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Abstract This paper presents a mathematical model for analyzing long-term infras-
tructure investment decisions in a deregulated electricity market, such as the case in
the United States. The interdependence between different decision entities in the sys-
tem is captured in a network-based stochastic multi-agent optimization model, where
new entrants of investors compete among themselves and with existing generators for
natural resources, transmission capacities, and demand markets. To overcome com-
putational challenges involved in stochastic multi-agent optimization problems, we
have developed a solution method by combining stochastic decomposition and vari-
ational inequalities, which converts the original problem to many smaller problems
that can be solved more easily.

Keywords Energy infrastructure planning · Oligopolistic market · Equilibrium ·
Stochastic multi-agent optimization · Decomposition

1 Introduction

The goal of this paper is to establish a mathematical model for analyzing long-term
infrastructure investment decisions in a deregulated electricity market. To this end,
several modeling challenges need to be addressed. In order to keep a concrete ground
for discussion, we focus on the United States as a special case of deregulated mar-
ket. First of all, a power supply system often involves non-cooperative behaviors
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of multiple decision entities. For example, in the United States there are multiple
generation companies supplying electricity to a region’s electricity grid, which is
often operated by a separate non-profit Independent System Operator (ISO). ISO is
in charge of coordinating, controlling and monitoring the operation of the electrical
system in order to keep stability and efficiency of the network and instantaneously
balance supply and demand (CalISO 2013). Capturing the interactive behaviors of
different system players simultaneously requires modeling techniques beyond con-
ventional optimization approaches based on single decision entity. Secondly, the
physical infrastructure for producing and delivering energy are interdependent due
to their spatial and functional correlations (Rinaldi et al. 2001; Abrell and Weigt
2012), which requires a network-based modeling framework to capture the spatiality
of supplies/demands and the transmission network connecting them (Leuthold et al.
2012). As demonstrated by Hobbs et al. (2008), inclusion of transmission network
constraints may result in significantly different predictions on generators’ behaviors
in a competitive market. Coping with uncertainty is another major challenge in long
term planning, especially considering the evolvement of technologies and demand
in the future. Recently, there are many stochastic models developed for energy mar-
ket operations, including decisions on unit commitment, energy production, storage,
and flow transmission (Abrell and Kunz 2015; Conejo et al. 2010). However, uncer-
tainty issue has not been well incorporated into long-term infrastructure planning of
a competitive power market despite of its importance as identified in IEA (2006) and
fruitful results engaging stochastic, robust, and flexible design reported in the gen-
eral infrastructure network design literature (Melese et al. 2016; Fan and Liu 2010;
Li et al. 2011; Do Chung et al. 2011; Liu et al. 2009).

The electricity market in the United States is generally considered as an oligopoly
market, even though the levels of market competitiveness vary by regions (Bushnell
et al. 2007). Depending on the decision variables and anticipation of rivals’ reac-
tion (Day et al. 2002), an US electricity market is often modeled based on one of
the following: in a Cournot competition (Cournot and Fisher 1897), each generator
submits a fixed supply quantity; and in a Supply Function Equilibrium (SFE), each
generator submits a production function (i.e. available production quantity as a func-
tion of price). It can be shown that if firms know exactly the market realization, SFE
and Cournot models yield the same solution (Willems et al. 2009). The advantage of
Cournot models is their simplicity and therefore can be integrated with more com-
plex market and system settings (Willems et al. 2009; Hu et al. 2004; Metzler et al.
2003). However, Cournot model is known to be sensitive to demand parameters. SFE
models on the other hand provide more flexibility in addressing varying demand
conditions (Day et al. 2002). Based on one of these assumptions, researchers have
provided in-depth analyses on the impacts of market competition (Hobbs et al. 2000;
Hobbs and Pang 2007) and transmission network constraints (Hobbs et al. 2008) on
power markets. Stochastic oligopolistic models have also been developed to analyze
the operation of power markets under demand and cost uncertainties (Genc et al.
2007; Pineau and Murto 2003). All these studies focus on the operational aspects of
a power market with fixed infrastructure and do not consider investment decisions on
the physical infrastructure.
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With wholesale electricity market deregulated, traditional capacity expansion
models developed for regulated firms, such as Murphy et al. (1982), became inad-
equate, and studies dealing with both investment and operations in an oligopolistic
electricity market were critically needed (Kagiannas et al. 2004). A series of studies
have been developed based on game theoretic models and multi-agent based simu-
lation (Wogrin et al. 2011). One of the main benefits of game-theoretic models is
their capability to capture strategic behaviors of each player when making long-term
investment decision (Ventosa et al. 2002; Murphy and Smeers 2005). In a closed-loop
model, investment decisions and market operation decisions are assumed to happen
in separate stages. Typically a bi-level model is used, with upper level focusing on
investment decision and the lower level on daily operation (i.e. generation decision)
under given capacities. This type of models can also be categorized as an Equilibrium
Problem with Equilibrium Constraints (EPEC) or Mathematical Programming with
Equilibrium Constraints (MPEC), for which existence and uniqueness of equilib-
rium solutions are not always guaranteed (Ralph and Smeers 2006). In an open-loop
model, investment and generation decisions are assumed to be made simultaneously.
This simplification significantly reduces computation difficulty, and has a real impli-
cation: forward contract (Ventosa et al. 2002; Murphy and Smeers 2005), even though
it weakens the ability to capture possible market power of players’ first-stage invest-
ment decisions on short-term markets. In this paper, we adopt an open-loop approach.
Readers may refer to Wogrin et al. (2013) for more discussion on open vs. closed
loop models.

Considering non-cooperative games on a network structure adds more com-
plexity. In the literature on power generation capacity expansion in oligopolistic
markets, only a few studies explicitly model the transmission and location effects. In
(Kazempour and Conejo 2012), a stochastic MPEC model is developed with the
upper level focusing on a strategic player’s investment decision and the lower level
capturing the ISO’s electricity dispatch problem. In that model, the rivals do not
participate in competition on generation capacities as their investment decisions are
treated as model input instead of decision variables. In Kazempour et al. (2013),
a deterministic EPEC model is developed for modeling capacity expansion deci-
sions of rival investors considering transmission network constraints. There are also
studies approaching from an energy supply chain perspective, in which a detailed
transmission network is replaced by direct links between generators and demands.
For example, (Liu and Nagurney 2011) proposed an analytical model for energy
firm merging and acquisition through supply chain network integration. In addition,
there are also supply-chain-based studies focusing on the operational issues without
considering the strategic planning of infrastructure, such as integration of renew-
ables with other fuel markets (Matsypura et al. 2007; Nagurney and Matsypura 2007;
Liu and Nagurney 2009) and a general closed-loop supply chain equilibrium model
(Hamdouch et al. 2016).

In summary, little work has been reported in the literature for modeling generation
infrastructure planning considering all three challenges: uncertainty, infrastructure
interdependency, and oligopoly competition. In this paper, we establish a stochas-
tic multi-agent optimization model that supports strategic infrastructure planning
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in an oligopolistic power market. In the proposed model, uncertain parameters are
described by a discrete set of scenarios and their associated probabilities. Each
investor aims to maximize the expected total profit by choosing the best first-stage
investment decision and the second-stage scenario-dependent generation decisions.
The ISO dispatches electricity from the generators to the demands to maximize con-
sumer surplus while satisfying the transmission network constraints and the market
clearing conditions. A system equilibrium is achieved when all agents solve their
problems optimally.

The remaining part of this paper is organized as follows. In Section 2, we
first introduce a general stochastic multi-agent modeling framework, which is an
extension of the classic single-player two-stage stochastic programming to multi-
decision-maker cases. We then describe the behavior of each party involved in the
power grid, and give specific assumptions and formulation of the proposed model.
In Section 3, we demonstrate how the original energy problem may be reformulated
and converted to multiple user-equilibrium traffic network assignment problems.
In Section 4, we present numerical results and draw planning and policy implica-
tions. The last section concludes the paper with insights, discussions, and future
extensions.

2 Mathematical Model and Analyses

2.1 A Stochastic Multi-agent Optimization Modeling Framework

The research question is stated as: How should energy investors strategically plan
their production infrastructure (where and at what capacities to build their production
facilities), to ensure long-term economic benefit while integrating with the existing
power grid?

Even though our emphasis is on the strategic planning of production infrastruc-
ture, the cost-effectiveness of a planning decision depends on how the system is
likely to be operated afterwards. To model the planning and operational stages in an
integrated framework, one should recognize the very distinguishable natures of the
two types of decisions against uncertainty, which may be related to demand, sup-
ply, and technology. At this point, let us use a general notation ξ to represent the
uncertain vector. We assume ξ follows a discrete probability distribution, described
by a set of discrete scenarios and associated probabilities. Planning decisions, such
as infrastructure setup, are usually made before future uncertainty is revealed and
are difficult to readjust once implemented. On the other hand, operational decisions
such as electricity production and dispatching quantities can be adjusted based on
the actual realization of uncertain parameters (for example, the actual demand or a
more accurate hour-ahead demand forecast). This feature fits well in a stochastic pro-
gramming framework (Louveaux 1986; Birge and Louveaux 2011), which recognizes
the non-anticipativity of planning decisions while allowing recourse for operational
decisions.
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The classic two-stage stochastic program for a single decision maker, in the
simplest form, may be presented as follows (Birge and Louveaux 2011):

minimize
x

f (x) + Eξ [Q(x, ξ)] (1a)

subject to x ∈ F (1b)

Q(x, ξ) = inf
y

{g(x, y, ξ)|y ∈ G(x, ξ)} , (1c)

where x represents the planning-stage decision, and y the operational decision, which
depends on the choice of planning decision and the actual realization of the uncer-
tain parameters ξ . The objective is to minimize the first-stage planning cost, f (x),
plus the expected value of the second-stage operational cost, Q(x, ξ), subject to the
feasibility constraints of x and y.

In our problem, each decision entity makes her own decision, but needs to simul-
taneously account for other decision entities’ behaviors given the interdependence
among them. For example, too much electricity generation at a local point may
increase transmission congestion, which could affect all parties in the power system.
Note that even though the decision entities are interdependent, they are assumed non-
cooperative in this paper. Readers who are interested in modeling coordination of
generators in a competitive market may refer to (Csercsik 2015). Using a two-player
problem as an example, the above formulation (1a ∼ 1c) may be extended to the
following:

(x1, y1) = arg min
x1,y1

{
f1(x1, x2) + Eξ

[
g1(x1, x2, y1, y2, ξ)

]}

(x2, y2) = arg min
x2,y2

{
f2(x1, x2) + Eξ

[
g2(x1, x2, y1, y2, ξ)

]}

s.t. (x1, x2) ∈ F and (y1, y2) ∈ G(x1, x2, ξ),

where xi and yi (ξ) represent the planning decision and the operational decision of
player i (i = 1, 2), respectively; and fi and gi are the first-stage and second-stage
costs of player i, respectively. Each player aims at minimizing her own total expected
cost, i.e. the planning plus the expected operating cost. Note that yi (ξ) is ξ -specific,
but for brevity, we write it as yi . Also, for generality, we denote fi as a function of the
planning decisions of both players, which may be simplified to fi(xi ) in many cases.
This problem may be classified as a stochastic multi-agent optimization problem, for
which new research endeavors are being pursued to better understand the analytical
and numerical properties (Jofre and Wets 2014).

2.2 Detailed Formulation for Each Decision Entity

2.2.1 Modeling the Decision of Electricity Generation Companies

In this study, we assume the generators follow an open-loop Cournot competition.
A new energy generator that is entering the system has two types of decisions to
make. During the planning stage, it decides where and at what capacity to invest its
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production facilities. At the operational stage, it chooses its best production strategy.
This generator makes all these decisions to maximize the expected total profit while
taking into account the decisions of other entities in the system. For each generation
Firm ∀i ∈ I :

maximize
g

j
i (ξ),c

j
i

−
∑

k∈K

∑

j∈Jk

φc(c
j
i )+ Eξ

⎧
⎨

⎩

∑

k∈K

∑

j∈Jk

[
ρk(ξ)g

j
i (ξ)−φg(g

j
i (ξ), ξ)

]
⎫
⎬

⎭
(2a)

subject to g
j
i (ξ) ≤ c

j
i , ∀j ∈ Jk, k ∈ K, ξ ∈ �; (2b)

g
j
i (ξ) ≥ 0, ∀j ∈ Jk, k ∈ K, ξ ∈ �; (2c)

c
j
i ≥ 0, ∀j ∈ Jk, k ∈ K. (2d)

where:

Jk : set of candidate investment locations connecting to access point1 k, indexed
by j ;

K : set of access points, indexed by k;
I : set of companies, indexed by i;
c
j
i : added capacity at location j of firm i;

g
j
i : production quantity by firm i at location j ;

ρk : ISO’s electricity purchasing price at each accessing point k;
φc(·) : total capital cost function with respect to facility capacity;
φg(·) : total production cost function with respect to generation quantity and

scenario;
ξ : vector of uncertain parameters, whose support is denoted by �.

Note that throughout the entire paper, we denote vectors in lowercase bold font. The
objective function (2a) maximizes the total profit of each firm, which is the total
revenue minus the total capital and production costs. The decision variables include
the capacity and generation amount at each potential production location. We assume
a uniform nodal price (Locational Marginal Price), thus the total revenue is calculated
by

∑
k∈K

∑
j∈Jk

ρkg
j
i . Constraint (2b) ensures that the total electricity generated

at a production facility does not exceed its production capacity. Note that for some
renewable technologies such as solar or wind, the right-hand-side of constraint (2b)
may be attached with a weather-related factor to reflect its effective capacity. The
rest are non-negative restrictions. Note that to keep consistent time scale, we treat all
agents’ problems at an hourly basis.

2.2.2 Modeling the Decision of Independent System Operator (ISO)

The ISO decides the wholesale price and transmission flow of each transmission line
to balance electricity supply and demand in the network instantaneously. Considering
the non-profit nature of ISO, we set its goal as to maximize total social welfare. To

1Any node in the power grid can be an access point as long as there is supporting transmission infrastructure.
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capture congestion effect of transmission lines, we assume that transmission cost is
a monotone increasing function of the transmitted flow quantity, which is a simi-
lar treatment as in Hearn and Yildirim (2002). Denote the transmission network by
G = (N ,V) , where N is the set of nodes (indexed by n) and V is the set of links
(indexed by a). Electricity from a supply (origin) node to a demand (destination)
node is modeled as an O-D flow. Since ISO’s decisions are operational, these can
be adjusted based on the actual realization of future uncertainty. This means that all
decision variables of ISO are scenario dependent, but for brevity, we do not carry ξ

in the formulation below. ISO’s problem, in a given scenario, is formulated as:

minimize
x,t

φt (v)T v +
∑

i∈I

∑

k∈K

∑

j∈Jk

φg(g
j
i ) −

∑

k∈K

∫ dk

0
wk(s)ds (3a)

subject to v =
∑

q∈Q

xq, (3b)

Axq = tqEq, ∀q ∈ Q, (3c)

(ρ)
∑

q∈Q

tqEq+ = g, (3d)

∑

q∈Q

tqEq− = d, (3e)

xq ≥ 0, ∀q ∈ Q, (3f)

tq ≥ 0, ∀q ∈ Q. (3g)

where:

v : aggregated link flow vector. Each element corresponds to a link;
t : O-D flow vector. Each element corresponds to an O-D pair;
φt (·) : transmission cost function, which depends on link flow;
ρ : wholesale price vector. Each element corresponds to a node;
g : electricity supply vector. The j th element corresponds to the total energy

supplied by all companies at node j , that is gj = ∑
i∈I g

j
i ;

xq : link flow vector associated with OD pair q. Each element corresponds to a
link ;

d : electricity demand vector. Each element corresponds to a node;
dk : total electricity demand at node k;
wk (·) : inverse demand function at node k;
A : node-link incidence matrix, whose rows correspond to nodes and columns

correspond to links, with +1 indicates the starting node of a link and -1 the
ending node.

Q : set of O-D pairs, indexed by q;
tq : O-D flow associate with O-D pair q;
Eq : O-D incidence vector of O-D pair q with +1 at the origin and -1 at the

destination;
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Eq+ : “O” incidence vector of O-D pair q with +1 at the origin;
Eq− : “D” incidence vector of O-D pair q with +1 at the destination.

The objective function (3a) maximizes (minimizes the negative value of) the total
system surplus. The first term in function (3a) is the total transmission cost, the sec-
ond term is the total production cost for all the electricity consumed in the system.
The third term is the willingness to pay by all consumers. Constraint (3b) defines
the aggregate link flow vector as the sum of all O-D flow vectors. Constraints (3c–
3e) ensure the flow conservation at each node, including the supply and demand
nodes.2 The rest constraints set non-negative restrictions on flow and demand. With
an emphasis on the long-term planning decision, we have chosen to omit the Kirch-
hoff’s second law, phase angle constraint. We acknowledge that such simplification
may lead to certain level of accuracy loss, e.g. loop flows may not be accounted
in our model. We shall also point out that the market clearing conditions adopted
in several studies, such as Nagurney (2006), are implied by the ISO formulation,
which becomes clear in Section 2.4. Note that this model, different from the typical
DC models used for short-term transmission network operation, incorporates elastic
demand, which reflects long-term effect of market equilibrium.

Directly solving the above stochastic multi-agent optimization model can be
numerically challenging. In Section 2.3, we show how the stochastic problem can
be reduced to simpler problems through scenario decomposition. In Section 2.4, we
convert each scenario problem, by using variational inequalities, to a traffic user equi-
librium problem, for which efficient solution algorithms have been developed in the
transportation literature.

2.3 Scenario Decomposition

There is a rich literature on scenario decomposition for solving large-scale stochastic
programming problems via augmented Lagrangian method (Rockafellar 1976). Let
us first introduce an important concept, nonanticipavity (Rockafellar and Wets 1991),
which states that a reasonable policy should not require different actions relative to
different scenarios if the scenarios are not distinguishable at the time when the actions
are taken. Let S be a discrete set of possible scenarios for ξ and s(s ∈ S) denote
an individual scenario with probability ps . One may consider solving each scenario-
dependent problem and denote its solution as xs for each s. However, these solutions
cannot be directly implemented, because at the time when an investment decision is
made, one does not know yet which scenario is going to happen. In order to con-
solidate the s-dependent solutions to an implementable solution, we must impose the
following nonanticipativity condition:

xs = xs′
, ∀s ∈ S, s′ ∈ S, s �= s′ (4)

2For a small example illustrating these flow conservation constraints, please refer to Appendix 1.
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or equivalently

xs − z = 0, ∀s ∈ S (5)

where z is a vector of free variables.
Through introducing an augmented Lagrangian function that adds a penalty of vio-

lating the nonanticipativity condition to the original objective function, Rockafellar
and Wets (1991) developed a scenario-decomposition method, the progressive hedg-
ing (PH) method, for classic two-stage stochastic programming problems involving
a single decision-maker. In this work, we extend the idea of scenario decomposition
to multiple decision-maker cases.

Let xs
i and ys

i be the planning decision and the operational decision of player i(∈
I ) in scenario s(∈ S), respectively. The stochastic multi-agent optimization problem
can be reformulated as:

(xs
i , y

s
i ) = arg min

xs
i ,y

s
i

{
E

[
fi(x

s
i , x

s−i ) + gi(x
s
i , x

s−i , y
s
i , y

s−i , ξ )
]}

,

s.t. (xs
i , x

s−i ) ∈ F, xs
i = zi, and (ys

i , y
s−i ) ∈ G(xs

i , x
s−i , ξ ),

∀i ∈ I, s ∈ S

For the ith player, define

L s
i (x, y, z, ω) = f s

i (xs) + gs
i (x

s , ys) + ωs
i
T
(xs

i − zi ) + 1

2
γ ‖xs

i − zi‖2 (6)

Li (x, y, z, ω) =
∑

s∈S

psL s
i (x, y, z, ω) (7)

as the augmented Lagrangian, where ωs
i

is the dual vector associated with the
nonanticipativity constraints (5) and γ > 0 is a penalty parameter. Therefore, the
augmented Lagrangian integrates the nonanticipativity constraints with the original
objective function. The stochastic problem for player i becomes

minimize Li (x, y, z, ω) over all feasible xs
i and ys

i . (8)

Due to the nonseparable penalty term 1/2γ ‖xs
i − zi‖2 in (7), the problem can-

not be decomposed directly. The PH method achieves decomposition by alternatingly
fixing the scenario solutions (xs

i , y
s
i ) and the implementable solution zi in (8). The

implementation procedure is summarized in Algorithm 1. Recent successful appli-
cations of PH method in solving large-scale stochastic mix-integer problems can
be found in Chen and Fan (2012), Fan and Liu (2010), and Waston and Woodruff
(2010). As pointed out by Rockafellar and Wets (1991), parameter γ plays an impor-
tant role in the convergence of the PH method in practice. In addition, several studies
(Løkketangen and Woodruff 1996; Mulvey and Vladimirou 1991, 1992; Chen and
Fan 2012; Waston and Woodruff 2010) reported some important factors that may
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influence the setting of penalty parameter γ . For example, it was suggested that
an effective value for the penalty parameter should be close in magnitude to the
coefficient of decision variable (Waston and Woodruff 2010).

2.4 Analyzing Each Scenario-Dependent Problem

Once the large-scale stochastic problem is decomposed, we need to iteratively solve
many scenario-dependent deterministic problems. Each scenario-dependent problem
itself is a multi-agent optimization problem, which is still computationally challeng-
ing. Next, we will show that, through creation of a virtual network and reformulation,
we can convert the problem of interest to a traffic equilibrium problem, which
allows us to exploit efficient algorithms developed by the transportation network sci-
ence community. Of course, both multi-agent optimization and traffic equilibrium
problems can be expressed using variational inequalities (VI). In some sense, it is
not surprising that the two problems can be converted to each other, even though
the equivalence is not apparent at first. For numerical implementation, one could
directly rely on general purpose solvers designed for VI problems. On the other hand,
there is an advantage in exploiting special problem structure, such as many efficient
algorithms specifically developed for traffic equilibrium problems.

Let us first convert each player’s optimization to a VI. Note that all the functions
and variables are deterministic in each scenario dependent problem, therefore we do
not carry the notation ξ in the following discussion. Assuming objective function
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(2) is concave and continuously differentiable, the model can be rewritten as the
following VI:3

∑

k∈K

∑

j∈Jk

⎧
⎪⎨

⎪⎩
−

⎡

⎢
⎣ρ∗

k +
∑

k′∈K

⎛

⎝∂ρk′

∂g
j
i

∣∣∣∣∣∣
g=g∗

∑

j∈Jk′
g

j∗
i

⎞

⎠ − ∂φg

∂g
j
i

∣∣∣∣∣∣
g

j
i =g

j∗
i

− λ
ij∗
c

⎤

⎥
⎦

×
(
g

j
i − g

j∗
i

)

−
⎡

⎣− ∂φc

∂c
j
i

∣∣∣∣∣
c
j
i =c

j∗
i

+ λ
ij∗
c

⎤

⎦
(
c
j
i − c

j∗
i

)
+

(
−g

j∗
i + c

j∗
i

)

×
(
λ

ij
c − λ

ij∗
c

)
⎫
⎪⎬

⎪⎭
≥ 0, ∀ (

gi , ci , λi

) ∈ K 1
i (9)

K 1
i ≡

{ (
gi , ci , λi

) ∈ R
3li+ |(2b) is satisfied

}

where:

λ
ij
c : dual variable of capacity constraint of firm i on location j ;

gi : vector that concatenates g
j
i variables;

ci : vector that concatenates c
j
i variables;

λi : vector that concatenates λ
ij
c variables;

li : number of optional locations for each conpanies i;
K 1

i : feasible set of firm i’s decision.

Similarly, the ISO’s problem can be expressed using VI as follows:
∑

q∈Q

[
φt (v

∗) + ∇φt (v
∗)v∗ − AT λq∗]T (

x q − x q∗)

+
∑

q∈Q

[
EqT λq∗+ρ ∗T Eq+− w(d∗T )Eq−] (

tq − tq∗)≥0, ∀x q, t q ∈K 2(10)

K 2 ≡ {
(x, t) |(3b) ∼ (3g) is satisfied

}

where:

∇φt (·) : Jacobian matrix of link cost function;
λq : dual vector associated with constraint (3c) of O-D pair q. Each row corre-

sponds to a link;
K 2 : feasible set of ISO decision.

3Note that since the wholesale prices depend on the production quantities, chain rule of differentiation
should be used while taking derivatives to arrive at the VI.
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Note that the market clearing conditions (Nagurney 2006) are implied by the ISO
formulation: The second term in Eq. 10 means that if the demand of OD pair q, tq , is
zero, then the wholesale price plus the transmission cost can be larger than the con-
sumer willingness to pay; otherwise, the wholesale price plus the transmission cost
must be equal to the consumer willingness to pay. In addition, note that in constraint
(3c), ISO is required to balance demand and supply at all time, so the dual variable
associated with this equality constraint is a free variable.

As stated before, the decisions of all participants in this system are interdepen-
dent and should be modeled simultaneously as a whole system. We state the system
equilibrium more formally by the following definition.

Definition 1 (Power System Equilibrium). The equilibrium state of a power sys-
tem is that all generators achieve their own optimality (cf. (9)) and ISO achieves its
optimality (cf. (10)).

We claim the following Lemma, which provides the equivalent condition of the
power system equilibrium conditions.

Lemma 1 (Variational Inequality Condition for the Power System Equilibrium). The
equilibrium conditions governing the power system equilibrium are equivalent to
finding solutions satisfying the following variational inequality (11):

∑

k∈K

∑

j∈Jk

⎡

⎣−
∑

k′∈K

⎛

⎝ ∂ρk′

∂g
j
i

∣∣∣∣∣
g=g∗

∑

j∈Jk′
g

j∗
i

⎞

⎠+ ∂φg

∂g
j
i

∣∣∣∣∣
g

j
i =g

j∗
i

+ ∂φc

∂c
j
i

∣∣∣∣∣
c
j
i =c

j∗
i

⎤

⎦
(
g

j
i − g

j∗
i

)

+ [
φt (v

∗) + ∇φt (v
∗)v∗]T (

v − v∗) − w(d∗T )
(
d − d∗)

+
∑

k∈K

∑

j∈Jk

⎧
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⎩
∂φc

∂c
j
i

∣∣∣∣∣
c
j
i =c

j∗
i

[(
c
j
i − g

j
i

)
−

(
c
j∗
i − g

j∗
i

)]

− λ
ij∗
c

[(
c
j
i − g

j
i

)
−

(
c
j∗
i − g

j∗
i

)]
+

(
c
j∗
i − g

j∗
i − 0

) (
λ

ij
c − λ

ij∗
c

)}

≥ 0

∀ (
gi , ci , λi

) ∈ K 1
i , ∀i, ∀ (x, t) ∈ K 2 (11)

Proof Combining VI (2) and (4), we have the following terms cancelled out:

1.
∑

q∈Q

[−AT γ q∗]T (xq − xq∗) and
∑

q∈Q EqT γ q∗ (tq − tq∗)
2.

∑
k∈K

∑
j∈Jk

ρ∗
k

(
g

j
i − g

j∗
i

)
and

∑
q∈Q ρ ∗T Eq+ (tq − tq∗)

The first cancellation is derived by Constraint (3c), and the second cancella-

tion is derived by Constraint (3d). Then, add − ∂φc

∂c
j
i

∣∣∣∣
c
j
i =c

j∗
i

(
g

j
i − g

j∗
i

)
and subtract

− ∂φc

∂c
j
i

∣∣∣∣
c
j
i =c

j∗
i

(
g

j
i − g

j∗
i

)
, and reorganize the formulation in terms of variables g and
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c−g. Finally, after the use of Constraint (3b) and (3e) to substitute (x, t) with (v, d),
VI (11) is derived.

Next we will show the VI problem in (11) is equivalent to a transportation net-
work user equilibrium problem. Let us use a simple case illustrated in Fig. 1 as
an example to explain the construction of a virtual network corresponding to a
traffic network equilibrium problem. In Fig. 1a virtual node C denotes an invest-
ment firm; F denotes a potential investment location or an existing generator. The
link flow from a node C to a node F means the capacity that firm C invests at
location F. For an existing generator, link flow of C-F is set to be the existing gen-
eration capacity. Each node P or U corresponds to a firm. The flows on link F-P
and link F-U denote the electricity production quantity and the unused capacity of
that firm at location F, respectively. Virtual node I is created to denote electricity
that shares the same transmission infrastructure to access the existing power grid.
Physical node A denotes an access point or a demand node in the power grid. In
general, there are multiple access points and demand nodes in a power network. The
flow on link P-I denotes the total electricity production of each firm, and the flow
on link I-A or P-A denotes the transmission quantity between the corresponding
locations.

Theorem 2 (Virtual Network Equivalence) The VI (11) is identical with the VI gov-
erning transportation user equilibrium of the virtual network shown in Fig. 1 if link
costs and demand market are defined in the following manner:

• For the links within “Capital investment” layer in Fig. 1 (i.e. from Node C to
Node F), the link cost is set to be the marginal capacity cost, i.e. ∂φc(c

j
i )/∂c

j
i .

In case of existing generators, the cost attached to this link is set to be zero.
• For links connecting Node F and Node P, the link cost is marginal production

cost, i.e. ∂φg(g
j
i )/∂g

j
i .• For links connecting Node F and Node U, the link cost represents the cost of

shutting off unused generation capacity. In case such cost is negligible, it can be
set to zero.

Capital investment

Power Grid (Transmission Line)

Actual production

Strategic bidding

C1 C2

F1 F2 F3

U1 P1 P2 U2

I1

U3

C3 F4 P3 A1

Fig. 1 A network structure of the problem
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• For links connecting Node P and Node I, we interpret the link cost as
strategic escalating of electricity price of each generator, which is set to

−∑
k′∈K

(
∂ρk′
∂g

j
i

(g)
∑

j∈Jk′ g
j
i

)
(see Appendix 4 for the calculation of ∂ρk′

∂g
j
i

).

Because we assume oligopoly competition, rather than perfect competition in
the electricity supply industry, each firm will try to produce electricity at a level
where the wholesale price equals to the marginal cost plus this term so that the
profit is maximized.

• For links within the power grid, a marginal transmission cost is imposed by the
ISO, i.e. φt (v) + ∇φt (v)v.

• The demand functions of the nodes within the power grid are assumed to be
given and depend on the retail price only, while the demand function of Node U
is assigned zero despite of the value of capacity shadow price.

Before we give the proof of Theorem 2, we introduce the following Theorem
provided in Nagurney (2006):

Theorem 3 A travel link flow pattern and associated travel demand and disutility
pattern is a traffic network equilibrium if and only if the variational inequality holds:
determine (f ∗, d∗, λ∗) ∈ K 3 satisfying:

∑

a∈L

φa

(
f ∗) × (fa − f ∗

a ) −
∑

n∈N

λ∗
n × (dn − d∗

n)

+
∑

n∈N

[d∗
n − dn(λ

∗)] × [λn − λ∗
n] ≥ 0, ∀(f , d, λ) ∈ K 3 (12)

K 3 ≡
{
(f , d, λ) ∈ R

|L|+2|N |
+ | there exist an χ satisfying (13) and (14)

}

fa =
∑

p∈P

χpδap, ∀a ∈ L (13)

dn =
∑

p∈Pn

χp, ∀n ∈ N (14)

where:

N : demand node set of virtue transportation network (indexed by n);
L : link set of virtue transportation network (indexed by a);
P : path set of virtue transportation network (indexed by p);

δap : binary indicator, δap = 1 if link a is contained in path p, and δap = 0
otherwise;

φa(·) : link cost function of link a with respect to link flow;
fa : link flow of link a;
dn : demand at demand node n;

dn(·) : demand function at demand node n with respect to travel disutility;
λn : travel disutility at demand node n;
χp : path flow of path p;
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Notice that in Theorem 3, travel disutility is restricted to non-negative value, which
is not applicable in power market, where price can become negative if necessary (e.g.
the ISO may pay consumers to use electricity if supply exceeds demand and shutting
down production facilities is too costly). So we propose the following Corollary to
account for this situation.

Corollary 4 (Unrestricted Locational Price). In a virtual transportation network
where consumer can gain time (instead of spend time) to travel, a travel link flow,
travel demand and disutility pattern (negative means utility) is a traffic network equi-
librium if and only if it satisfies the following VI: determine (f ∗, d∗, λ∗) ∈ K 4

satisfying:
∑

a∈L φa (f ∗) × (fa − f ∗
a ) − ∑

n∈N λ∗
n × (dn − d∗

n) ≥ 0, ∀(f , d, λ) ∈ K 4

(15)

K 4 ≡
{
(f , d, λ) ∈ R

|L|+|N |
+ × R|N ||there exist an χ satisfying (15) and (14)

}

Note that since the dual vector λ does not have sign restriction, its corresponding
optimality condition is simply the original constraints associated with it, i.e. (3c),
which can be equivalently expressed by (13) and (14).

Now we propose the proof for Theorem 2.

Proof of Theorem 2 There are two types of demand nodes in the virtual transporta-
tion network: the nodes within transmission network, denoted by “A”; and the virtual
nodes representing unused capacity, denoted by “U”. A-nodes do not have non-
negativity constraint on price, so VI (15) is applied for these nodes (Corollary 4),
while VI (12) is applied for U-nodes (Theorem 3). After algebraic simplification, the
VI governing the virtual transportation network is identical with VI (11).

Note that in each iteration of the PH method, the objective function is updated by
adding a Lagrange multiplier and a penalty term, i.e. ωs

i
T (xs

i − zi ) + 1
2γ ‖xs

i − zi‖2,
which is a function of the planning decision variable. Therefore, the correspond-
ing VI that needs to be solved during each iteration of the PH procedure should be
modified as:

∑

k∈K

∑

j∈Jk

⎡

⎣−
∑

k′∈K

⎛

⎝ ∂ρk′

∂g
j
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∣∣∣
∣
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⎞
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+ ∂φc
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∣∣∣
∣
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js∗
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)](
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j
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)
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∗) + ∇φt (v

∗)v∗]T (
v − v∗) − w(d∗T )

(
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⎧
⎨

⎩
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j∗
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− λ
ij∗
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[(
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j
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j
i
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−
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c
j∗
i − g
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i

)]
+

(
c
j∗
i − g

j∗
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ij
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ij∗
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≥ 0

∀ (
gi , ci ,λi

) ∈ K 1
i ,∀i,∀ (x, t) ∈ K 2 (16)
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The additional terms involving ωs∗
ij + γ

(
c
js∗
i − c

js∗
i

)
is attributed to the nonantic-

ipativity condition. Therefore the link cost associated with C-F should be modified
from ∂φc(c

j
i )/∂c

j
i (see Theorem 2) to:

modified C-F link cost = ∂φc(c
j
i )/∂c

j
i + ωs

ij + γ
(
c
js∗
i − c

js
i

)
(17)

Based on the same network structure shown in Fig. 1, we now have the PH-
transportation network solution procedure for the stochastic problem as shown in
Algorithm 2. Following this decomposition procedure, the original stochastic energy
supply chain problem is converted to many scenario-dependent deterministic traffic
network equilibrium problems, which can be solved efficiently by Frank-Wolf algo-
rithm (LeBlanc et al. 1975), which is implemented in this study, or by other recent
methods summarized in Bar-Gera (2010).

We shall note that in general the VI defined in (16) may have multiple solutions.
For the numerical implementation reported herein, we consider only the single-
solution case. Alternatively, one may consider a min-max formulation to seek the
best investment decision in the equilibrium condition that returns the worst-case
performance.



A Stochastic Multi-agent Optimization Model for Energy... 597

Table 1 Parameter setting in Example 1

Capital Cost Function ($) Generation Cost Function($)

Scenario Firm 1 Firm 2 Firm 1 Firm 2 Demand Function ($/MWh)

1 10 × c1 10 × c2
(
g

s1
1

)2 + 30 × g
s1
1

(
g

s1
2

)2 + 30 × g
s1
2 ρ = −D + 100

2 10 × c1 10 × c2
(
g

s2
1

)2 (
g

s2
2

)2
ρ = −D + 100

3 Numerical Examples

3.1 A Simple Example for Illustration and Solution Validation

Example 1 is constructed to illustrate how the energy problem may be decomposed
and converted to traffic network equilibrium problems. The example is intentionally
set to be symmetric so that a benchmark solution can be easily obtained analyti-
cally, which then is used to validate the proposed solution procedure. This example
includes two energy investment companies, one candidate investment location, and
one electricity demand market. Two scenarios with equal probability are considered.
Transmission cost is set to be zero and transmission capacity unlimited. The specifics
of cost and demand functions are given in Table 1.

Figure 2 shows the corresponding virtual network, with four paths: p1 =
(C1, F1, P 1, I1, A1), p2 = (C2, F1, P 2, I1, A1), p3 = (C1, F1, U1), p4 =
(C2, F1, U2). The solution yielded from our solution algorithm is given in Table 2.
Each path in the virtual transportation network carries a physical meaning in the
energy supply chain. For example, path flow on p1 means the amount of power
supplied by firm C1 from location F1 to demand market A1; path flow on p3 rep-
resents the unused capacity of firm C1 at location F1. In addition to path flow, link
flow also has a corresponding implication in the energy supply chain. For example,
link flow from C1 to F1 represents the total capacity investment by firm C1 at loca-
tion F1. The multiplier λA1 tells us the marginal electricity price at node A1. The

Fig. 2 The virtual network for
Example 1. (Note: the number
attached to each arc is the
assigned link cost defined in
Theorem 2)

Capital investment

Transmission

Actual production

Strategic bidding

10 10

S1:2f+30 

S2:2f 
S1:2f+30 

S2:2f 

f f 

0 0
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C1 C2

F1
U1 U2

P1 P2

I1

A1
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Table 2 Traffic equilibrium solutions for the virtual network

Items Scenario 1 Scenario 2 Items Scenario 1 Scenario 2

p1 (MWh) 14 16 λU1($/MW) 0 20

p2 (MWh) 14 16 λU2($/MW) 0 20

p3 (MWh) 2 0 λA1($/MWh) 72 68

p4 (MWh) 2 0

multipliers λU1 and λU2 tell us the marginal benefit of increasing one unit of pro-
duction capacity at node F1 by C1 and C2, respectively. Using this correspondence,
we extract the numerical solutions for the energy infrastructure investment prob-
lem, as shown in Table 3. Note that in this simple example, the consumer surplus
is computed at the wholesale level. These results are consistent with Cournot-Nash
equilibrium calculated analytically. The optimal solution to the stochastic multi-agent
optimization problem suggests that each firm invest for a generation capacity of 16
units. As a comparison, if the company could wait until future uncertainty is revealed
before making investment decision, the deterministic solutions would be 12 units for
scenario 1 and 18 units for scenario 2.

Table 4 summarizes the numerical implementation details, including the param-
eter setting, computing environment, and computing time. The convergence pattern
of the two scenario-dependent planning decisions is plotted in Fig. 3, in which the
termination criterion is reached within less than 30 iterations.

3.2 A Realistic Case Study Based on SMUD Power Network

To draw meaningful practical implications from the theoretical results reported here,
we implement our model and algorithm on a regional power network in Sacramento
Municipal Utility District (SMUD). The transmission network consists of 25 nodes,
11 of which are demand nodes (Node 1∼11), and 65 links. The network structure is
shown in Fig. 4.

Table 3 Power market equilibrium results

Items Firm 1 Firm 2

Capacity (MW) 16 16

Generation (MWh) s1 : 14 s2 : 16 s1 : 14 s2 : 16

Capacity Shadow Price ($/MW) s1 : 0 s2 : 20 s1 : 0 s2 : 20

Total Profit ($) s1 : 232 s2 : 672 s1 : 232 s2 : 672

Expected Profit ($) 452 452

Whole Sale Price ($/MWh) s1 : 72 s2 : 68

Consumer (at wholesale level) Surplus ($) s1 : 392 s2 : 512
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Table 4 Numerical implement information

Item Value

PH method parameter γ 1

Computing time .218s

Computing tools Matlab 2012b 64 bit (Mac Version)

Computing environment Mac OSX, 2.3 GHz Intel Core i7, RAM 8GB

Fig. 3 Convergence of the planning decision

Fig. 4 Sacramento Municipal Utility District (SMUD) network
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Fig. 5 Convergence of PH algorithm

Four optional investment locations (Node 21∼24) are being considered, two of
which are in remote areas (Node 21 and 22) with lower investment costs but also
lower transmission resource; the other two locations (Node 23 and 24) are just the
opposite. The two further locations are connected to Node 20 by a single transmission
line; the two closer locations are connected to Node 2 and 3 via separate transmis-
sion lines. We consider two firms with different technologies as investors. Firm 2
has mature technologies whose production cost is certain, while Firm 1 represents
emerging technology, whose future production cost is uncertain. We also assume that
the investment cost of one firm is independent of the other firm’s decision4. The
parameter values are given in Appendix 3. This setting is referred as base case in the
following analysis.

An optimal solution is obtained using Algorithm 2 on the same computer as
in Example 1, with a total computing time of 3312 seconds. The PH algorithm
converges in 13 iterations with an absolute gap of 0.615 (see Fig. 5). Each scenario-
dependent problem within the PH algorithm is solved using Frank-Wolfe algorithm.
See Fig. 6 for its convergence pattern.5

In Table 5, we examine the impacts of transmission network on investment deci-
sions by comparing results from two cases: the base case, and the case where no
transmission cost or constraint is considered (free-transmission Case). In the base
case, both firms invest less in the further locations (location 21 and 22) due to
transmission restrictions and costs. However if the transmission network is ignored,

4Symmetric assumption and separable investment cost are not required in our model and algorithm.
5 For the same scenario-dependent problems, PATH, a general-purpose optimization solver for comple-
mentarity problems, was unable to obtain solutions.
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Fig. 6 Convergence of Frank-Wolfe algorithm

the firms would increase their investment in the further locations to take advantage
of cheaper capital cost. This comparison shows that ignoring transmission network
may lead to poor investment recommendations. Therefore, a supply chain model
that captures the essence of transmission network between supplies and demands is
critical.

Next, we will use the proposed model to explore the impacts of oligopolistic
competition on total investments, average electricity price (see Fig. 7), and total sys-
tem surplus (see Fig. 8). The total system surplus is defined as the total consumer
willingness-to-pay subtracts the total system cost. The consumer surplus is defined
as the total consumer benefits subtracts the total electricity bill they pay. Thus we
decompose total system surplus into three components: consumer surplus, gener-
ators profits (surplus) and transmission revenues.6 We compare the results among
three market types (cases): the base case, monopoly case (only Firm 2) and perfect-
competition case. From Fig. 7, with more competition involved in power supply side,
lower electricity price and higher total investment can be expected. This is mainly
due to the fact that electricity generally has low price elasticity of demand. Lacking
competition will allow suppliers to exert market power by strategically withhold-
ing their investment (long term) and manipulate the market price (short term). From
Fig. 8, we can see that as market competition level increases, the total system surplus
increases, the transmission revenues increases and the generator surplus decreases to
zero. These results demonstrate that an energy planning model capturing oligopoly

6In this example, ISO is allowed to make short term revenues from transmission services. But eventually,
this revenue will be used for transmission investment so that ISO keeps long term profit neutral.
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Table 5 Impacts of transmission network on investment decisions (MW)

Locations Base case Free-transmission case

Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 84.2 217.1 215.1

22 84.0 83.3 216.9 214.7

23 260.2 258.8 215.9 213.8

24 260.5 258.4 215.9 214.0

Total 688.6 684.7 865.8 857.5

market is critical - simplifying an oligopolistic electricity market to either a central-
planner case or a perfect market case would compromise the long-term investment
decisions and thus the total system surplus.

Finally, we explore the impacts of uncertainty. In Table 6, we compare results
from the stochastic model (base case) and a deterministic approach. The determin-
istic approach takes the expected value of Firm 1’s production cost as model input,
in which case the two firms become symmetric. The results show that when there is
no uncertainty about future technology, both firms reduce their investment. This is
somehow counter intuitive because it is generally believed that uncertainty discour-
ages industry from investing. In the investor’s model, since the firms are allowed to
adjust their production quantities in the operational stage (second stage of stochas-
tic programming), they can always maintain a non-negative profit in each scenario.
Therefore, firms are more “optimistic” when they make the first stage investment
decisions - with uncertainty about future production cost, both firms will focus more
on the good scenario for themselves. However, if the firms take a more risk-averse
attitude instead of a risk-neutral one, we expect to have different results.

4 Discussion

This study focuses on energy infrastructure planning in a restructured electricity mar-
ket. The main contribution is on the development of modeling and solution methods

Fig. 7 Impacts of strategic behavior on price ($/MWh) and investment (MW)
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Fig. 8 Impacts of strategic behavior on total system surplus ($)

to address challenges brought by uncertainties and oligopolistic competition among
energy producers over a complex network structure. Directly solving the stochastic
multiple-agent model using general-purpose solvers may not be possible as we have
demonstrated in the numerical example. To overcome the computational difficulty,
we have combined two ideas. The first is using stochastic decomposition to con-
vert a large-scale stochastic problem to many smaller scenario-dependent problems
that are more easily solvable. The second is using variational inequalities to convert
a multi-agent optimization problem to a single traffic equilibrium problem, allow-
ing exploitation of efficient solution techniques that over perform general-purpose
solvers.

There are several directions for future research. One may explore the roles of
risk attitudes and information quality on energy infrastructure investment strategies,
which may be used to design efficient information sharing strategy across stakehold-
ers in the system. In addition, with the connections established between the energy
planning and traffic network equilibrium problems, one may extend the rich knowl-
edge generated in the transportation literature to energy modeling. For example,
knowledge about price of anarchy, congestion pricing, and dynamic equilibrium may
be extended to energy system planning and policy related questions, such as how
to influence individual energy investment decisions from user-optimal to system-
optimal through economic incentives. We hope the work reported here will inspire
more interdisciplinary research across transportation and energy.

Table 6 Comparing investment decisions (MW) between stochastic and deterministic approach

Locations Base case Case 4 Changes

Firm 1 Firm 2 Firm 1 Firm 2 Firm 1 Firm 2

21 84.0 83.7 80.3 79.9 4.6 % 4.7 %

22 84.0 83.3 80.8 80.2 4.1 % 3.8 %

23 260.2 258.8 257.7 257.3 1.0 % 0.6 %

24 260.5 258.4 257.2 257.1 1.3 % 0.5 %

Total 688.6 684.2 675.9 674.6 1.9 % 1.4 %



604 Z. Guo, Y. Fan

Acknowledgments This work is partially supported by the Sustainable Transportation Energy Pathways
(STEPS) program and the National Transportation Center on Sustainability (NTCS) at University of Cal-
ifornia, Davis (UC Davis). The authors are grateful to Prof. Roger Wets at UC Davis and Mr. Obadiah
Bartholomy at the Sacramento Municipal Utility District (SMUD) for helpful discussion.

Appendix 1: Small Example Illustrating Flow Conservation Constraint
(3b)–(3e)

Network Structure

OD and Path Information

Network Flow

Fig. 9 Small example structure

Table 7 Small example
structure OD # OD Path # Path Path Flow Legend

Q1 N1-N5 P1 N1-N5 8

P2 N1-N3-N4-N5 2

Q2 N2-N5 P3 N2-N3-N4-N5 5

Q3 N2-N6 P4 N2-N3-N4-N6 3

P5 N2-N6 4
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Incidence Matrix

Appendix 2: Subroutine Pseudocode

Appendix 3: Data for Example 2

Table 8 Capacity cost data
Node # Firm 1 Firm 2

21 24.3 × c1 24.3 × c2

22 24.3 × c1 24.3 × c2

23 46.1 × c1 46.1 × c2

24 46.1 × c1 46.1 × c2
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Table 9 Generation cost data
Scenario # Firm 1 Firm 2 Probability

1 110 × g1 60 × g2 0.5

2 10 × g1 60 × g2 0.5

Table 10 Demand function parameters db and da(demand function is d = −da ∗ w + db)

Node 1 2 3 4 5 6 7 8 9 10 11

Intercept (db) 202 78 318 167 180 277 293 183 148 363 333

Slope (da) −0.075 −0.196 −0.048 −0.091 −0.085 −0.055 −0.052 −0.083 −0.103 −0.042 −0.046

Table 11 Transmission capacity ct (link transmission cost function is φt = 10 ∗ [1 + (v/ct )
4)]

Link # From node End node Capacity Link # From node End node Capacity

1 1 7 307 34 8 2 309

2 1 10 319 35 11 2 478

3 2 6 319 36 6 3 478

4 2 8 309 37 6 3 319

5 2 11 478 38 5 4 289

6 3 6 478 39 10 4 467

7 3 6 319 40 13 4 319

8 4 5 289 41 10 5 319

9 4 10 467 42 12 6 319

10 4 13 319 43 9 7 319

11 5 10 319 44 12 7 319

12 6 12 319 45 14 8 744

13 7 9 319 46 13 9 319

14 7 12 319 47 14 10 638

15 8 14 744 48 15 11 638

16 9 13 319 49 15 11 638

17 10 14 638 50 15 3 638

18 11 15 638 51 15 3 478

19 11 15 638 52 6 16 478

20 3 15 638 53 11 16 319

21 3 15 478 54 17 2 319

22 16 6 478 55 17 10 303

23 16 11 319 56 17 19 331

24 2 17 319 57 17 18 319

25 10 17 303 58 8 18 303

26 19 17 331 59 20 18 309

27 18 17 319 60 20 19 307
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Table 11 (continued)

Link # From node End node Capacity Link # From node End node Capacity

28 18 8 303 61 21 25 1000

29 18 20 309 62 22 25 1000

30 19 20 307 63 23 2 400

31 7 1 307 64 24 3 400

32 10 1 319 65 25 20 300

33 6 2 319

Appendix 4: Calculation of ∂ρk′
∂g

j

i

∂ρk′/∂g
j
i can be computed from the ISO’s optimization problem (3g), where ρ is

the dual variables of constraint (3d) and g is parameters. ∂ρk′/∂g
j
i is essentially the

derivative of dual variables with respect to right-hand side constants. We use the
standard notations for convex optimization with linear constraints:

min
x

f (x) (18a)

s.t. (λ) Ax = b (18b)

where f (x) is a convex function and x ∈ R
n, λ, b ∈ R

m, to illustrate the calculating
process and our goal is to calculate the Jacobian matrix Jλ(b).

Lagrangian of problem (18) is L = f (x)−λT (Ax−b). The optimality conditions
of problem (18) is:

∇f (x) − AT λ = 0 (19a)

Ax − b = 0 (19b)

Take implicit derivatives of Eq. (19) with respect to b :

∇2
xf (x∗(b))Jx(b) − AT Jλ(b) = 0 (20a)

AJx(b) − I = 0 (20b)

The unknown variables in Eq. 20 are two Jacobian matrices, Jx(b) and Jλ(b). The
total number of equations is equal to the total number of variables in Eq. 20, which
is nm + m2. Therefore, as long as these equations are consistent and independent,
Jλ(b) can be calculated uniquely. Clearly, if function f (x) is in quadratic form of
x, ∇2

xf (x) then only involves constants, in which case Jλ(b) can be computed ana-
lytically. For general form of f (x), one can solve Jλ(b) numerically; one can take
an initial guess of b based on historical data and then solve (20) and Algorithm 2
iteratively until Jλ(b) converged.
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