge and compared perfectly, the interaction process versus human
behavioural interactions. The networks and nodes processes can be treated as static
network research and its characteristics, while the hierarchies process is most studies
are about network density and centrality. The surface process includes interactions
between urban land-use patterns and network structures. The diffusion process is the
part of network dynamics that considers the co-evolution procedures. Nevertheless, in a
review of those contemporary studies, they also found that network growth research has
been somewhat fragmentary, due to limited computing ability.

Fig. 3 The six stages in the analysis of nodal regional systems. a Interaction. b Networks. c Nodes. d
Hierarchies. e Surfaces. f Diffusion. (adjusted from Haggett et al. 1977)
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Based on traffic flow research, Kansky (1963) recommended the index of, as this
indicator can be used in urban rail transit to measure average passenger flow per station
(see Table 2). He inherited the concepts suggested by Garrison & Marble, while some
relevant indicators are proposed, like the average edge length. The next indicator is,
also known as network extension. In the description of Derrible and Kennedy (2011),
the reason this indicator is named and relates to the calculation of the circumference of
a circle. It is always used to calculate the network density. The next is which is related
with the weight of nodes. We can also expand it to the edges, while can be used when
we only know the weights of the network rather than flows. There are many other
indicators, like the network covering degree and so on. When we design a new or
renew network plan of a specific area, we can compare these indicators in a more direct
way. Gattuso and Miriello (2005) computed most of these indicators of 13 megacities,
then compared and classified them. Similarly, Zhang et al. (2013) discovered the
universal characteristics of urban rail transit networks (URTNs) from six indicators
and calculated the topological efficiency of the network. Boeing analyzed 27,000 urban
street networks in the USA from multi-scale perspectives, with most of these being
geographical indicators (Boeing 2017).

Importantly, the growth of a traffic network not only involves local traffic demand
but also derives from optimising traffic capacity across an entire network. As a result,
concern for the basic structure of urban traffic networks will yield tremendous benefits
in the long run for urban forms and land-use. This process, for now, has been mainly
based on the assessment and analysis of network centralities.

Network centrality assessment is a fundamental concept in geographical network
analysis. It was introduced earlier in the context of social network research (Bracey
1956; Freeman 1977; Smailes 1946). Numerous measurement methods have been
proposed since then, and more recently, the Multiple Centrality Assessments (MCA)
model and Kernel Density Estimation (KDE) methods were well-advised as introduced
by the research group of Sergio Porta, Paolo Crucitti and Vito Latora. They assigned a
family set of measure and quantified the centralities of urban spatial networks, com-
pared with the method of space syntax, as a new alternative technical perspective of
urban planning and design (Crucitti et al. 2006; Latora and Marchiori 2003; Porta et al.
2006a, 2006b, 2008; Porta and Latora 2007; Porta et al. 2012; Porta et al. 2009; Wang
et al. 2011). Over the last decade, the group of Sergio Porta, Paolo Crucitti and Vito
Latora carried out some practical projects to illustrate the MCA and KDE methods, like
in Bologna (Porta et al. 2009) and Barcelona (Porta et al. 2012) within a similar
research paradigm. The related explanation and demonstration of KDE method can be
found in the in-depth reference of Porta et al. (2009). First, plot real urban situations,
then use the KDE method to figure out the bumps of these activities. Subsequently,
with analysis of the properties of network centrality, mixed maps of urban economic
activities and network centralities are obtained. Finally, their interrelations emerge to be
assessed by correlation analysis. This paradigm is quite simple for the better under-
standing of the relationship between human activities such as land-use types (Rui 2013)
and landscape patterns, as proposed by Liu et al. (2015), and the formation and
constitution of network structures. A variation model with a greedy algorithm consid-
ering integrated MCA index has been proposed to analyse urban green space accessi-
bility (Chen and Chang 2015). Spatial autocorrelation indicators like Spearman, nor-
mally used to assesses the relationship between two variables, can be better described
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Table 2 The geographical indicators

Indicators Functions References Description of Functions

The average
passenger
flow per
station

θ ¼ ∑F
N Kansky (1963);

Derrible and
Kennedy (2011)

F is the traffic flow on each edge, the
sum ∑F means the total traffic
flow.

The average
edge
length

η ¼ L
M L is the total edge length of the

network.

The network
extension

π ¼ L
D Here D is the network diameter, a

fixed value.

The average
weight of
nodes

ι ¼ L
w Here w is the weight.

The network
covering
degree

Ncd ¼ Snetwork
Sterritory

It is the surface ratio between the
surface served by the network and
territory surface.

The degree
centrality

DC við Þ ¼ ki
N−1 Freeman (1977) The number of links incident on a

node that can reflect the
importance of the node vi in
relation to spatial geography,
which indicates that a node with
more neighbors is more important
in a network.

The
closeness
centrality

Ccloseness við Þ ¼ 1
Dij

¼ N−1
∑i≠ jdij

Marchiori and
Latora (2000)

It is denoted as the reciprocal of the
average distance between each
node pairs Dij ¼ ∑i≠ jdij

N−1 . This index
means that if a node is closer to
other rest nodes, it is more
important in the network; it
describes the relative location of a
node.

The
clustering
coefficient

Cc við Þ ¼ ei
mi mi−1ð Þ Watts and Strogatz

(1998)
This coefficient is a measure of the

extent to which a node, vi, shares
neighbors with other nodes, where
ei is the number of edges shared
with local neighbors of node vi, and
mi is the connection degree of local
neighbors of node viCc(vi). is
derived from the unit interval 0 to
1, which is called the local
clustering coefficient. The global
clustering coefficient is denoted as
Cc Gð Þ ¼ ∑N

i¼1Cc við Þ
N .

The
between-
ness
centrality

BC við Þ ¼ ∑i≠s≠t∈V dij
di
min;st

dmin;st

N−1ð Þ N−2ð Þ Freeman (1977) It is defined as the total number of
shortest paths between two
separate nodes dmin, st and passing
through node vi; it reflects the load
on node vi and can alternately
understood as the controllability of
the node. On this basis, centrality
can be clarified as
Cbetweenness við Þ ¼ ∑i≠s≠t∈V

dimin;st
dmin;st

,
and the normalization of
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Table 2 (continued)

Indicators Functions References Description of Functions

betweenness BC(vi) is described as
function shows, where (N − 1)
(N − 2) is the maximum possible
value.

The
straight-
ness
centrality

Cstraightness ¼ 1
N−1∑

N
i¼1;i≠ j

dEuclideanij

dij
Vragović et al.

(2005)
It is used to measure the Euclidean

distance versus the shortest path
between nodes vi and vj.

The
assortativi-
ty
coefficient

r ¼ ∑ki k j
kik j e kik jð Þ−q kið Þq k jð Þ½ �

σ2q
Newman (2002) It is normally used to measure the

growth mechanism of urban traffic
network. Joint probability
distribution P(k,j) means the
probability of randomly choose
one edge which the ends of this
edge have degree k and j.
P k j
� � m k; jð Þμ k; jð Þ

2M , where m(k,j)
stands for the number of edges
between nodes which have degree
k and j, for μ(k,j) = 2 if k = j,
μ(k,j) = 1 if k≠j. Let e(ki, kj) be the
fraction of links that connect a
node of degree ki to a node of
degree kj. Let P(kj) be the
probability that a node selected
randomly in the network has
degree ki. The distribution of the
excess degree of a node at the end
of a randomly chosen link is
q k j
� � ¼ k jþ1ð Þp kjþ1ð Þ

∑ jkip k jð Þ , σ2
q is the

standard deviation of the
distribution q(kj). In a network if
the link between two nodes not
related with their degrees value,
then we can say the network has no
degree correlations. Otherwise, the
network has degree correlations. If
the nodes have a bigger degree
value preferred to connect with
nodes also have a bigger degree
value, then the network is
assortative. If the nodes have
bigger degree preferred to connect
with nodes have smaller degree
value then the network is
disassortative.

The
eigenvec-
tor
centrality

xa ¼ 1
λ∑t∈Gav;txt Newman (2008) It is used to measure the influence of a

node in a network. It assigns
relative scores to all nodes in the
network based on the concept that
connections to high-scoring nodes
contribute more to the score of the
node in question than same con-
nections to low-scoring nodes.
Normally we use the adjacency
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by a monotonic function. They can be used to examine the relationship between road
network centralities and land-use categories (Rui 2013).

Notably, a comprehensive example has been provided by Scheurer et al. (2008).
Their research transplanted the key assessment method of MCA to the integrated land-
use and traffic planning in the Perth metropolitan area within five different scenarios,
the betweenness centrality variation of scenario frequency boost, scenario light rail
corridors, scenario middle ring centres, scenario fringe expansion and scenario com-
posite wishbone. However, limitations still exist, as this method is based on the
sapiential discussion of workshops and the experiences of some experts. Related
suggestions only provide local optimum solutions. Taking many factors into consider-
ation and observing the potential of the network centrality research being widely used
in further exploration, an open-source urban traffic network analysis toolbox for
ArcGIS was programmed by Sevtsuk and Mekonnen (2012).

2.4 The Mining of the Urban Traffic Network Communities

In the mathematics and computer science literature, this topic is usually termed ‘graph
clustering’ or ‘partition’. It is derived from the ideas of sociologists to identify the

Table 2 (continued)

Indicators Functions References Description of Functions

matrix to find eigenvector centrali-
ty: Let A = (av, t) be the adjacency
matrix av, t = 1, if vertex v is linked
with vertex t, equal 0 otherwise.
The centrality score of vertex v can
be defined as:
xa ¼ 1

λ∑t∈M vð Þxt ¼ 1
λ∑t∈G vð Þav;txt .

Where M(v) is a set of the neigh-
bours of v and λ is a constant. With
a small rearrangement this can be
rewritten in vector notation as the
eigenvector equation: Ax = λx.

The average
shortest
path
length

APL ¼ 1
N N−1ð Þ∑i≠ jd

ij
min Albert and Barabási

(2002)
Defined as the average number of

steps along the shortest paths for all
possible pairs of network nodes.

The network
efficiency

E Gð Þ ¼ 1
N N−1ð Þ∑i≠ j

1
dijmin

Latora and
Marchiori (2002);
Latora and
Marchiori (2003)

It is the inverse of the APL between
each pair of nodes vi and vj, it
shows the average efficiency of
transit flow or information between
nodes in the network, and also
passable to extended to nodes or
edges.

The
informa-
tion
centrality

IC ¼ ΔE Gð Þ
E Gð Þ ¼ ΔE Gð Þ−E G

0ð Þ
E Gð Þ It is defined by the change of network

efficiency caused by removing
some nodes or edges, where G’ is
the new network after the
removing.
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subgroups within different delineations. That is, in many complex networks, nodes
group together to form clusters characterised by properties which are more or less
independent of the properties of individual nodes and the network as a whole. A large
number of algorithmic approaches to the problem have been considered (Barthelemy
2011; Curtis and Scheurer 2009; Donetti 2004; Newman 2012; Newman and Girvan
2004; Porter et al. 2009; Zhong et al. 2014), but interest in recent years has focused
particularly on statistical inference methods. Network communities can be identified
through the definition and optimization of modularity by the research of Newman and
Girvan (2004). After that, Expert et al. (2011) expanded it with the interplay between
distant locations, in which spatial interactions are ruled by a Power-law distance decay
effect and the communities detected from the interaction network (Liu et al. 2014).

In some sense, the mining of urban traffic network communities is imperative for the
planning and design process, as design the partition of OD zones or divide of urban
areas into small or local communities, for human mobility patterns research, and benefit
our scientific management. Traditional approaches in the mining community include
spectral graph partitioning and hierarchical clustering. The spectral graph partitioning
method finds the best division to cut the complete graph into two groups, then further
subdivides those two until reaching the required number of groups. Michael Batty
provided a method stemming from the algorithm from Newman and Girvan (2004), a
divisive method in which edges are progressively removed from a network chosen with
inverted order by computing their betweenness scores. Additionally, de Arruda et al.
(2016) introduced the fast greedy algorithm to detect the communities of geographical
networks. For uncovering urban socioeconomic clusters, Zhong et al. (2014) used the
modularity detecting method, based on the movement data and its changing trends to
identify essential elements of the urban spatial structure of Singapore, and figured out
the city hubs and centres. Our recent work also focuses on the modularity detecting
method but more emphasis on the growth impact of urban traffic multi-layer networks
(Ding et al. 2018). Then, the spatial distribution of vehicles was analysed, and some
giant vehicle clusters and distribution of vehicle cluster sizes are observed by Gong
et al. (2016). Other related studies are shown in Table 3.

2.5 The Network Robustness and Vulnerability

Investigations have clearly shown that the statuses of the real network nodes are not
equalm There is an obvious inhomogeneous network structure, and the nodes in
different positions have different importance to the general network, also have different
reactions to the network anti-destroying and anti-jamming ability. In a scale-free
network, if 5% of important nodes were attacked, the whole network will be soon
be paralysed. When a rail network is affected by internal or external factors, the
capacity of some of the nodes or edges are exceeded, when this occurs, failure or error
emerged.

Because of the combinations and connections with surrounding nodes and edges,
failure and error are amplified and spread. This ripple effect eventually leads to the jam
of part of a network or even the collapse of the entire network (Albert et al. 2000;
Motter and Lai 2002). This phenomenon is called cascading failure. In other words, a
network may be vulnerable, and research about robustness and vulnerability of urban
traffic network is critical for our future planning of the network layouts, can make the
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new network became functionally steady when facing traffic jams or natural disasters,
and protect existing networks (Crucitti et al. 2004b).

Recently, most academics have focused on the connectivity and reliability of
networks and tested their robustness and vulnerability in terms of network efficiency
changes (Cao et al. 2013; Huang and Chow 2010), the ratio of giant component and the
variation of general travel cost (Balijepalli and Oppong 2014), the accessibility alter-
ation, and then in turn, to optimize the network functional layout (Crucitti et al. 2004a;
Crucitti et al. 2003; Crucitti et al. 2004b; Sun et al. 2008b; Watts 2002; Wu et al.
2006a, 2007a, 2008a, 2008b; 2007b), and understand the diffusing rates (Sun and Wu
2005; Wu et al. 2004a; Yang et al. 2012; Zheng et al. 2007; Zhou et al. 2015). Among
them the greatest and most widely used traffic related cascading failure model is the
load and capacity model (Wu et al. 2006a, 2007a, 2007b), as proposed by Motter and
Lai (2002).

Fundamentally, the cascading failure method in urban traffic networks is based on
the removal of nodes or edges, to character what kind of changing will happen. There is
another method exactly in contrast, adding nodes or edges, which is quite common in
nature especially in the traffic networks. Although we can treat them as the same
process in some sense, adding a road into the already existing road system is more
common than abandoning a road in our daily life. Researchers have tested various
kinds of attack strategies, normally based on the descending order of node degrees
based, load-based, and other centrality measures mentioned previously in this paper
(Albert et al. 2004; Crucitti et al. 2004b; Holme et al. 2002; Tang et al. 2014). Then,
they determined the most harmful attack strategies and the criticality level of network
elements, which depend on the role played in the network structure and the flow
passthrough (Rodriguez-Nunez and Garcia-Palomares 2014). Computing the degree
distribution, average path length, and clustering coefficient of a public transportation
system in Shanghai, Li et al. (2007) assessed the complex characteristics of that system
while simultaneously exploring the error tolerance and attack vulnerability of the
network. Other researchers who examined a rail transit system have analysed the
statistical characteristics and assessed the connectivity and reliability of the network
using robustness theory (Taylor 2008; Taylor et al. 2006; Yin and Xu 2010). Among
the earliest attempts to validate this idea, Buhl et al. (2006) not only considered the
topological patterns and network efficiency, but also analysed fragility against random
failures both of the Minimal Spanning Tree and Greedy Triangulation networks. Based
on the network robustness analysis. Further results were provided by Ding et al. (2015),
which found that the rail network protection should emphasise those nodes with the
largest degrees and the highest betweenness values, and that a rail network’s growth is
likely based on the nodes with the biggest lengths of the shortest path. With these great
efforts, research on complex network reliability, robustness and vulnerability made
significant progress and gradually became one of the development trends in the traffic
research field. More inspirations about network vulnerability and resilience can refer to
Mattsson and Jenelius (2015).

2.6 The Big-Data-Based Complex Networks Research

To meets the current needs of traffic system while addressing the social and economic
needs of future generations (Eladaway 2014), big-data-based research has now become
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an important paradigm amongst researchers into urban traffic management. The social
network data like smartphone data, social network data, taxi data, smart card data are
widely used for the measure of Origin-Destination distribution, the traffic flow Assign-
ment, the traffic congestion detection, the mining of travel behaviours and the urban
computing (Chen and Yang 2013; Othman et al. 2014; Sun and Jin 2015; Widhalm
et al. 2015; Yang et al. 2014; Zhao et al. 2016b), more importantly the movement of
these social network users can represent the mobility of urban traffic users and the
evolution trends of urban traffic network structure (Singha and Kalita 2013; Zhong
et al. 2014).

The application of complex networks theory in big data are more focusing on
the following parts: First is create the weighted network based on the big data,
treat the user’s movement data as traffic flows on networks (Soh et al. 2010), then
some basic and traditional user behaviours can be detected, such as network
congestion and centrality (Gao et al. 2013). The second direction is to evaluate
the city’s polycentricity and the location of Central Business District, to clarify the
influence of people’s travel behavior to the network structure and vice versa
(Zhong et al. 2014). The third is exploration and mining of complex user traffic
behaviour, based on records at the micro level of each cardholder’s detailed travel
behaviour, and in the medium and macroscopic level also reflects the character-
istics of the users and groups (Frumin and Zhao 2012; Manley et al. 2015), to
optimize the space layout, the traffic networkability, and to achieve sophisticated
traffic management requirements (Wang et al. 2012; Zeydan et al. 2016), such as
finding a real passenger path in a complex transit network using big data (Min
et al. 2013; Sun and Xu 2012).

2.7 The Optimization and Related Applications

Some previous studies we mentioned above actually already contain a part of the
content of network optimization methods, such as the research of network robustness
and vulnerability and the application of big-data-based analysis, which give us a clear
vision for the future development. The concepts of network optimization have been
inherited and developed from the operational research, and have a long history and
relatively dependable background. Ordinarily, most traditional network design prob-
lems belong to this class (Ahuja et al. 1993), based on the classification of Motter and
Toroczkai (2007), for the research aims which are more focusing on the urban spatial
network structures, we define the optimization methods within two classes, structural
optimization and the flow related optimization. Although we distinguished these two
methods, nevertheless, they always mixed together.

2.7.1 Structural Optimization

Structural optimization is based on the purely graph-theoretic methods and problems to
shape the urban traffic network structures, and fulfill some specified properties. In fact,
the methods of removing nodes or edges (Jiang et al. 2013; Liu et al. 2007; Zhang et al.
2007; Zhang et al. 2014b), adding nodes or edges (Huang and Chow 2010; Ma et al.
2016b; Zhang et al. 2014a), changing route directions (Hu et al. 2010), and network
rewiring (Jiang 2014; Zhang et al. 2015) to enhance the network connectivity, capacity
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and efficiency all belong to this class. For now, most optimization research without
spatial constraints uses similar contexts to those we proposed above.

Other researchers like Schweitzer et al. (1997) investigated the evolution of road
networks during the optimization process based on minimised travel bypass and
focused on minimised construction cost. Additionally, Barthelemy and Flammini
(2006) suggested the optimization principles of traffic networks and proposed a
spanning tree simulation model, in which tree structures change with their defined
numerical value parameters. The maximum centrality spanning trees method is also
proposed to optimise the network structure (Scellato et al. 2006).

Whether or not studies consider the spatial constraints, some critical qualitative
features of these networks can be imitated using the simulated optimised network
structures. These results showed that a traffic network with a fixed structure could be
distinguished as a random or a uniform state, and they revealed that roads and
hierarchies, which are often thought to be the products of conscious design, can also
be self-organized, or obey the Power law. A Monte Carlo optimization model that
minimised the construction and maintenance costs of a planar network, bearing in mind
the entire Euclidean distance, is presented by Gastner and Newman (2006), named the
“GN model”. Moreover, they created and applied a population-driven model to the
USA case, which is more related to the real situations. A local optimization process was
given by Barthelemy and Flammini (2008), for the purpose of maximising the reduc-
tion of the cumulative distance, the network growing process was simulated. Most
critically and realistically, Kleinberg (2000) and Li et al. (2010) proved that with the
suggested optimal controlling parameter, an optimised network structure can be ob-
served. After that, Rui and Ban (2011) and Rui (2013) tested the relationship between
projected and existing nodes and segments based on the local constraints and legality
tests in some real situations when the local network is growing, including angles
(between projected segment and existing segments) and distance (between projected
nodes and existing nodes).

2.7.2 Flow Related Optimization

Flow-related optimization is founded on a different perspective, with concerns about
some discrete and continuous problems for the purpose of reducing traffic jams or
minimise the travel time (cost) or maximise the system utility, and more specifically, as
the traffic network design models did, considering about traffic flows effects. A great
general network design model was proposed by Magnanti and Wong (1984), in which
almost all problems encountered in transportation planning can be viewed as its
specialisations or variations. In fact, DNDP and CNDP are both considered bi-level
nonlinear optimization problems with and without the budget constraint situation (Liu
2001, 2003), with the user equilibrium assignment (UE), the system optimum assign-
ment (SO) and other system equilibrium situations all in mind. The group of Gao, Sun,
Wu investigated and analysed an optimal traffic network structure for resisting traffic
congestion featuring different volumes of traffic. They introduced a cost function
based on UE assignment that ensured the flow balance of traffic systems and expanded
both the bi-level programming model and its solution algorithms (Gao et al. 2005; Sun
et al. 2008a; Wu et al. 2008a). Oliveira et al. (2014) developed flow conditions based
on the research of Li et al. (2010) in small world networks and obtained the best flow
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conditions using decentralised algorithms. A centrality index based on the maximum
power flow through the edges was introduced, and the Max-Flow Min-Cut Theorem
(Ford–Fulkerson theorem) is used to estimate the capacity of the edge (Dwivedi and Yu
2013; Dwivedi et al. 2010). Based on this, optimal solutions of the maximum flow
problem on complex networks with capacity constraints on nodes were given. Another
interesting model, the Microscopic Congestion Model (MCM), was introduced to
identify the urban traffic congestion hotspots in the context of the complex network
(Solé-Ribalta et al. 2016b, 2016c).

Most network optimization methods are based on the single-objective and multi-
objective programming (Gutierrez-Jarpa et al. 2017; Gutierrez-Jarpa et al. 2013;
Jozefowiez et al. 2008; Ulungu and Teghem 1994). Some research uses the multi-
objective programming method directly to optimize urban traffic network (Gutierrez-
Jarpa et al. 2017; Gutierrez-Jarpa et al. 2013), this kind of method is figurative, speedy
and handy. Thus, the basic function of the single-objective bi-level programming can
be easily expanded as a multi-objective bi-level programming model (Chen et al.
2010), when the systems have more than one aim.

2.8 The Co-Evolution Research

The study of co-evolution of urban traffic networks must be combined with the study of
the growth of urban traffic networks. General urban traffic network growth can refer to
work by Xie and Levinson (2009a), which fundamentally demonstrates the network
growth models and the inner relationships between the traffic networks, urban forms
and some macro and microeconomic policies and other aspects of urban subsystems.
Urban land-use and urban traffic network co-evolution processes and some general
models have been proposed by Levinson, Yerra and Xie (Iacono et al. 2008; Levinson
et al. 2007; Levinson and Yerra 2005, 2006; Xie and Levinson 2007, 2009b; Yerra and
Levinson 2005). These models consider the network structure, travel demand model,
revenue model, cost model, investment model and accessibility and land-use model in a
comprehensively way. A paradigm thus appears, which is use these various of models
to simulate the changing trends and interrelations between the land-use and traffic
system, followed a sensitivity analysis with considering the influences of changing
variables, then some intuitional and visualized results earned. Furthermore, many
varieties and further research were proposed recently with general bi-level program-
ming design (Li et al. 2015) and applied with CA models (Wu et al. 2016), and much
further co-evolution among land development, population, roads and vehicle ownership
were considered.

Focusing on the co-evolution model of the 19th and twentieth century London,
Levinson and Xie found that population distribution and network density are positively
correlated. They validated a simulation model to fit the empirical evidence better and
noted that evolution is an iterative process of interaction, investment and divestment.
Moreover, they illustrated how surface traffic networks can grow and decline sponta-
neously over time, providing further evidence for the property of self-organization
(Levinson 2007; Xie and Levinson 2007, 2009a, 2009b). In a similar vein, a new
dynamics model based on the logistic equation to capture the dynamic characteristics of
the co-evolution process between the road surface and urban traffic structure was
developed (Wu et al. 2013). After that, the co-evolution of road network expansion

Application of Complex Networks Theory in Urban Traffic Network... 1297



and urban traffic growth grounded in the case of Beijing is described (Wu et al. 2014),
and a co-evolution model is suggested with a stability analysis and numerical simula-
tion. Zhao et al. furthered the research of Levinson et al. and revealed the interactions
between population distribution and urban road network evolution based on the
simulation models. Using a relative neighborhood graph (RNG) and a Fermat-Weber
location problem as the connection mechanism, these authors revealed that the popu-
lation distribution in a city is the leading cause of heterogeneity in a network topology
structure (Zhao et al. 2014, 2016a, 2015). They analysed and simulated the relationship
between two types of economic agents – government investment decisions versus
household and company locations – to show that average accessibility for employment
and population increases in the evolutionary process.

Although those previous investigations are important and necessary for further
research of urban planning and design, they all treat networks as purely planar and
do not consider the influence of multilayer networks (similar meaning with independent
networks or multiplex networks), which illustrate and represent different appropriate
urban traffic modes and lines.

2.9 Multilayer Network Theory and its Applications

More recently, multilayer network-based studies have attracted attention, illustrating
and representing various appropriate urban traffic modes. Development of rail and road
networks is inseparable from the development of a prosperous urban area; thus,
research on multilayer networks has scientific potential and fulfills a real need. To
bridge the gap of the multilayer network representation of real-world networks, Kurant
and Thiran (2006) first proposed a general multilayer model that facilitated the
description and analysis of multilayer networks. The authors examined three
transportation networks and found that a tiny error on a multilayer network could
cause cascading failures. They also investigated the relationships among degree,
betweenness and real loads and found that, as opposed to the commonly
acknowledged view, the correlations in their dataset between the three factors were
not that apparent. Later, Buldyrev et al. (2010) demonstrated that electrical blackouts
resulted in the cascading failure of the Internet communication network and power
stations in Italy. Their research is a breakthrough milestone in the measurement of
interactions in layered networks. They deciphered the critical percolation threshold,
which is larger than the equivalent threshold of a single-layer network of the same size.
Albert et al. (2016) have introduced a standardised model to simulate the elements
navigating those networks and analysed congestion in multilayer transportation
networks.

Most outstandingly, a model of traffic dynamics revealing a transition at the onset of
cooperation between layered networks is proposed by Gu et al. (2011); they introduced
the notion of the cooperation strength of different layers to illuminate the relation of
coupling networks. Furthermore, the ratio of speeds of coupling different modes,
network accessibility, mobility and the behaviour of different layers were considered
(Aleta et al. 2016; Gallotti et al. 2015; Ma et al. 2016a, 2015; Morris and Barthelemy
2012; Solé-Ribalta et al. 2016a; Strano et al. 2015), and later Ding et al. (2017)
proposed a heuristic urban transportation network design method showing that
transit users’ route choices change dramatically through the co-evolution process.
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These research works offer a broad range of new perspectives for investigating the
aspects of multilayer networks, considering the interrelationship and cooperation of
different traffic layers and modes, and much further, optimising network layout (Morris
and Barthelemy 2012; Strano et al. 2015).

3 Conclusion and Future Research Directions

This paper comprehensively reviewed recent applications of complex network theory
in urban traffic network studies, especially road and rail networks, in terms of urban
planning-related points.

In section 2 we analysed recent research and found strong potential for the
further applicaion of complex network theory in urban traffic network studies. For
these studies in Table 3 and Fig. 2, even though some parts of them can be
highly-connected, mixed or position exchanged, we can still easily comprehend
research trends when considering the background of urban traffic networks. These
topics are innovative and remain open to urban traffic network planners and have
significant and obvious research value. The network topology and related cen-
tralities studies can illustrate some of the network characteristics, but in urban
studies, a comprehensive zonal research is appreciated and needs to be further
discussed. The numerous research findings of the topological and geographical
characteristics provide new holistic concepts of urban traffic networks for plan-
ners beyond their basic images and functions, not only from micro but also from
macro-perspective. Many explorations of this concept focus on network dynamics
and the network optimization, but integrated co-evolution studies are still rela-
tively rare. Findings of network operations and dynamics offer new visions of
urban traffic network management and optimization, such as how to figure out
hub nodes or potential areas for the future investment and the change and impact
of user’s behaviours. Some novel concepts of physics have never been imported
to urban traffic network planning, like the network robustness and vulnerability,
but obviously, they have great research importance and possibility. Recently, the
infrastructure network vulnerability related analysis already used by some re-
searches to fight against with natural disasters (Kermanshah et al. 2017), more
and more related and extended research can be seen soon. Also, as the acquisition
of big data is difficult, most data concerning network evolution and growth come
from these simulation models, actual data is relatively rare (these data include
demography data, the land-use changing data, the economic centre shifting data,
and most importantly, network structure changing data). Actually, in the context
of urban traffic networks studies, the co-evolution process is obviously crucial to
our understanding of the relationships between traffic networks and urban land-
use. As the hot point of network science, multilayer research has recently become
more attractive compared with single-layer, because it is closer to the real
situations (the complex system of rail and road networks). These discussions
concerning big data sets between different layers are thought-provoking, as they
offer infinitely varied contents to link the traffic studies and network studies, and
might lead to a new paradigm of study urban traffic networks in a comprehensive
manner.
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Sadly, those physical models in recent urban planning paradigm are not
evident or popular, predominantly because of the requirement of knowledge
of Modern Physics, Mathematics and Statistics. Urban planners and designers
considering these social problems rarely have this particular skill. The education
of quantitative geography should include the complex network theory as mod-
ern operations research did.

For now, an application framework and methodological perspective for apply-
ing complex network theory in urban planning are still not established. A more
integrated real urban and metropolitan co-evolution model is needed. Actually,
most of these models focus on network centralities, the relation and integration
between networks and surrounding contents also need to pay more attention, not
only from the perspectives of single layer but also multilayer networks. Like the
integrated researches of land-use growth, traffic network growth, population
growth, human behaviour, industrial distribution and economic development
related studies need to be conducted further. The most important effort of these
evolution models is to discover the actual co-evolution laws matching different
urban scales.

Tremendous interest has been aroused in other research into synchronous and
coherent behaviour, such as the timetable optimization (Tao and Ceder 2015; Wu
et al. 2015), traveller behaviours and vehicle operation (Meignan et al. 2007)
and network controllability (Liu et al. 2011). These new research directions have
strong research possibilities which are especially obvious for their use in urban
traffic studies.

Research into network weights and directions in urban traffic planning should
be more stressed, especially in areas that use weights to represent the transpor-
tation ability or capacity. Most complex network related research treats urban
traffic network as unweighted and undirectional network, so the process becomes
highly simplified.

Effort should put into clearly identifying the exploration of important nodes. Al-
though many node importance indicators have been proposed, most of them do not
comprehensively take into account complex urban properties.

The optimization method still cannot perfectly fulfill the requirement of real situa-
tions. Specifically, multi-objective, multilayer methods and modularity design technol-
ogy need more attention. Particularly, a user-friendly GUI design in the GIS design
environment can attract urban designers’ broader attention. As Ducruet and Lugo
(2013) (p. 15) illustrated that “…no software proposes yet an integrated package
combining spatial statistics, GIS, graph visualization, and network analysis ‘all in
one’…”, this situation is not changed, hence for the computer scientists and geography
researchers, with further consider the data acquisition and network generation, there
exist a great opportunity.

Ultimately, our efforts have led to a new understanding of recent research and future
directions which deserve further investigation. Hopefully, this review can benefit to
urban and transport planners for their integrated researches.
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