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Abstract This paper proposes a decentralized closed-loop supply chain network
model consisting of raw material suppliers, manufacturers, retailers, and recovery
centers. We assume that the demands for the product and the corresponding returns
are random and price-sensitive. Retailers and recovery centers face penalties asso-
ciated with shortage demand and supply, respectively. We derive the optimality
conditions of the various decision-makers, and establish that the governing equi-
librium conditions can be formulated as a finite-dimensional variational inequality
problem. The qualitative properties of the solution to the variational inequality are
discussed. Numerical examples are provided to illustrate the effects of demand and
return uncertainties on quantity shipments and prices.
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1 Introduction

The topic of closed-loop supply chain (CLSC) modeling and analysis has been of
great interest, both from practical and research perspectives due to the importance of
managing reverse logistics flows (Fleischmann et al. 2000) and to the increasing con-
sumer awareness of environmental issues (Bloomberg et al. 2002). Many researchers
have addressed the management of reverse flows and CLSCs (see Souza (2013), for a
recent critical review on CLSC models). Sheu et al. (2005) presented a mathematical
approach to model logistics operational problems of green-supply chain manage-
ment. Nagurney and Toyasaki (2005) proposed a variational inequality formulation
to model the management of reverse supply chain flows including electronic waste
and recycling. Hammond and Beullens (2007) expanded the model of Nagurney and
Toyasaki (2005) to consider a CLSC network consisting of manufacturers and con-
sumers at various demand markets. Yang et al. (2009) used the theory of variational
inequality to develop a CLSC network consisting of raw material suppliers, manu-
facturers, retailers, consumers and recovery centers. The authors discussed several
examples to show the effects of CLSC parameters on equilibrium flows and net rev-
enues. Feng et al. (2014) proposed a CLSC network model with demand for the
underlying product being both price and time dependent. From the design point of
view, Ramezani et al. (2014) studied CLSC by incorporating a set of fuzzy constraints
to account for the lack of knowledge and uncertain goal of the decision makers.
However, as pointed out by Guide and Van Wassenhove (2009), there is limited con-
tribution in the literature that addresses the complexity that arises from the large
number of actors in a decentralized closed-loop supply chain system. Furthermore,
Thierry et al. (1995) found that intensity of the competition is increased when com-
bined with the product end-of-life issues. Therefore, a holistic approach to study the
competition and interaction among the decision-makers within a CLSC network is
needed in order to study the system behavior and obtain useful managerial insights.

The above studies do not consider the effects of the demand and return uncertain-
ties on quantity shipments and prices. In fact, demands and returns for a product are
not known with certainty but we may obtain some information such as the cumulative
distribution functions based on historical data. Demand uncertainty is a known prob-
lem faced by firms to determine suitable levels of output before demand is known,
which is classically known as the “newsboy” problem in operational research litera-
ture (e.g., Atkinson 1979; Chen and Chen 2010; Huang et al. 2011). Shi et al. (2011)
studied the production planning problem for a multi-product closed loop system, in
which the demands and their returns are uncertain and price-sensitive, but developed
the model to include only the manufacturer’s decision-making problem. Qiang et al.
(2013) proposed a CLSC network model using the variational inequality approach.
They discussed the effects of competition, distribution channel investment, yield and
conversion rate, combined with uncertainties in demand, on equilibrium quantity
transactions and prices. However, the authors did not consider the return uncertainties
in the above work. In particular, we note that Dong et al. (2004) studied the demand
uncertainties in the decentralized supply chain network; but their model only con-
siders the forward supply chain network. To our best knowledge, there are very few
papers discussing both random return and demand in the CLSC network. The only
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work that we are aware of is the paper by Sun et al. (2013). The authors proposed a
multi-period supply chain network model and assumed the end-of-life product return
is random, depending on the collecting price. The authors studied the characteristics
of the optimal price and designed a monotonic pricing policy.

In this paper, we extend the work of Yang et al. (2009) to consider demand and
return uncertainties. In contrast to the aforementioned models, we propose a new
CLSC model that captures demand and return uncertainties through price-dependent
functions. Note that the proposed model fits in the framework of stochastic varia-
tional inequality/stochastic Nash equilibrium studied by Sobel et al. (1971), Ravat
and Shanbhag (2011) and Jiang and Xu (2008). As argued in Jiang and Xu (2008), if
the distribution functions of the random elements involved are assumed to be known
then the problem reduces to a classical deterministic optimization problem. Through-
out this paper, we assume that the distribution functions of the random demand and
random returns are known. The case of unknown distribution functions is left for
future work.

Using additive and multiplicative functions for both demand and return, we
demonstrate the joint concavity of the retailers and recovery centers’ profits as func-
tions of both shipment quantities and prices. This important result allows us to
formulate the optimality conditions of all closed-loop supply chain members as a
finite-dimensional variational inequality in which both retailers and recovery cen-
ters should account for penalties and salvage values associated with shortage and
excess supply respectively. The variational inequality approach is commonly used to
solve equilibrium problems, see for instance Dafermos (1980) and Shao et al. (2006)
for traffic equilibrium, Dafermos (1990), He et al. (2011), and Jofré et al. (2007)
for economic equilibrium and Friesz et al. (1984), Nagurney and Zhang (1996) and
Takayama and Judge (1971) for spatial price equilibrium. To solve the variational
inequality, we adopt the extra-gradient method of Khobotov (1987). Numerical exam-
ples are performed to illustrate the effect of demand and return uncertainties on
quantity shipments and prices.

The contributions of this paper include the following:

i) This paper proposes a closed-loop supply chain equilibrium model with the
consideration of both demand and return uncertainties.

ii) We consider that the demands and returns for a product are price-sensitive.
Both demand and return have a deterministic and an uncertain components. The
deterministic component is modeled using traditional linear, logarithmic, and
power functions whereas the uncertain component is modeled using additive or
multiplicative functions.

iii) We consider that the distribution functions of the random demand and return
are assumed to be known which allows us to formulate the closed-loop supply
chain problem as a deterministic optimization problem.

iv) We develop a new variational inequality formulation in which both retailers
and recovery centers should account for penalties and salvage values associated
with shortage and excess supply respectively.

v) The model and the solution method allow us to evaluate the performance of
closed-loop supply chains under demand and return uncertainties, and to assess
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the effectiveness of closed-loop supply chain decisions under the effects of
uncertainty, reverse logistics and net revenues.

This paper is organized as follows: In Section 2, we present the CLSC network
model with random demands and returns consisting of multiple tiers of supply chain
members. In Section 3, the optimality conditions of the various decision makers
are derived using the theory of variational inequality. Section 4 presents the equi-
librium pattern and its qualitative properties. This section also outlines the solution
algorithm and discusses convergence results. Section 5 presents several examples to
describe the effects of random demands and returns on the equilibrium shipments
and expected profits. Section 6 concludes the paper. Finally, all proofs are given in
the appendices.

2 The Closed-Loop Supply Chain Network Model with Random
Demands and Returns

In this section, we present the closed-loop supply chain network model with random
demands and returns. As shown in Fig. 1 (provided in Yang et al. (2009)), the network
consists of two groups of supply chain members: (1) Forward supply chain members
illustrated at the left side of Fig. 1, including raw material suppliers, manufacturers
and retailers; (2) Reverse supply chain members displayed at the right side of Fig. 1,
including retailers, recovery centers and manufacturers. Note that manufacturers and

Fig. 1 The closed-loop supply chain network
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retailers are the nodes to connect the forward supply chain network and the reverse
supply chain network to establish the closed-loop supply chain network.

2.1 Model Assumptions

Similar to the CLSC literature in the deterministic case, we make the following
assumptions:

i) The raw material suppliers only supply raw materials to the manufacturers in
the forward supply chain.

ii) The manufacturers in the closed-loop supply chain network produce a homoge-
neous product, from both rawmaterials and recycled materials. This assumption
can be relaxed by taking into account the quality depreciation of products made
from recycled materials.

iii) Each retailer is responsible for dealing with its own demand market. Such an
assumption has been used in CLSC literature (see Qiang et al. (2013)).

iv) The recovery centers only collect the recyclable product shipments from the
demand markets in the original supply chain. They only supply reusable
materials to the manufacturers in this supply chain.

v) All the supply chain members compete in a noncooperative manner under the
Cournot-Nash equilibrium framework, that is, each decision maker will deter-
mine his optimal decision variables, given the optimal ones of the competitors.
An other approach would be to consider a Stackelberg-Nash setting where each
decision maker anticipate the reaction of other competitors to his decision (e.g.,
Sherali et al. (1983)). Such model would then fit the framework of EPECs
(equilibrium programs with equilibrium constraints). While the latter are much
more difficult to solve than variational inequalities, such approaches have been
proposed in the literature, especially in the fields of energy and revenue man-
agement (e.g., Hu and Ralph (2007), Jiang et al. (2004), Metzler et al. (2003)
and Oggioni et al. (2012)).

To consider uncertainties in CLSC, two more assumptions are made within the
model:

i) The demand for the product at each retailer outlet is random and depends on
retailer prices.

ii) The return for the recyclable product at each recovery center is random and
depends on buy-back prices.

2.2 Model Definitions

Definitions of indices, parameters and variables in the closed-loop supply chain
network are described below:

2.2.1 Indices

i index of manufacturers in the CLSC network, i = {1, . . . , I }.
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j index of retailers in the CLSC network, j = {1, . . . , J }.
m index of recovery centers in the CLSC network, m = {1, . . . , M}.
n index of raw material suppliers in the CLSC network, n = {1, . . . , N}.

2.3 Parameters

βr
i fraction of usable material that can be transformed from raw materials for

manufacturer i. βr
i ∈ [0, 1].

β̄r
i fraction of useless raw material for manufacturer i. These useless materials

are sent to the landfill β̄r
i = 1 − βr

i .
βu

i fraction of usable material that can be transformed from recycled materials
for manufacturer i. βu

i ∈ [0, 1].
β̄u

i fraction of useless recycled material for manufacturer i. These useless
materials are sent to the landfill. β̄u

i = 1 − βu
i .

χm fraction of usable recycled product that can be transformed to reusable
material for recovery center m. χm ∈ [0, 1].

χ̄m fraction of useless recycled material for recovery center m. These useless
materials are sent to the landfill. χ̄m = 1 − χm.

r return ratio of used products at all demand markets.
f rec recycling fee (per product unit) charged by the corresponding Environment

Protection Agency for manufacturing a given units of products.
srec unit of subsidy of environment protection to recovery centers offered by the EPA.
cr cost (per unit of disposed raw materials) to the landfill.
cu cost (per unit of disposed reusable materials) to the landfill.
λ+

j per-unit salvage value of having excess supply at retailer j

λ−
j per-unit cost of having excess demand at retailer j .

λ+
m per-unit salvage value of having excess supply at recovery center m.

λ−
m per-unit cost of having shortage at recovery center m.

2.4 Variables

qni nonnegative raw material shipment from supplier n to manufacturer i. Group
the shipments of all the raw materials into the column vector Q1 ∈ R

NI+ .
qmi nonnegative reusable material shipment from recovery center m to manufac-

turer i. Group the shipments of all the reusable materials into the column
vector Q2 ∈ R

MI+ .
qij nonnegative product shipment from manufacturer i to retailer j . Group the

shipments of all the manufacturers into the column vector Q3 ∈ R
IJ+ .

pni selling price from supplier n to manufacturer i.
pmi selling price from recovery center m to manufacturer i.
pij selling price from manufacturer i to retailer j .
pj selling price at retailer outlet j . Group the prices of all the retailers into the

column vector P1 ∈ R
J+.

pm buy-back price from recovery center m. Group the prices of all the recovery
centers into the column vector P2 ∈ R

M+ .
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3 Equilibrium Conditions of the Closed-Loop Supply Chain Network
Members

In this section, we derive the optimality conditions of the various decision-makers in
the closed-loop supply chain.

3.1 Raw Material Suppliers and their Equilibrium Conditions

We assume that each raw material supplier n is faced with a procurement cost,

f r
n

(
I∑

i=1
qni

)
, which, in general, depends upon the entire material shipment,

I∑
i=1

qni .

We associate with each raw material supplier and manufacturer pair (n, i) a transac-
tion cost denoted by cni(qni).

Given these two costs, we can express the criterion of profit maximization for each
raw material supplier n as:

max
qni

�n =
I∑

i=1

p∗
niqni − f r

n

(
I∑

i=1

qni

)
−

I∑
i=1

cni(qni). (1)

Equation 1 states that a raw material supplier’s profit is equal to sales revenue
minus costs associated with procurement and transaction. Note that p∗

ni denote the
optimal prices from each raw material supplier n to each manufacturer i. We will
discuss later how these optimal prices are recovered after solving the complete
closed-loop supply chain equilibrium model.

We assume that the raw material suppliers compete in noncooperative manner.
Also, we assume that procurement and transaction cost functions for each supplier
are continuous and convex. Therefore, the optimality conditions for all raw mate-
rial suppliers simultaneously can be expressed as the following variational inequality
(e.g. Nagurney et al. (2002)): Determine Q∗

1 ∈ R
NI+ satisfying:

N∑
n=1

I∑
i=1

⎡
⎢⎢⎣

∂f r
n

(
I∑

i=1
q∗
ni

)

∂qni
+ ∂cni (q

∗
ni )

∂qni
− p∗

ni

⎤
⎥⎥⎦× [qni − q∗

ni] ≥ 0, ∀Q1 ∈ R
NI+ . (2)

3.2 Manufacturers and their Equilibrium Conditions

Each manufacturer i must decide on: (a) the amount of product to ship to retailers;
(b) the amount of raw materials to get from suppliers; (c) the amount of reusable
materials to input from recovery centers (see Fig. 2 adopted from Yang et al. (2009)).

Manufacturer i, incurs a production cost from raw materials, f r
i

(
βr

i ,
N∑

n=1
qni

)
, and

a remanufacturing cost of reusable materials, f u
i

(
βu

i ,
M∑

m=1
qmi

)
. These costs depend

on the recovery level (βr
i or βu

i ) designed into the product.
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Fig. 2 Network structure of manufacturer i’s transactions

We associate with each manufacturer and retailer pair (i, j) a transaction cost
denoted cij (qij ). Also let cmi(qmi) denotes the transaction cost associated with
manufacturer i transacting with recovery center m.

To enforce environment legislation, recycling fees should be charged for manu-
facturers to make them financially responsible for the products they produced. The

aggregate recycling fee for manufacturer i is equal to f rec
J∑

j=1
qij (Sheu et al. 2005).

Given the above costs, we can express the criterion of profit maximization for each
manufacturer i as:

max
(qni ,qmi ,qij )

�i =
J∑

j=1

p∗
ij qij − f r

i

(
βr

i ,

N∑
n=1

qni

)
−f u

i

(
βu

i ,

M∑
m=1

qmi

)
−

J∑
j=1

cij (qij )

−
M∑

m=1

cmi(qmi) −
N∑

n=1

p∗
niqni −

M∑
m=1

p∗
miqmi − f rec

J∑
j=1

qij

−cr β̄r
i

N∑
n=1

qni − cuβ̄u
i

M∑
m=1

qmi (3)

subject to:
J∑

j=1

qij ≤ βr
i

N∑
n=1

qni + βu
i

M∑
m=1

qmi. (4)
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Equation 3 states that manufacturer i’s profit equals sales revenue less costs asso-
ciated with production and transaction, payout to raw material suppliers and recovery
centers, recycling fees and disposal cost. Constraint (4) states that the sum of all ship-
ment quantities to retailers must be less than or equal to the sum of the quantities
produced from raw materials and remanufactured from reusable materials. Once pro-

duced, the useless materials

(
β̄r

i

N∑
n=1

qni + β̄u
i

M∑
m=1

qmi

)
would be sent to the landfill,

thus the disposal cost for manufacturer i is equal to cr β̄r
i

N∑
n=1

qni+cuβ̄u
i

M∑
m=1

qmi . Note

that the optimal prices p∗
mi and p∗

ij become endogenous variables in the complete
closed-loop supply chain equilibrium model.

We assume that the manufacturers compete in noncooperative manner. Also, we
assume that production and transaction cost functions for each manufacturer are
continuous and convex. Therefore, the optimality conditions for all manufacturers
can be expressed simultaneously as the following variational inequality: Determine
(Q∗

1, Q∗
2, Q∗

3, γ
∗
1 ) ∈ R

NI+MI+IJ+I+ satisfying:

N∑
n=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f r
i

(
βr

i ,
N∑

n=1
q∗
ni

)

∂qni

+ cr β̄r
i + p∗

ni − βr
i γ

∗
1i

⎤
⎥⎥⎥⎦× [qni − q∗

ni]

+
M∑

m=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f u
i

(
βu

i ,
M∑

m=1
q∗
mi

)

∂qmi

+ ∂cmi(q
∗
mi)

∂qmi

+ cuβ̄u
i +p∗

mi −βu
i γ ∗

1i

⎤
⎥⎥⎥⎦×[qmi − q∗

mi]

+
I∑

i=1

J∑
j=1

[
∂cij (q

∗
ij )

∂qij

+ f rec + γ ∗
1i − p∗

ij

]
× [qij − q∗

ij ]

+
I∑

i=1

⎡
⎣βr

i

N∑
n=1

q∗
ni + βu

i

M∑
m=1

q∗
mi −

J∑
j=1

q∗
ij

⎤
⎦

×[γ1i − γ ∗
1i] ≥ 0 ∀(Q1, Q2, Q3, γ1) ∈ R

NI+MI+IJ+I+ . (5)

In inequality (5), γ1i is the Lagrange multiplier associated with constraint (4) for
manufacturer i, and γ1 is the column vector of all the manufacturer’s multipliers.

3.3 Retailers and their Equilibrium Conditions

Each retailer j must decide jointly on the quantity to order from the manufacturers
and the selling price in order to cope with the random demand while seeking to
maximize its expected profit. Each retailer j is faced with a handling cost, which may
include the display and storage cost associated with the product. For simplicity, we
assume a constant handling cost cj ; all our results extend without loss of generality
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to increasing and convex functions cj

(
I∑

i=1
qij

)
. To avoid triviality, we assume that

λ+
j ≤ pj .
We assume that the demand for the product at each retailer j , Dj(pj , εj ), is ran-

dom and depends on the price pj and a random variable εj independent of pj and
defined on the range [Aj , Bj ]. We assume the mean demand is specified by a function
yj (pj ) that captures the dependency between demand and price:

E(Dj (pj , εj )) = yj (pj ),

where yj (pj ) is continuous, nonnegative and three times differentiable. Let y′
j (pj ),

y′′
j (pj ) and y′′′

j (pj ) denote the first, second and third derivative of yj (pj ).

Assumption 1 y′
j (pj ) ≤ 0, y′′

j (pj ) ≥ 0, pjyj (pj ) is concave in pj and pjy
′
j (pj )

is convex in pj .

The last concavity and convexity conditions amount to 2y′
j (pj ) + pjy

′′
j (pj ) ≤

0 and 2y ′′
j (pj ) + pjy

′′′
j (pj ) ≥ 0. The concavity condition was also used by

Kocabiyikoglu and Popescu (2011). It can be easily verified that the following
demand functions satisfy the conditions of Assumption 1:

i) Linear: yj (pj ) = aj − bjpj , aj > 0, bj > 0, pj ≤ aj

bj
, j = 1, · · · , J .

ii) Logarithmic: yj (pj ) = aj − bj ln(pj + 1), aj > 0, bj > 0, pj ≤ e

aj
bj − 1,

j = 1, · · · , J .

iii) Power: yj (pj ) = aj − bjp
γj

j , aj > 0, bj > 0, 0 < γj ≤ 1, pj ≤
(

aj

bj

) 1
γj ,

j = 1, · · · , J .

Note that the conditions pj smaller than some constants are only added to ensure
positive demand.

In the literature, two types of demand functions are commonly used: the addi-
tive form where Dj(pj , εj ) = yj (pj ) + εj , and the multiplicative form where
Dj(pj , εj ) = yj (p)εj (Petruzzi and Dada 1999). For the additive demand model, we
assume that E(εj ) = 0 and yj (p̄j ) + Aj = 0 where p̄j is the maximum admissible
level of pj . As discussed in Xu et al. (2010), this last condition will ensure a posi-
tive demand in the range of the price interval [0, p̄j ]. For the multiplicative demand
model, we assume that E(εj ) = 1 and yj (p̄j ) = 0.

We assume that the random variable εj has a continuous distribution Fj (x) with
density fj (x). Define the failure rate function of the εj ’s distribution as:

rj (x) = fj (x)

1 − Fj (x)
,
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and the generalized failure rate function as:

gj (x) = xfj (x)

1 − Fj (x)
.

Assumption 2a For each retailer j , the distribution of the random variable εj has
increasing failure rate (IFR) and 1

rj (x)
is convex.

Assumption 2b For each retailer j , the distribution of the random variable εj has
increasing generalized failure rate (IGFR) and 1

gj (x)
is convex.

As discussed in Yao et al. (2006), the class of IFR distributions include: Uniform,
Normal (as well as truncated Normal at zero), Exponential, Gamma (with shape
parameter s ≥ 1), Beta (with parameters (r, s) being both ≥ 1), and Weibull distribu-
tion (with shape parameter s ≥ 1). The class of IGFR distributions generalizes that
of IFR and include all previous distributions without parameters restrictions. It is also
easy to check that all these distributions satisfy the conditions 2r ′′

j (x)− rj (x)r ′
j (x) ≥

0 and 2g′′
j (x) − gj (x)g′

j (x) ≥ 0 which are required for the convexity of 1
rj (x)

and 1
gj (x)

.
In the next subsections, we describe the equilibrium conditions of the retailers. We

first focus on the additive demand case. We then turn to the multiplicative case.

3.3.1 Additive Demand Case

Let sj =
I∑

i=1
qij denote the total supply at retailer j obtained from all the manufac-

turers. If demand for the product does not exceed sj , then the revenue of retailer j is
pjDj (pj , εj ) and each of the sj − Dj(pj , εj ) leftovers is disposed at the unit sal-
vage value λ+

j ≤ pj . Alternatively, if demand exceeds sj , then the revenue of retailer
j is pj sj and each of the Dj(pj , εj ) − sj shortages incurs a per-unit shortage cost
λ−

j . Let Qj = (qij )
I
i=1. Then, the profit of retailer j , Wj(Qj , pj ), is the difference

between sales revenue and the total costs:

Wj(Qj , pj )=

⎧⎪⎪⎨
⎪⎪⎩

pjDj (pj , εj )−cj sj −
I∑

i=1
p∗

ij qij + λ+
j [sj − Dj(pj , εj )] if Dj(pj , εj ) ≤ sj

pj sj −cj sj −
I∑

i=1
p∗

ij qij − λ−
j [Dj(pj , εj ) − sj ] if Dj(pj , εj ) > sj

Defining zj = sj − yj (pj ), the profit Wj(Qj , pj ) can be computed as:

Wj(Qj , pj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pj [yj (pj ) + εj ] − cj sj −
I∑

i=1
p∗

ij qij + λ+
j [zj − εj )] if εj ≤ zj

pj [yj (pj ) + zj ] − cj sj −
I∑

i=1
p∗

ij qij − λ−
j [εj − zj ] if εj > zj .
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The expected values of leftover and shortage of retailer j , e+
j (zj ) and e−

j (zj ) are
computed as:

e+
j (zj ) =

∫ zj

Aj

(zj − x)fj (x)dx,

e−
j (zj ) =

∫ Bj

zj

(x − zj )fj (x)dx.

Therefore, each retailer j seeks to maximize its expected profit, �j(Qj , pj ) =
E
(
Wj(Qj , pj )

)
:

max�j(Qj , pj )=pjyj (pj )−pje
−
j (zj )+λ+

j e+
j (zj )−λ−

j e−
j (zj )−cj sj −

I∑
i=1

p∗
ij qij .

(6)

Objective function (6) states that the expected profit of retailer j , which is the
difference between the expected revenue and the sum of the expected leftover
and shortage, the handling cost and the payout to the manufacturers, should be
maximized.

Similar to Kocabiyikoglu and Popescu (2011), we define the lost-sales rate (LSR)
elasticity for a given pair (sj , pj ) as:

η1j (sj , pj ) = −
(pj + δj )

∂(1−Fj (zj ))

∂pj

1 − Fj (zj )
= −(pj + δj )y

′
j (pj )fj (zj )

1 − Fj (zj )

= −(pj + δj )y
′
j (pj )rj (zj ),

where δj = min{λ−
j − λ+

j , 0}. The LSR elasticity measures the percentage change
in the rate of lost sales with respect to the percentage change in price. For each
pair (sj , pj ), we define the set �1

j = {(Qj , pj ) ∈ R
I+1+ | η1j (sj , pj ) ≥ 1/2}. The

following results demonstrates that the set �1
j is convex, the function �j(Qj , pj ) is

jointly concave in Qj and pj and the optimal solution (Q∗
j , p

∗
j ) belongs to the set �

1
j

under the conditions of Assumptions 1 and 2a.

Lemma 1 In the additive case, if conditions of Assumptions 1 and 2a are satisfied,
then the set �1

j is convex.

Proof See Appendix A.

Theorem 1 In the additive case, if conditions of Assumptions 1 and 2a are satisfied,
then the function �j(Qj , pj ) is jointly concave in Qj and pj in the set �1

j .

Proof See Appendix B.
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Proposition 1 In the additive case, if conditions of Assumptions 1 and 2a are
satisfied, then the optimal solution (Q∗

j , p
∗
j ) belongs to the set �1

j .

Proof See Appendix C.

Under the conditions of Theorem 1, the function �j(Qj , pj ) is jointly concave
in Qj and pj and as pointed in Lemma 1, the set �1

j is convex therefore the opti-
mality conditions for all retailers could be expressed simultaneously as the following
variational inequality: Determine (Q∗

3, P
∗
1 ) ∈ �1 ⊂ R

IJ+J+ satisfying:

I∑
i=1

J∑
j=1

[
−
(
λ−

j + p∗
j − cj − p∗

ij

)
+
(
p∗

j + λ−
j − λ+

j

)
Fj (z

∗
j )
]

× [qij − q∗
ij ]

+
J∑

j=1

[
−yj (p

∗
j ) + e−

j (z∗
j ) − y′

j (p
∗
j )
[
(p∗

j + λ−
j − λ+

j )Fj (z
∗
j ) − λ−

j

]]

×[pj − p∗
j ] ≥ 0, ∀(Q3, P1) ∈ �1, (7)

where z∗
j = s∗

j − yj (p
∗
j ) and �1 =

J⊗
j=1

�1
j .

3.3.2 Multiplicative Demand Case

In the multiplicative demand case, the profit Wj(Qj , pj ) can be written as:

Wj(Qj , pj )=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

pjyj (pj )εj − cj sj −
I∑

i=1
p∗

ij qij + λ+
j yj (pj )[zj − εj )] if εj ≤ zj

pjyj (pj )zj − cj sj −
I∑

i=1
p∗

ij qij − λ−
j yj (pj )[εj − zj ] if εj > zj ,

where Qj = (qij )
I
i=1 and zj = sj

yj (pj )
. Therefore, the expected profit of retailer j is

computed as:

max�j(Qj , pj ) = = pjyj (pj )(1 − e−
j (zj )) + yj (pj )

(
λ+

j e+
j (zj ) − λ−

j e−
j (zj )

)

−cj sj −
I∑

i=1

p∗
ij qij . (8)

Similar to the additive case, we define the lost-sales rate (LSR) elasticity for a
given pair (sj , pj ) as:

η2j (sj , pj ) = −
(pj + δj )

∂(1−Fj (zj ))

∂pj

1 − Fj (zj )
= −(pj + δj )zj y

′
j (pj )fj (zj )

yj (pj )(1 − Fj (zj ))

= −(pj + δj )y
′
j (pj )gj (zj )

yj (pj )
,

and the set �2
j = {(Qj , pj ) ∈ R

I+1+ | η2j (sj , pj ) ≥ 1/2}.
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The following results demonstrates that the set �2
j is convex, the function

�j(Qj , pj ) is jointly concave in Qj and pj and the optimal solution (Q∗
j , p

∗
j )

belongs to the set �2
j under the conditions of Assumptions 1 and 2b.

Lemma 2 In the multiplicative case, if conditions of Assumptions 1 and 2b are
satisfied, then the set �2

j is convex.

Proof See Appendix D.

Theorem 2 In the multiplicative case, if conditions of Assumptions 1 and 2b are
satisfied, then the function �j(Qj , pj ) is jointly concave in Qj and pj in the set �2

j .

Proof See Appendix E.

Proposition 2 In the multiplicative case, if conditions of Assumptions 1 and 2b are
satisfied, then the optimal solution (Q∗

j , p
∗
j ) belongs to the set �2

j .

Proof See Appendix F.

Under the conditions of Theorem 2, the function �j(Qj , pj ) is jointly concave
in Qj and pj and as pointed in Lemma 2, the set �2

j is convex therefore the opti-
mality conditions for all retailers could be expressed simultaneously as the following
variational inequality: Determine (Q∗

3, P
∗
1 ) ∈ �2 ⊂ R

IJ+J+ satisfying:

I∑
i=1

J∑
j=1

[
−
(
λ−

j + p∗
j − cj − p∗

ij

)
+
(
p∗

j + λ−
j − λ+

j

)
Fj (z

∗
j )
]

× [qij − q∗
ij ]

+
J∑

j=1

[
−y′

j (p
∗
j )
[
(p∗

j + λ−
j − λ+

j )
(
1 − e−

j (z∗
j ) + zj (Fj (z

∗
j ) − 1)

)
− λ−

j

]

−yj (p
∗
j )(1 − e−

j (z∗
j ))
]

× [pj − p∗
j ], ≥ 0, ∀(Q3, P1) ∈ �2, (9)

where z∗
j = s∗

j

yj (p∗
j )

and �2 =
J⊗

j=1
�2

j .

3.4 Recovery Centers and their Equilibrium Conditions

Recovery centers are assumed to buy-back the amount of used product from con-
sumers at various demand markets. Each recovery center m must decide jointly on
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the quantity to sell to the manufacturers and the buy-back price in order to cope with
the random return while seeking to maximize its expected profit.

Corresponding to the recycling fees, recovery center m would obtain a subsidy
equal to srec from the corresponding environment protection agency for each unit
of recyclable product (see Sheu et al. 2005). Before selling the reusable materials to
the manufacturers in the original supply chain, each recovery center m must pick up,
clean, inspect and disassemble the amount of used product incurring a unit recycling
cost of cu

m.
We assume that the return for the recyclable product associated to each recovery

center m, Rm(pm, εm), is random and depends on the buy-back price pm and a ran-
dom variable εm independent of pm and defined on the range [Am, Bm]. We assume
the mean return is specified by a function ym(pm) that captures the dependency
between return and buy-back price:

E (Rm(pm, εm)) = ym(pm),

where ym(pm) is continuous, nonnegative and two times differentiable. Lets denote
y′
m(pm) and y′′

m(pm) the first and second derivative of ym(pm).

Assumption 3 y′
m(pm) ≥ 0, y′′

m(pm) ≤ 0 and pmym(pm) is convex in pm.

The last convexity condition amount to 2y′
m(pm) + pmy′′

m(pm) ≥ 0. It can be
easily verified that the following supply functions satisfy the conditions of Assump-
tion 3:

i) Linear: ym(pm) = bmpm − am = bm(pm − p0
m), where p0

m = am/bm, bm > 0,
m = 1, · · · , M .

ii) Logarithmic: ym(pm) = bm ln(pm + 1) − am = bm(ln(pm + 1) − ln(p0
m + 1)),

where ln(p0
m + 1) = am/bm, bm > 0, m = 1, · · · , M .

iii) Power: ym(pm) = bmp
γm
m − am = bm(p

γm
m − p0

m

γm
), where (p0

m)γm = am/bm,
bm > 0, 0 < γm ≤ 1, m = 1, · · · , M ,

Note that p0
m is used to simplify notations and it denotes the price over which the

return becomes positive.
As in the retailer problem, two types of return functions are used in our model:

the additive form where Rm(pm, εm) = ym(pm) + εm, and the multiplicative form
where Rm(pm, εm) = ym(pm)εm. For the additive return model, we assume that
E(εm) = 0 and ym(p̄m) = 0 where p̄m is the minimum admissible level of
pm. For the multiplicative return model, we assume that E(εm) = 1 and ym(p̄m)

= 0.
In the next subsections, we describe the equilibrium conditions of the recovery

centers. We first start with the additive return case. We then turn to the multiplicative
case.
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3.4.1 Additive Return Case

Let qm =
I∑

i=1
qmi denote the total quantity shipped from recovery center m to all the

manufacturers. If the actual transformed return quantity χmRm is less than the total
quantity qm, there is a unit understocking cost equal to λ−

m + cu
m + cuχ̄m. This is

because recovery center m has to make an emergency call to acquire and clean used
products from other markets to compensate the shortage so as to satisfy the total order
from manufacturers. Once disassembled, the unit disposal cost of recovery center m

for sending the unusable materials to the landfill is cuχ̄m. If the actual transformed
return quantity χmRm is more than the quantity qm, there is a salvage value equal to
λ+

m ≤ λ−
m. Therefore, the expected total cost of recovery center m is given by:

(
cu
m + cuχ̄m

)
qm + pmym(pm) − λ+

me+
m(zm) + λ−

me−
m(zm), (10)

where the expected values of excess supply and shortage of recovery center m,
e+
m(zm) and e−

m(zm) are computed as:

e+
m(zm) =

∫ Bm

zm

(x − zm)fm(x)dx,

e−
m(zm) =

∫ zm

Am

(zm − x)fm(x)dx,

and zm = qm

χm
−ym(pm). In equation (10), the total expected cost is the the sum of the

recycling and disposal cost, the expected payout to the consumers, and the expected
surplus and shortage. Given the above expected costs, each recovery center m seeks
to maximize its expected profit:

max�m(Qm, pm) =
I∑

i=1

p∗
miqmi + srecym(pm) − (cu

m + cuχ̄m

)
qm

−pmym(pm) + λ+
me+

m(zm) − λ−
me−

m(zm), (11)

where Qm = (qmi)
I
i=1.

The following theorem demonstrates that the function �m(qmi, pm) is jointly
concave in Qm and pm under the conditions of Assumption 3.

Theorem 3 In the additive case, if conditions of Assumption 3 are satisfied, then the
function �m(Qm, pm) is jointly concave in Qm and pm.

Proof See Appendix G.

Under the conditions of Theorem 3, the function �m(qmi, pm) is jointly con-
cave in Qm and pm and therefore the optimality conditions for all recovery centers
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could be expressed simultaneously as the following variational inequality : Determine
(Q∗

2, P
∗
2 ) ∈ R

MI+M+ satisfying:

M∑
m=1

I∑
i=1

[
−p∗

mi + cu
m + cuχ̄m + λ+

m

χm

+
(
λ−

m − λ+
m

)
χm

Fm(z∗
m)

]
× [qmi − q∗

mi]

+
M∑

m=1

[
ym(p∗

m) − y′
m(p∗

m)
(
srec − p∗

m + λ+
m + Fm(z∗

m)(λ−
m − λ+

m)
)]

×[pm − p∗
m] ≥ 0 , (12)

∀(Q2, P2) ∈ R
MI+M+ , where z∗

m = q∗
m

χm
− ym(p∗

m).

3.4.2 Multiplicative Return Case

In the multiplicative demand case, the expected profit of recovery center m is given
as:

max�m(Qm, pm) =
I∑

i=1

p∗
miqmi + srecym(pm) − (cu

m + cuχ̄m

)
qm

−pmym(pm) + ym(pm)
(
λ+

me+
m(zm) − λ−

me−
m(zm)

)
, (13)

where Qm = (qmi)
I
i=1 and zm = qm

χmym(pm)
.

The following theorem demonstrates that the function �m(qmi, pm) is jointly
concave in Qm and pm under the conditions of Assumption 3.

Theorem 4 In the multiplicative case, if conditions of Assumption 3 are satisfied,
then the function �m(Qm, pm) is jointly concave in Qm and pm.

Proof See Appendix H.

Under the conditions of Theorem 4, the function �m(qmi, pm) is jointly con-
cave in Qm and pm and therefore the optimality conditions for all recovery centers
could be expressed simultaneously as the following variational inequality : Determine
(Q∗

2, P
∗
2 ) ∈ R

MI+M+ satisfying:

M∑
m=1

I∑
i=1

[
−p∗

mi + cu
m+ cuχ̄m + λ+

m

χm

+
(
λ−

m − λ+
m

)
χm

Fm(z∗
m)

]
× [qmi − q∗

mi](14)

+
M∑

m=1

[
ym(p∗

m) − y′
m(p∗

m)
(
srec − p∗

m + λ−
m

−(λ−
m − λ+

m)
(
1 + e−

m(z∗
m) − z∗

mFm(z∗
m)
)]× [pm − p∗

m] ≥ 0 ,

∀(Q2, P2) ∈ R
MI+M+ , where z∗

m = q∗
m

χmym(p∗
m)
.
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4 Equilibrium Conditions of the CLSC

4.1 Equilibrium Conditions

In equilibrium, we must have that the total reusable materials recovery centers could
sell to all manufacturers should not exceed a fraction r of the transformed shipments
of the total retailers’ supply:

M∑
m=1

I∑
i=1

1

χm

q∗
mi ≤ r

I∑
i=1

I∑
j=J

q∗
ij . (15)

Note that r is the return ratio of used products at all demand markets and the
transformation rate χm is allowed to depend on each recovery center m. Constraint
(15) can be rewritten as:

⎡
⎣r

I∑
i=1

I∑
j=J

q∗
ij −

M∑
m=1

I∑
i=1

1

χm

q∗
mi

⎤
⎦× [γ2 − γ ∗

2

] ≥ 0, ∀γ2 ≥ 0, (16)

where γ2 is the Lagrange multiplier associated with constraint (15).
As in the supply chain equilibrium literature (e.g., Yang et al. 2009; Qiang et al.

2013), we must have that the sum of the optimality conditions for all raw material
suppliers, as expressed by inequality (2), the optimality conditions for all manufac-
turers, as expressed by inequality (5), the optimality conditions for all retailers, as
expressed by inequality (7) in the additive case and inequality (9) in the multiplicative
case, and the optimality conditions for all recovery centers, as expressed by inequal-
ity (12) in the additive case and inequality (14) in the multiplicative case, must be
satisfied.

Definition 1 (Closed-loop supply chain network equilibrium with random additive
demand and return). The equilibrium state of the closed-loop supply chain with ran-
dom additive demand and return is one where the flows between tiers of the network
coincide, and the shipments and prices satisfy the sum of the optimality conditions
(2), (5), (7), (12) and (16).

The summation of inequalities (2), (5), (7), (12) and (16) after algebraic simplifi-
cation, yields the following result:

Theorem 5 The equilibrium conditions governing the closed-loop supply chain
model with random additive demand and return are equivalent to the solution of the
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variational inequality problem given by: determine (Q∗
1, Q

∗
2, Q

∗
3, P

∗
1 , P ∗

2 , γ ∗
1 , γ ∗

2 ) ∈
� satisfying

N∑
n=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f r
i

(
βr

i ,
N∑

n=1
q∗
ni

)

∂qni

+
∂f r

n

(
I∑

i=1
q∗
ni

)

∂qni

+ cr β̄r
i − βr

i γ ∗
1i +

∂cni(q
∗
ni)

∂qni

⎤
⎥⎥⎥⎦× [qni − q∗

ni ]

+
M∑

m=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f u
i

(
βu

i ,
M∑

m=1
q∗
mi

)

∂qmi

+ cuβ̄u
i − βu

i γ ∗
1i + ∂cmi(q

∗
mi)

∂qmi

+cu
m + cuχ̄m + λ+

m

χm

+
(
λ−

m − λ+
m

)
χm

Fm(z∗
m) + γ ∗

2

χm

]
× [qmi − q∗

mi ]

+
I∑

i=1

J∑
j=1

[
∂cij (q

∗
ij )

∂qij

+ f rec + γ ∗
1i −

(
λ−

j + p∗
j − cj

)

+
(
p∗

j + λ−
j − λ+

j

)
Fj (z

∗
j ) − rγ ∗

2

]
× [qij − q∗

ij ]

+
J∑

j=1

[
−yj (p

∗
j ) + e−

j (z∗
j ) − y′

j (p
∗
j )
[
(p∗

j + λ−
j − λ+

j )Fj (z
∗
j ) − λ−

j

]]
× [pj − p∗

j ]

+
M∑

m=1

[
ym(p∗

m) − y′
m(p∗

m)
(
srec − p∗

m + λ+
m + Fm(z∗

m)(λ−
m − λ+

m)
)]× [pm − p∗

m]

+
I∑

i=1

⎡
⎣βr

i

N∑
n=1

q∗
ni + βu

i

M∑
m=1

q∗
mi −

J∑
j=1

q∗
ij

⎤
⎦× [γ1i − γ ∗

1i ]

+
⎡
⎣r

I∑
i=1

I∑
j=J

q∗
ij −

M∑
m=1

I∑
i=1

1

χm

q∗
mi

⎤
⎦× [γ2 − γ ∗

2 ] ≥ 0, ∀(Q1, Q2, Q3, P1, P2, γ1, γ2) ∈ �,

(17)

where � = {(Q1, Q2, Q3, P1, P2, γ1, γ2) ∈ R
NI+MI+IJ+J+M+I+1+ | (Q3, P1) ∈

�1}.

Proof The formulation is developed using the standard variational inequality theory
(e.g., Nagurney (2013)).

Definition 2 (Closed-loop supply chain network equilibrium with random multi-
plicative demand and return). The equilibrium state of the closed-loop supply chain
with randommultiplicative demand and return is one where the flows between tiers of



478 Y. Hamdouch et al.

the network coincide, and the shipments and prices satisfy the sum of the optimality
conditions (2), (5), (9), (14) and (16).

The summation of inequalities (2), (5), (9), (14) and (16) after algebraic simplifi-
cation, yields the following result:

Theorem 6 The equilibrium conditions governing the closed-loop supply
chain model with random multiplicative demand and return are equivalent
to the solution of the variational inequality problem given by: determine
(Q∗

1, Q
∗
2, Q

∗
3, P

∗
1 , P ∗

2 , γ ∗
1 , γ ∗

2 ) ∈ � satisfying

N∑
n=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f r
i (βr

i ,
N∑

n=1
q∗
ni)

∂qni

+
∂f r

n (
I∑

i=1
q∗
ni)

∂qni

+ cr β̄r
i − βr

i γ ∗
1i + ∂cni(q

∗
ni)

∂qni

⎤
⎥⎥⎥⎦× [qni − q∗

ni ]

+
M∑

m=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f u
i

(
βu

i ,
M∑

m=1
q∗
mi

)

∂qmi

+ cuβ̄u
i − βu

i γ ∗
1i + ∂cmi(q

∗
mi)

∂qmi

+cu
m + cuχ̄m + λ+

m

χm

+
(
λ−

m − λ+
m

)
χm

Fm(z∗
m) + γ ∗

2

χm

]
× [qmi − q∗

mi ]

+
I∑

i=1

J∑
j=1

[
∂cij (q

∗
ij )

∂qij

+ f rec + γ ∗
1i −

(
λ−

j + p∗
j − cj

)

+
(
p∗

j + λ−
j − λ+

j

)
Fj (z

∗
j ) − rγ ∗

2

]
× [qij − q∗

ij ]

+
J∑

j=1

[
−y′

j (p
∗
j )
[
(p∗

j + λ−
j − λ+

j )
(
1 − ej (z

∗
j ) + zj (Fj (z

∗
j ) − 1)

)
− λ−

j

]

−yj (p
∗
j )(1 − e−

j (z∗
j ))
]

× [pj − p∗
j ]

+
M∑

m=1

[
ym(p∗

m) − y′
m(p∗

m)
(
srec − p∗

m + λ−
m

−(λ−
m − λ+

m)
(
1 + e−

m(z∗
m) − z∗

mFm(z∗
m)
)]× [pm − p∗

m] ≥ 0

+
I∑

i=1

⎡
⎣βr

i

N∑
n=1

q∗
ni + βu

i

M∑
m=1

q∗
mi −

J∑
j=1

q∗
ij

⎤
⎦× [γ1i − γ ∗

1i ]

+
⎡
⎣r

I∑
i=1

I∑
j=J

q∗
ij −

M∑
m=1

I∑
i=1

1

χm

q∗
mi

⎤
⎦× [γ2−γ ∗

2 ] ≥ 0, ∀(Q1, Q2, Q3, P1, P2, γ1, γ2) ∈ �,

(18)

where � = {(Q1, Q2, Q3, P1, P2, γ1, γ2) ∈ R
NI+MI+IJ+J+M+I+1+ | (Q3, P1) ∈

�2}.



A Closed-loop Supply Chain with Random Demand and Return 479

For easy reference in the subsequent sections, variational inequalities (17) and
(18) can be rewritten in standard variational inequality form as follows: determine
X∗ ∈ �, such that

〈F(X∗), X − X∗〉 ≥ 0, ∀X ∈ �, (19)

where X ≡ (Q1, Q2, Q3, P1, P2, γ1, γ2) and F(x) ≡ (Fni,Fmi,Fij ,Fj ,Fm,

Fi ,F0) (with the specific components of F(x) being given by the respective
functional terms preceding the multiplication signs in (17) or (18)).

4.2 Qualitative Properties

In this section, we provide some qualitative properties of the solution to varia-
tional inequality (19). In particular, we derive existence and uniqueness results and
investigate properties of the function F that enters this variational inequality.

Since the feasible set is not compact, we cannot derive existence simply from the
assumption of the continuity of the functions. Nevertheless, we can impose a rather
weak condition to guarantee the existence of a solution.

Let �b ≡ {(Q1, Q2, Q3, P1, P2, γ1, γ2)|0 ≤ (Q1, Q2, Q3, P1, P2, γ1, γ2) ≤ b}
where b = (b1, b2, b3, b4, b5, b6, b7) ≥ 0 and Q1 ≤ b1, Q2 ≤ b2, Q3 ≤ b3, P1 ≤
b4, P2 ≤ b5, γ1 ≤ b6, and γ2 ≤ b7. Indeed �b is a bounded closed convex subset of
R

NI+MI+IJ+J+M+I+1+ .

Theorem 7 (Existence- Additive case). Suppose that there exist positive constants
R1 and S1 such that

∂f r
i

(
βr

i ,
N∑

n=1
qni

)

∂qni

+
∂f r

n

(
I∑

i=1
qni

)

∂qni

+ cr β̄r
i − βr

i γ1i

+ ∂cni(qni)

∂qin

≥ R1, ∀Q1 with qni ≥ S1, ∀n, i.

∂f u
i

(
βu

i ,
M∑

m=1
qmi

)

∂qmi

+ cuβ̄u
i − βu

i γ1i + ∂cmi(qmi)

∂qmi

+ cu
m + cuχ̄m + λ+

m

χm

+
(
λ−

m − λ+
m

)
χm

Fm(zm)

+ γ2

χm

≥ R1, ∀Q2 with qmi ≥ S1, ∀m, i.

∂cij (qij )

∂qij

+ f rec + γ1i −
(
λ−

j + pj − cj

)

+
(
pj +λ−

j −λ+
j

)
Fj (zj )−rγ2≥R1, ∀Q3 with qij ≥S1, ∀i, j.

− yj (pj ) + e−
j (zj ) − y′

j (pj )
[
(pj + λ−

j − λ+
j )Fj (zj ) − λ−

j

]
≥ R1, ∀P1 with pj ≥ S1, ∀j.

ym(pm) − y′
m(pm)

(
srec − pm + λ+

m + Fm(zm)(λ−
m − λ+

m)
)

≥ R1, ∀P2 with pm ≥ S1, ∀m.
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Then variational inequality (17) admits at least one solution.

Proof Following the proof of Proposition 1 in Nagurney and Zhou (1993), it is pos-
sible to construct b1, b2, b3, b4, b5, b6 and b7 large enough so that the variational
inequality (17) will satisfy the following boundedness condition:

Q1 ≤ b1, Q2 ≤ b2, Q3 ≤ b3, P1 ≤ b4, P2 ≤ b5, γ1 ≤ b6, γ2 ≤ b7. (20)

Thus, variational inequality (17) admits at least one solution Xb ∈ �b, from the
standard theory of variational inequalities, since �b is compact and the functions are
continuous.

Theorem 8 (Existence- Multiplicative case). Suppose that there exist positive con-
stants R2 and S2 such that

∂f r
i

(
βr

i ,
N∑

n=1
qni

)

∂qni

+
∂f r

n

(
I∑

i=1
qni

)

∂qni

+ cr β̄r
i − βr

i γ1i

+ ∂cni(qni)

∂qin

≥ R2, ∀Q1 with qni ≥ S2, ∀n, i.

∂f u
i

(
βu

i ,
M∑

m=1
qmi

)

∂qmi

+ cuβ̄u
i − βu

i γ1i + ∂cmi(qmi)

∂qmi

+ cu
m + cuχ̄m + λ+

m

χm

+
(
pm + λ−

m − λ+
m

)
χm

Fm(zm)

+ γ2

χm

≥ R2, ∀Q2 with qmi ≥ S2, ∀m, i.

∂cij (qij )

∂qij

+ f rec + γ1i −
(
λ−

j + pj − cj

)

+
(
pj + λ−

j − λ+
j

)
Fj (zj ) − rγ2 ≥ R2, ∀Q3 with qij ≥ S2, ∀i, j.

− y′
j (pj )

[
(pj + λ−

j − λ+
j )
(
1 − ej (zj ) + zj (Fj (zj ) − 1)

)− λ−
j

]

− yj (pj )(1 − e−
j (zj )) ≥ R2, ∀P1 with pj ≥ S2, ∀j.

ym(pm) − y′
m(pm)

(
srec−pm + λ−

m−(λ−
m−λ+

m)
(
1 + e−

m(zm)−zmFm(zm)
)≥R2,

∀P2 with pm ≥ S2, ∀m.

Then variational inequality (18) admits at least one solution.

Proof Similar to the one used in Theorem 7.
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We now explore additional qualitative properties of the vector function F that
enters the variational inequality problem. In particular, we show that F is mono-
tone (strictly monotone), which is fundamental in establishing the convergence of the
algorithmic scheme used to solve variational inequality (19).

Theorem 9 (Monotonicity) Assume the following cost functions, f r
n , f r

i , f u
i , cni,

cmi ,and cij are convex. Further assume that the conditions in Theorem 1 (additive
case) or Theorem 2 (multiplicative case) are satisfied for each j, j = 1, .., J and
the conditions in Theorem 3 (additive case) or Theorem 4 (multiplicative case) are
satisfied for each m,m = 1, ...,M . Then the vector function F defined in (19) is
monotone, that is,

〈F(X′) − F(X′′), X′ − X′′〉 ≥ 0 ∀X′, X′′ ∈ �. (21)

Proof See Appendix I.

Theorem 10 (Uniqueness) Assume the following cost functions, f r
n , f r

i , f u
i , cni,

cmi , cij and cj are strictly convex. Further assume that the conditions in The-
orem 1 (additive case) or Theorem 2 (multiplicative case) are satisfied for each
j, j = 1, .., J and the conditions in Theorem 3 (additive case) or Theorem 4 (mul-
tiplicative case) are satisfied for each m,m = 1, ...,M . Then variational inequality
(19) admits a unique solution.

Proof Under the strict convexity of the cost functions, f r
n , f r

i , f u
i , cni, cmi ,and cij ,

we can follow the proof of Theorem 9 to show that F(X) is strictly monotone. Under
the strict monotonicity of F(X), uniqueness follows from the standard variational
inequality theory.

4.3 Solution Algorithm

The extragradient method of Khobotov (1987) is utilized to compute the solution of
variational inequality (19). As discussed by Tinti (2005), the algorithm is guaranteed
to converge if the functionF that enters the variational inequality is pseudomonotone
(and that a solution exists). Details on the numerical complexity of the extragradient
algorithm are outlined in Monteiro and Svaiter (2010), Monteiro and Svaiter (2012)
and Huang et al. (2012).

After solving variational inequality (19), we can recover the equilibrium prices
p∗

ni , p
∗
mi and p∗

ij .
Take the prices p∗

ni . Since the objective function (2) is continuously differen-
tiable concave and the feasible set is convex, the Karush-Kuhn-Tucker optimality
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conditions, which represent optimality conditions for the variational inequality
problem (see Facchinei et al. (1999)), take the form:

⎡
⎢⎢⎢⎣

∂f r
n

(
I∑

i=1
q∗
ni

)

∂qni

+ ∂cni(q
∗
ni)

∂qni

− p∗
ni

⎤
⎥⎥⎥⎦ ≥ 0,

⎡
⎢⎢⎢⎣

∂f r
n

(
I∑

i=1
q∗
ni

)

∂qni

+ ∂cni(q
∗
ni)

∂qni

− p∗
ni

⎤
⎥⎥⎥⎦ q∗

ni = 0, ∀i, n.

If there is a positive shipment quantity q∗
ni > 0 then

p∗
ni =

∂f r
n

(
I∑

i=1
q∗
ni

)

∂qin

+ ∂cni(q
∗
ni)

∂qni

. (22)

Using the same argument, prices p∗
mi and p∗

ij are obtained as follows:

p∗
mi = βu

i γ ∗
1i − γ ∗

2

χm

−
∂f u

i

(
βu

i ,
M∑

m=1
q∗
mi

)

∂qmi

− ∂cmi(q
∗
mi)

∂qmi

− cuβ̄u
i , (23)

p∗
ij = ∂cij (q

∗
ij )

∂qij

+ f rec + γ ∗
1i − rγ ∗

2 . (24)

5 Numerical Examples

To illustrate the effects of randomness on the equilibrium solutions, we apply the
extragradient algorithm to several numerical examples (e.g. Nagurney et al. (2002)).
The algorithm is implemented in Matlab and has been successfully tested for validity
on the numerical examples provided in Tinti (2005). The optimal solution of the
deterministic model (Yang et al. 2009) will be used as a starting point in all numerical
tests.

5.1 Impact of Model Parameters

Example 1.1 In the first basic example, we consider a closed-loop supply chain net-
work consisting of two raw material suppliers, two manufacturers, two retailers and
two recovery centers. The recycling fee, unit of subsidy and the unit cost of landfill
are set to 8, 6 and 2, respectively (f rec = 8, srec = 6, cr = cu = 2). Also, we set
βi

u = χm = 0.7, β1
r = 0.6, β2

r = 0.7, and r = 1. The transaction cost functions,
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procurement cost functions, production cost functions and handling cost functions
faced by all supply chain members are given by:

cni(qni) = 0.5(qni)
2 + 3.5(qni), ∀n = 1, 2, ∀i = 1, 2.

cij (qij ) = 0.5(qij )
2 + 3.5(qij ), ∀i = 1, 2, ∀j = 1, 2.

cmi(qmi) = 0.5(qmi)
2 + 3.5(qmi), ∀m = 1, 2, ∀i = 1, 2.

f r
n

(
2∑

i=1

qni

)
= 2.5

(
2∑

i=1

qni

)2

+
2∑

i=1

qni + 2, ∀n = 1, 2.

f r
i

(
βr

i ,

2∑
n=1

qni

)
= 3

(
βr

i

2∑
n=1

qni

)2

+ βr
i

2∑
n=1

qni + 5, ∀i = 1, 2.

f u
i

(
βr

i ,

2∑
m=1

qmi

)
= 1.5

(
βr

i

2∑
n=1

qni

)2

+ 2

(
βr

i

2∑
m=1

qmi

)
+ 2, ∀i = 1, 2.

cj

(
2∑

i=1

qij

)
= 0.5

(
2∑

i=1

qij

)2

, ∀j = 1, 2.

The unit penalties of having excess supply/demand of retailers are given by:

λ+
j = 2, λ−

j = 2 ∀j = 1, 2.

The unit recycling cost, unit penalties of having excess supply/demand of recovery
centers are given by:

cu
m = 1, λ+

m = 4, λ−
m = 100 ∀m = 1, 2.

The demand functions at retailer outlets are given by:

D1(p1, ε1) =
{
290 − p1 + ε1 additive model
(290 − p1)ε1 multiplicative model,

D2(p2, ε2) =
{
300 − p2 + ε2 additive model
(300 − p2)ε2 multiplicative model,

where, in this subsection, εj is uniformly distributed in [−4, 4] (additive model) and
uniformly distributed in [0.8, 1.2] (multiplicative model), j = 1, 2.

Finally, the return functions associated to recovery centers are given by:

R1(p1, ε1) =
{−35 + p1 + ε1 additive model

(−35 + p1)ε1 multiplicative model,

R2(p2, ε2) =
{−40 + p2 + ε2 additive model

(−40 + p2)ε2 multiplicative model,
where, in this subsection, εm is uniformly distributed in [−4, 4] (additive model) and
uniformly distributed in [0.8, 1.2] (multiplicative model), m = 1, 2.

Table 1 displays the optimal equilibrium solutions, the total revenue of all supply
chain members, the number of iterations required for the convergence of the extra-
gradient algorithm, and the CPU time (on a Dell Laptop with Intel Core i5 @2.4
GHz) for both deterministic (model of Yang et al. (2009)) and random (our model)
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Table 1 Deterministic vs. Random solutions

Variable Deterministic Random Random Random Random

(additive) (additive) (additive) (multiplicative)

U [−4, 4] Weibull[2,2] N (0, 4) U [0.8, 1.2]

(
q∗
ni

)
n=1,2;i=1,2

(
7.65 8.92

7.65 8.92

) (
7.64 8.91

7.64 8.91

) (
7.64 8.91

7.64 8.91

) (
7.63 8.89

7.63 8.89

) (
7.36 8.59

7.36 8.59

)

(
q∗
mi

)
m=1,2;i=1,2

(
7.96 7.70

7.18 6.92

) (
7.95 7.69

7.18 6.92

) (
7.95 7.69

7.18 6.92

) (
7.95 7.68

7.18 6.92

) (
7.68 7.43

6.86 6.61

)

(
q∗
ij

)
i=1,2;j=1,2

(
9.17 10.60

10.64 12.07

) (
9.17 10.61

10.64 12.07

) (
9.17 10.60

10.64 12.07

) (
9.15 10.60

10.62 12.06

) (
8.85 10.15

10.26 11.57

)

(
z∗
j

)
j=1,2

(
−
−

) (
−3.35

−3.28

) (
−1.19

−1.16

) (
−2.79

−2.69

) (
0.84

0.84

)

(
z∗
m

)
m=1,2

(
−
−

) (
1.55

1.59

) (
0.47

0.49

) (
1.07

1.10

) (
1.09

1.09

)

(
p∗

ni

)
n=1,2;i=1,2

(
95.00 96.27

95.00 96.27

) (
94.89 96.15

94.89 96.15

) (
94.87 96.14

94.87 96.14

) (
94.71 95.97

94.71 95.97

) (
91.60 92.82

91.60 92.82

)

(
p∗

mi

)
m=1,2;i=1,2

(
106.91 106.91

107.69 107.69

) (
102.43 102.43

103.20 103.20

) (
105.57 105.57

106.34 106.34

) (
103.76 103.76

104.53 104.53

) (
105.38 105.38

106.20 106.20

)

(
p∗

ij

)
i=1,2;j=1,2

(
230.55 231.98

230.55 231.98

) (
227.27 228.71

227.27 228.71

) (
229.44 230.88

229.44 230.88

) (
227.95 229.40

227.95 229.40

) (
224.38 225.68

224.38 225.68

)

(
p∗

j

)
j=1,2

(
270.18

277.33

) (
266.85

274.04

) (
269.00

276.17

) (
267.43

274.65

) (
267.21

274.21

)

(
p∗

m

)
m=1,2

(
57.36

60.13

) (
55.79

58.56

) (
56.87

59.64

) (
56.26

59.03

) (
54.87

57.68

)

(
�∗

n

)
n=1,2

(
753.48

753.48

) (
751.56

751.56

) (
751.31

751.31

) (
748.58

748.58

) (
697.74

697.74

)

(
�∗

i

)
i=1,2

(
581.10

790.01

) (
588.29

785.57

) (
584.65

789.68

) (
585.47

786.27

) (
530.25

730.30

)

(
�∗

j

)
j=1,2

(
589.14

771.24

) (
573.96

755.53

) (
580.70

762.37

) (
559.80

740.56

) (
617.30

794.36

)

(
�∗

m

)
m=1,2

(
499.96

405.32

) (
350.70

263.70

) (
447.16

354.80

) (
385.35

296.08

) (
394.72

312.53

)

Total revenue 5143.73 4820.86 5022.00 4850.69 4774.94

Nb. of iterations 1929 4449 1996 1799 10511

CPU (sec) 9.42 27.39 13.24 12.57 64.90

cases. It is easy to show that the optimality/equilibrium conditions are satisfied with
good accuracy. In contrast with the deterministic case, incorporating randomness in
the model induces retailers to decrease their quantity shipments (q∗

ij ) implying short-
age at each retail outlet (zj < 0 in the additive case and zj < 1 in the multiplicative
case). Also, recovery centers are facing shortage (zm > 0 in the additive case and
zm > 1 in the multiplicative case) based on the current shortage and salvage values.
The optimal prices, the optimal quantities and the total revenue have all decreased
due to uncertainty.

We have also tested the impact of demand and return distributions on the equilib-
rium solutions. We keep the same data as in Example 1.1 and for the additive model
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we tried different demands and return distributions. Table 1 displays the results for
the uniform distribution U [−4, 4] with variance σ 2 = 64/12 ≈ 5.33, the Weibull
distribution (shifted to have a mean of 0) with parameters λ = 2, k = 2 and vari-
ance σ 2 = 4 − π ≈ 0.85 and the normal distribution with mean μ = 0 and variance
σ 2 = 4. Comparing the expected total profits of retailers and recovery centers (�∗

j )

and (�∗
m), we observe higher total revenue in the Weibull distribution case and lower

revenue in the uniform distribution case. This is due to the impact of the variance
on the expected profits. The more variability in the distribution, the lower expected
profits will be due to the increase in uncertainty.

In all future examples, all results reported correspond to the variational inequal-
ity (17) involving additive demand and return functions. We have tested the same
examples using multiplicative demand and return functions and obtained comparable
results.

Example 1.2 (Variant 1 of Example 1.1) In Example 1.2, we increase the aj s associ-
ated with both retailers by 50 but keep the remainder of the data as in Example 1.1.
This implies that the demand associated with each retailer outlet increases.

The extragradient method requires 10729 iterations for convergence and yields the
new equilibrium pattern shown in the third column of Table 2. Observe that with a
higher aj for each retailer, all quantity shipments increase since the demand increase
at each retailer outlet and the optimal prices and expected profits also increase.

To study the effect of changing the parameter aj on the optimal prices p∗
j and

quantities q∗
ij , analytically, one notice that

∂2�j

∂pj ∂aj
= Fj (zj ) + bj (pj + λ−

j −
λ+

j )fj (zj ) ≥ 0 and
∂2�j

∂sj ∂aj
= (pj + λ−

j − λ+
j )fj (zj ) ≥ 0. Therefore, the optimal

price p∗
j and optimal quantity s∗

j both increase with aj .

Example 1.3 (Variant 2 of Example 1.1) To construct Example 1.3, we keep the
data as in Example 1.1, but now we decrease the ams associated with both recov-
ery centers by 5. Hence, the return amount associated to each recovery center
decreases.

The extragradient algorithm converges in 9119 iterations and yields the new equi-
librium pattern shown in the fourth column of Table 2. When the return amount
associated to each recovery center decreases, buy-back prices pm increase and the
reusable material shipments, q∗

mi , as well as the expected profits, π∗
m, decline due to

the decrease of the return amount associated to each recovery center.
To study the effect of changing the parameter am on the optimal prices p∗

m and

quantities q∗
mi , analytically, one notice that ∂2�m

∂pm∂am
= 1 + bm(λ−

m − λ+
m)fm(zm) ≥

0 and ∂2�m

∂qm∂am
= −(λ−

m − λ+
m)fm(zm)/χm ≤ 0. Therefore, the optimal price p∗

m

increases and optimal quantity q∗
m decreases with am.

Example 1.4 (Variant 3 of Example 1.1) In Example 1.4, we keep the same data as
in Example 1.1 with the following change: we increase the weight associated with
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Table 2 Impact of changing the model parameters

Variable Example 1.1 Example 1.2 Example 1.3 Example 1.4 Example 1.5 Example 1.6

(
q∗
ni

)
n=1,2;i=1,2

(
7.64 8.91

7.64 8.91

) (
9.28 10.78

9.28 10.78

) (
7.51 8.76

7.51 8.76

) (
7.78 9.07

7.78 9.07

) (
7.46 8.70

7.46 8.70

) ⎛
⎜⎝

6.37 6.80

6.37 6.80

6.37 6.80

⎞
⎟⎠

(
q∗
mi

)
m=1,2;i=1,2

(
7.95 7.69

7.18 6.92

) (
9.55 9.24

8.78 8.47

) (
7.80 7.54

7.03 6.78

) (
8.10 7.83

7.33 7.07

) (
7.74 7.49

6.97 6.71

) (
8.04 7.82

7.27 7.05

)

(
q∗
ij

)
i=1,2;j=1,2

(
9.17 10.61

10.64 12.07

) (
11.27 12.71

13.03 14.47

) (
8.97 10.41

10.42 11.86

) (
9.37 10.80

10.86 12.29

) (
8.89 10.33

10.33 11.77

) (
10.37 11.81

11.62 13.06

)

(
z∗
j

)
j=1,2

(
−3.35

−3.28

) (
−3.33

−3.27

) (
−3.36

−3.29

) (
0.14

0.13

) (
−3.37

−3.30

) (
−3.28

−3.21

)

(
z∗
m

)
m=1,2

(
1.55

1.59

) (
2.19

2.24

) (
1.85

1.89

) (
1.61

1.65

) (
−1.58

−1.56

) (
1.59

1.64

)

(
p∗

ni

)
n=1,2;i=1,2

(
94.89 96.15

94.89 96.15

) (
114.08 115.58

114.08 115.58

) (
93.40 94.64

93.40 94.64

) (
96.53 97.82

96.53 97.82

) (
92.74 93.98

92.74 93.98

) ⎛
⎜⎝

76.70 77.13

76.70 77.13

76.70 77.13

⎞
⎟⎠

(
p∗

mi

)
m=1,2;i=1,2

(
102.43 102.43

103.20 103.20

) (
113.43 113.43

114.20 114.20

) (
107.53 107.53

108.29 108.29

) (
103.46 103.46

104.23 104.23

) (
109.70 109.70

110.47 110.47

) (
103.20 103.20

103.97 103.97

)

(
p∗

ij

)
i=1,2;j=1,2

(
227.27 228.71

227.27 228.71

) (
263.81 265.24

263.81 265.24

) (
228.49 229.93

228.49 229.93

) (
230.52 231.94

230.52 231.94

) (
229.00 230.44

229.00 230.44

) (
220.80 222.24

220.80 222.24

)

(
p∗

j

)
j=1,2

(
266.85

274.04

) (
312.37

319.56

) (
267.25

274.44

) (
269.91

277.04

) (
267.41

274.60

) (
264.74

271.93

)

(
p∗

m

)
m=1,2

(
55.79

58.56

) (
59.64

62.41

) (
60.07

62.84

) (
56.15

58.92

) (
58.33

61.10

) (
56.06

58.83

)

(
�∗

n

)
n=1,2

(
751.56

751.56

) (
1105.22

1105.22

) (
726.92

726.92

) (
779.23

779.23

) (
716.26

716.26

) ⎛
⎜⎝

474.71

474.71

474.71

⎞
⎟⎠

(
�∗

i

)
i=1,2

(
588.29

785.57

) (
883.13

1136.95

) (
552.44

760.43

) (
615.08

817.32

) (
538.09

750.52

) (
739.45

972.68

)

(
�∗

j

)
j=1,2

(
573.96

755.53

) (
869.42

1089.48

) (
550.05

728.11

) (
70.35

245.36

) (
540.18

716.77

) (
709.10

909.28

)

(
�∗

m

)
m=1,2

(
350.70

263.70

) (
540.02

436.19

) (
327.41

243.78

) (
366.93

278.36

) (
333.46

233.55

) (
362.76

274.59

)

Total revenue 4820.86 7165.64 4616.05 3951.86 4545.08 5391.98

Nb. of iterations 4449 10729 9119 13301 14516 2926

CPU (sec) 27.39 64.76 54.99 79.89 86.92 19.08

undersupply at all retail outlets from 2 to 250. Also, we set the weights associated
with oversupply at all retail outlets to 0. Hence, we now have that λ+

j = 0, λ−
j = 250

for j = 1, 2.
The extragradient method for this example requires 13301 iterations for conver-

gence and yields the equilibrium pattern shown in the fifth column of Table 2. When
the penalty associated with shortage increases and there is no salvage value on over-
supply by each retailer, we obtain positive values of zj implying oversupply at each
retail outlet. The total expected profit of each retailer has significantly decreased due
to the high values of the shortage penalties.

To study the effect of changing the parameter λ−
j on the optimal prices p∗

j and

quantities q∗
ij , analytically, one notice that

∂2�j

∂pj ∂λ−
j

= bj (1 − Fj (zj )) ≥ 0 and
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∂2�j

∂sj ∂λ−
j

= 1 − Fj (zj ) ≥ 0. Therefore, the optimal price p∗
j and optimal quantity s∗

j

both increase with λ−
j . The same analysis applies to λ+

j .

Example 1.5 (Variant 4 of Example 1.1) The fifth numerical example is constructed
from the first example with the data retained but with following change: we increase
the weight associated with undersupply at all recovery centers from 100 to 250. Also,
we set the weights associated with oversupply at all recovery centers to 0. Hence, we
now have that λ+

m = 0, λ−
m = 250 for m = 1, 2.

The extragradient method for this example requires 14516 iterations for conver-
gence and yields the equilibrium pattern shown in the sixth column of Table 2. When
the penalty associated with shortage increases and there is no salvage value on over-
supply by each recovery center, we obtain negative values of zm implying oversupply
at each recovery center. Note that the total expected profit of each recovery center
has decreased due to the high values of the shortage penalties.

To study the effect of changing the parameter λ−
m on the optimal prices p∗

m and

quantities q∗
mi , analytically, one notice that

∂2�m

∂pm∂λ−
m

= bmFm(zm) ≥ 0 and ∂2�m

∂qm∂λ−
m

=
−Fm(zm)/χm ≤ 0. Therefore, the optimal price p∗

m increases and optimal quantity
q∗
m decreases with λ−

m. The same analysis applies to λ+
m.

Example 1.6 The sixth numerical example consists of three raw material suppliers,
two manufacturers, two retailers and two recovery centers. we retain the same func-
tions and parameters as in Example 1.1 but now we add data for the third raw material
supplier. In particular, we assume that the procurement costs and the transaction costs
associated with the new supplier are of the same form as given above for the other
raw material suppliers.

The extragradient algorithm converges in 2926 iterations and yields the new equi-
librium pattern displayed in the seventh column of Table 2. Note that, in comparison
to the results in Example 1, with the addition of a new raw material supplier, ship-
ment quantities, q∗

ni , prices, p
∗
ni , and expected profits, π∗

n , are now lower due to the
competition.

5.2 Impact of Demand Functions

In this subsection, we test the impact of demand functions on the equilibrium
solutions. We keep the same data as in Example 1.1. For the demand functions,
we consider three examples. Example 3.1 corresponds to the linear demand case:
y1(p1) = 290 − p1; y2(p2) = 300 − p2. Example 3.2 illustrates the logarithmic
demand case: y1(p1) = 290−50 ln(p1+1); y2(p2) = 300−50 ln(p2+1). Example
3.3 corresponds to the power demand function: y1(p1) = 290 − 17p0.5

1 ; y2(p2) =
300−17p0.5

2 . Table 3 displays the optimal equilibrium solutions, the total revenue of
all supply chain members, the number of iterations required for the convergence of
the extragradient algorithm, and the CPU time for these three examples. Comparing
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Table 3 Impact of demand and return functions

Example 3.1 Example 3.2 Example 3.3 Example 4.1 Example 4.2 Example 4.3

Variable Linear Logarithmic Power Linear Logarithmic Power

Demand Demand Demand Return Return Return

(
q∗
ni

)
n=1,2;i=1,2

(
7.64 8.91

7.64 8.91

) (
5.42 6.36

5.42 6.36

) (
6.66 7.78

6.66 7.78

) (
7.64 8.91

7.64 8.91

) (
7.62 8.88

7.62 8.88

) (
8.29 9.65

8.29 9.65

)

(
q∗
mi

)
m=1,2;i=1,2

(
7.95 7.69

7.18 6.92

) (
5.28 5.09

4.52 4.33

) (
6.97 6.74

6.20 5.97

) (
7.95 7.69

7.18 6.92

) (
8.11 7.85

6.92 6.66

) (
8.44 8.16

7.96 7.68

)

(
q∗
ij

)
i=1,2;j=1,2

(
9.17 10.61

10.64 12.07

) (
5.71 7.65

6.78 8.72

) (
7.72 9.47

9.01 10.76

) (
9.17 10.61

10.64 12.07

) (
9.11 10.55

10.57 12.01

) (
10.00 11.44

11.58 13.02

)

(
z∗
j

)
j=1,2

(
−3.35

−3.28

) (
−1.97

−1.38

) (
−2.95

−2.78

) (
−3.35

−3.28

) (
−3.35

−3.28

) (
−3.29

−3.22

)

(
z∗
m

)
m=1,2

(
1.55

1.59

) (
0.48

0.52

) (
1.15

1.20

) (
1.55

1.59

) (
1.61

1.68

) (
0.16

0.19

)

(
p∗

ni

)
n=1,2;i=1,2

(
94.89 96.15

94.89 96.15

) (
68.82 69.77

68.82 69.77

) (
83.32 84.45

83.32 84.45

) (
94.89 96.15

94.89 96.15

) (
94.60 95.87

94.60 95.87

) (
102.51 103.86

102.51 103.86

)

(
p∗

mi

)
m=1,2;i=1,2

(
102.43 102.43

103.20 103.20

) (
84.03 84.03

84.80 84.80

) (
95.66 95.66

96.42 96.42

) (
102.43 102.43

103.20 103.20

) (
103.51 103.51

104.70 104.70

) (
78.69 78.69

79.18 79.18

)

(
p∗

ij

)
i=1,2;j=1,2

(
227.27 228.71

227.27 228.71

) (
173.26 175.20

173.26 175.20

) (
204.91 206.66

204.91 206.66

) (
227.27 228.71

227.27 228.71

) (
227.64 229.08

227.64 229.08

) (
221.99 223.43

221.99 223.43

)

(
p∗

j

)
j=1,2

(
266.85

274.04

) (
246.33

281.85

) (
252.83

265.49

) (
266.85

274.04

) (
266.97

274.16

) (
265.13

272.31

)

(
p∗

m

)
m=1,2

(
55.79

58.56

) (
49.35

52.12

) (
53.42

56.19

) (
55.79

58.56

) (
54.01

57.45

) (
47.04

49.88

)

(
�∗

n

)
n=1,2

(
751.56

751.56

) (
379.88

379.88

) (
571.22

571.22

) (
751.56

751.56

) (
746.83

746.83

) (
883.81

883.81

)

(
�∗

i

)
i=1,2

(
588.29

785.57

) (
260.33

379.84

) (
433.58

599.06

) (
588.29

785.57

) (
575.00

775.02

) (
737.12

877.65

)

(
�∗

j

)
j=1,2

(
573.96

755.53

) (
767.54

1488.64

) (
638.71

955.09

) (
573.96

755.53

) (
566.55

747.03

) (
683.19

879.95

)

(
�∗

m

)
m=1,2

(
350.70

263.70

) (
111.34

52.52

) (
251.31

174.69

) (
350.70

263.70

) (
414.12

288.34

) (
208.65

135.00

)

Total revenue 4820.86 3819.97 4194.88 4820.86 4859.72 5289.17

Nb. of iterations 4449 7353 11052 4449 2059 9656

CPU (sec) 27.39 46.15 66.08 27.39 12.78 58.56

the quantities q∗
ij , we observe lower values in the logarithmic demand case and higher

values in the linear demand case. This is due to the impact of the rate of decrease of
the expected demand yj (pj ) with respect to the retailer price p∗

j . The faster demand
decreases with respect to the retailer price p∗

j , the lower quantities q∗
ij retailers will

order from manufacturers. A decrease in q∗
ij will result in a decrease in the quantities

q∗
mi and q∗

ni , a decrease in the prices p∗
mi , p

∗
ni , p

∗
ij and p∗

m as well as a decrease in the
expected profits �∗

n, �
∗
i and �∗

m and the total revenue. Note that the expected profits
�∗

j have increased based on the current model parameters.

5.3 Impact of Return Functions

In this subsection, we test the impact of return functions on the equilibrium solutions.
We keep the same data as in Example 1.1. For the return functions, we consider three
examples. Example 4.1 corresponds to the linear return case: y1(p1) = p1 − 35;
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y2(p2) = p2 − 40. Example 4.2 illustrates the logarithmic return case: y1(p1) =
50 ln(p1 + 1) − 179.176 = 50(ln(p1 + 1) − ln(36)); y2(p2) = 50 ln(p1 + 1) −
185.679 = 50(ln(p1 + 1) − ln(41)). Example 4.3 corresponds to the power return
function: y1(p1) = 25(p0.5

1 − 350.5); y2(p2) = 30(p0.5
1 − 400.5). Table 3 displays

the optimal equilibrium solutions, the total revenue of all supply chain members, the
number of iterations required for the convergence of the extragradient algorithm, and
the CPU time for these three examples. Comparing the quantities q∗

mi , we observe
higher values in the power return case and lower values in the linear return case.
This is due to the impact of the rate of increase of the expected return ym(pm) with
respect to the buy-back price p∗

m. The faster the return increases with respect to the
price p∗

m, the higher quantities q∗
mi manufacturers will order from recovery centers.

An increase in q∗
mi will result in an increase in the quantities q∗

ij and q∗
ni , an increase

in the price p∗
ni , as well as an increase in the expected profits �∗

n, �
∗
j and �∗

i and the
total revenue. Note that the prices p∗

ij , p
∗
mi and p∗

m and the expected profits �∗
m have

decreased based on the current model parameters.

6 Conclusion

In this paper, a new closed-loop supply chain network equilibrium model was devel-
oped allowing us to consider random demands and random returns in a closed-loop
system consisting of raw material suppliers, manufacturers, retailers and recovery
centers that collect the recycled product directly from consumers at demand markets.

Using additive and multiplicative functions to model randomness in demand and
return, we derived the equilibrium conditions of all supply chain members and then
showed they satisfy a variational inequality problem. Qualitative properties were dis-
cussed and a solution algorithm based on the extragradient method was suggested to
solve the model.

Numerical examples illustrated the flexibility of the model and showed the effects
of randomness on the equilibrium shipments and expected profits. With our model,
one can fine-tune the model parameters, the demand and return distributions, as well
as the demand and return functions to quantify the effects on the equilibrium ship-
ments, prices and expected profits in the closed-loop supply chain, which can also
generate some implications for policy makers. Moreover, although the cost func-
tions in our examples are hypothetical, we believe that some interesting managerial
implications are reported.

This work establishes the foundation for closed-loop supply chain (CLSC) net-
work problems in the case of random demands and returns. The proposed model can
serve as an experimental tool to assist managers and policy makers in the long-term
operation of closed-loop supply chains under the concerns of uncertainty, environ-
ment and net revenues. Future research may include the development of a multiperiod
CLSC network model that considers inventory management, and the integration of
multiple products, quality depreciation of recycled materials and the quality of return
collected from the demand markets into the closed-loop supply chain network.
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Appendix A: Proof of Lemma 1

Knowing that y′
j (pj ) < 0, one sees that −(pj + δj )y

′
j (pj )rj (zj ) ≥ 1

2 is equivalent

to Mj(sj , pj ) ≤ 0 where Mj(sj , pj ) = 1
rj (zj )

+2(pj +δj )y
′
j (pj ). It is easy to verify

that:

∂Mj

∂sj
= −r ′

j (zj )

rj (zj )2
,

∂Mj

∂pj

= r ′
j (zj )y

′
j (pj )

rj (zj )2
+ 2(pj + δj )y

′′
j (pj ) + 2y′

j (pj ),

∂2Mj

∂s2j

= 2r ′
j (zj )

2 − rj (zj )r
′′
j (zj )

rj (zj )3
,

∂2Mj

∂sjpj

= −y′
j (pj )

2r ′
j (zj )

2 − rj (zj )r
′′
j (zj )

rj (zj )3
,

∂2Mj

∂p2
j

= y′
j (pj )

2
2r ′

j (zj )
2 − rj (zj )r

′′
j (zj )

rj (zj )3

+y′′
j (pj )

r ′
j (zj )

rj (zj )2
+ 4y′′

j (pj ) + 2(pj + δj )y
′′′
j (pj ).

Note that
∂2Mj

∂s2j
≥ 0 if 2(r ′

j (zj ))
2 − rj (zj )r

′′
j (zj ) ≥ 0. The determinant of the

hessian of Mj , given by �j = ∂2Mj

∂s2j

∂2Mj

∂p2
j

−
(

∂2Mj

∂sj pj

)2
simplifies to

�j = 2r ′
j (zj )

2 − rj (zj )r
′′
j (zj )

rj (zj )3

(
y′′
j (pj )

r ′
j (zj )

rj (zj )2
+ 4y′′

j (pj ) + 2(pj + δj )y
′′′(pj )

)
.

From Assumptions 1 and 2a, 2(r ′
j (zj ))

2 − rj (zj )r
′′
j (zj ) ≥ 0, r ′

j (zj ) ≥ 0,
2y′′

j (pj ) + pjy
′′′(pj ) ≥ 0 and y′′

j (pj ) ≥ 0 therefore �j has the same sign as
2y′′

j (pj ) + (pj + δj )y
′′′(pj ). For y′′′(pj ) ≥ 0, one notice that 2y′′

j (pj ) + (pj +
δj )y

′′′(pj ) ≥ 0 Since y′′(pj ) ≥ 0 and pj +δj ≥ pj −λ+
j ≥ 0. Next for y′′′(pj ) ≤ 0,

2y′′
j (pj ) + (pj + δj )y

′′′(pj ) ≥ 0 since 2y′′
j (pj ) + pjy

′′′(pj ) ≥ 0 by Assumption 1
and δj y

′′′(pj ) ≥ 0 since δj ≤ 0 by definition. Hence �j ≥ 0 implying that the
function Mj is convex which in turn implies that the set �1

j is convex.
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Appendix B: Proof of Theorem 1

First, without loss of generality, assume that p∗
Ij = min

j
{p∗

ij }. Optimization problem

(6) can then be formulated as follows:

max�j(Q̃j , sj , pj ) = pjyj (pj ) − (pj + λ−
j )e−

j (zj ) + λ+
j e+

j (zj )

−cj sj − p∗
Ij sj −

I−1∑
i=1

(p∗
ij − p∗

Ij )qij

= �1
j (sj , pj ) + �2

j (Q̃j ),

where Q̃j = (qij )
I−1
i=1 , �

1
j (sj , pj ) = pjyj (pj ) − (pj + λ−

j )e−
j (zj ) + λ+

j e+
j (zj ) −

cj sj − p∗
Ij sj and �2

j (Q̃j ) = −
I−1∑
i=1

(p∗
ij − p∗

Ij )qij .

Clearly, the function �2
j (Q̃j ) is concave. We need to prove that �1

j (sj , pj ) is

concave. One easily verifies that the first derivative of �1
j with respect to sj and pj

are given by

∂�1
j

∂sj
= λ−

j + pj − cj − p∗
Ij −

(
pj + λ−

j − λ+
j

)
Fj (zj ).

∂�1
j

∂pj

= yj (pj ) − e−
j (zj ) + y′

j (pj )
[
(pj + λ−

j − λ+
j )Fj (zj ) − λ−

j

]
.

Straightforward computations show that:

∂2�1
j

∂s2j

= −
(
pj + λ−

j − λ+
j

)
fj (zj ),

∂2�1
j

∂sj ∂pj

= y′
j (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ) + 1 − Fj (zj ),

∂2�1
j

∂p2
j

= −y′
j (pj )

2
(
pj + λ−

j − λ+
j

)
fj (zj ) + 2y′

j (pj )Fj (zj )

+y′′
j (pj )

[(
pj + λ−

j − λ+
j

)
Fj (zj ) − λ−

j

]
.

Let Hj denotes the hessian matrix associated with �1
j (sj , pj ). The matrix Hj is

computed as:

(
Hsj sj Hpj sj

Hpj sj Hpj pj

)
,
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with Hsj sj = −
(
pj + λ−

j − λ+
j

)
fj (zj ), Hpj sj = Hsj pj

= y′
j (pj )(

pj + λ−
j − λ+

j

)
fj (zj ) + 1 − Fj (zj ) and Hpj pj

= −y′
j (pj )

2
(
pj + λ−

j − λ+
j

)

fj (zj ) + 2y′
j (pj )Fj (zj ) + y′′

j (pj )
[(

pj + λ−
j − λ+

j

)
Fj (zj ) − λ−

j

]
.

We will show that the matrix −Hj is positive definite. Clearly, −Hsj sj =(
pj + λ−

j − λ+
j

)
fj (zj ) > 0. If we show that det (−Hj) ≥ 0 then −Hpj pj

≥
(
Hpj sj

)2
−Hsj sj

≥ 0. det (−Hj) is calculated as:

det (−Hj) = −y′′
j (pj )(pj + λ−

j − λ+
j )fj (zj )

[(
pj + λ−

j − λ+
j

)
Fj (zj ) − λ−

j

]
−2(pj + λ−

j − λ+
j )fj (zj )y

′
j (pj )Fj (zj )

−2(pj + λ−
j − λ+

j )fj (zj )y
′
j (pj )(1 − Fj (zj ))

−(1 − Fj (zj ))
2

= (pj + λ−
j − λ+

j )fj (zj )
[
−2y′

j (pj )Fj (zj )

−y′′
j (pj )

[(
pj + λ−

j − λ+
j

)
Fj (zj ) − λ−

j

]]

+2(1 − Fj (zj ))
2

[−y′
j (pj )(pj + λ−

j − λ+
j )fj (zj )

1 − Fj (zj )
− 1

2

]

= (pj + λ−
j − λ+

j )fj (zj )Fj (zj )
[
−2y′

j (pj ) − pjy
′′
j (pj )

]

+(pj + λ−
j − λ+

j )fj (zj )y
′′
j (pj )

[
λ−

j (1 − Fj (zj )) + λ+
j Fj (zj )

]

+2(1 − Fj (zj ))
2
[
−y′

j (pj )(pj + λ−
j − λ+

j )rj (zj ) − 1

2

]
.

The first term in the above is nonnegative because 2y ′
j (pj ) + pjy

′′
j (pj ) ≤ 0.

The second term is also nonnegative because y′′
j (pj ) ≥ 0. The last term is non-

negative since it can be written as 2(1 − Fj (zj ))
2
[
η1j (sj , pj ) − 1/2

]
+ 2(1 −

Fj (zj ))
2 max(λ−

j − λ+
j , 0)(−y′

j (pj )rj (zj )) and η1j (sj , pj ) ≥ 1/2. Hence, we have

det (−Hj) ≥ 0 implying that the matrix −Hj is positive definite. Therefore, �1
j is

concave in the set �1
j .

Appendix C: Proof of Proposition 1

We need to show that the optimal vector (s∗
j , p∗

j ) belongs to the set �1
j . In other

words, we will show that η1j (sj , pj ) ≥ 1/2 when
∂�1

j

∂pj
= 0.

∂�1
j

∂pj

= 0 ⇐⇒ y′
j (pj ) = e−

j (zj ) − yj (pj )

(pj + λ−
j − λ+

j )Fj (zj ) − λ−
j

.
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Since y′
j (pj ) ≤ 0 and yj (pj ) − e−

j (zj ) ≥ 0 one see that when
∂�1

j

∂pj
= 0 one has

(pj + λ−
j − λ+

j )Fj (zj ) − λ−
j > 0.

η1j (sj , pj ) ≥ 1/2 ⇐⇒ −(pj + δj )y
′
j (pj )rj (zj ) − 1

2
≥ 0

⇐⇒ −(pj + δj )y
′
j (pj ) − 1

2rj (zj )
≥ 0

⇐⇒ pj + δj

(pj + λ−
j − λ+

j )Fj (zj ) − λ−
j

(
yj (pj ) − e−

j (zj )
)

− 1

2rj (zj )
≥ 0

⇐⇒ pj + δj

(pj + λ−
j − λ+

j )Fj (zj ) − λ−
j

[
yj (pj ) − e−

j (zj ) − Fj (zj )

2rj (zj )

]

+ 1

(pj + λ−
j − λ+

j )Fj (zj ) − λ−
j

×
[

λ−
j (1 − Fj (zj )) + min(λ−

j , λ+
j )Fj (zj )

2rj (zj )

]
≥ 0.

The last inequality holds if yj (pj )+κj (zj ) ≥ 0 where κj (zj ) = −e−
j (zj )− Fj (zj )

2rj (zj )
.

Note that κj (Aj ) = Aj and κ ′
j (zj ) = 1−Fj (zj )

2 + r ′(zj )F (zj )

2rj (zj )2
≥ 0 because r ′

j (zj ) ≥ 0.

This yields κj (zj ) ≥ Aj for all zj ∈ [Aj , Bj ]. Then yj (pj ) + κj (zj ) ≥ yj (p̄j ) +
Aj = 0. Therefore, η1j (sj , pj ) ≥ 1/2 when

∂�1
j

∂pj
= 0.

Appendix D: Proof of Lemma 2

Knowing that zj = sj /yj (pj ) ≥ 0, one sees that
−(pj +δj )y′

j (pj )gj (zj )

yj (pj )
≥ 1

2 is equiva-

lent to Nj(sj , pj ) ≤ 0 where Nj(sj , pj ) = yj (pj )

gj (zj )
+ 2(pj + δj )y

′
j (pj ). It is easy to

check that:

∂Nj

∂sj
= −g′

j (zj )

gj (zj )2
,

∂Nj

∂pj

= zjg
′
j (zj )y

′
j (pj )

gj (zj )2
+ yj (pj )

gj (zj )
+ 2(pj + δj )y

′′
j (pj ) + 2y′

j (pj ),

∂2Nj

∂s2j

= 2g′
j (zj )

2 − gj (zj )g
′′
j (zj )

gj (zj )3yj (pj )
,

∂2Nj

∂sjpj

= −zj y
′
j (pj )

2g′
j (zj )

2 − gj (zj )g
′′
j (zj )

gj (zj )3yj (pj )
,
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∂2Nj

∂p2
j

= z2j y
′
j (pj )

2
2g′

j (zj )
2 − gj (zj )g

′′
j (zj )

gj (zj )3yj (pj )
+ y′′

j (pj )

gj (zj )

+y′′
j (pj )

zjg
′
j (zj )

gj (zj )2
+ 4y′′

j (pj ) + 2(pj + δj )y
′′′
j (pj ).

Note that
∂2Nj

∂s2j
≥ 0 if 2(g′

j (zj ))
2 − gj (zj )g

′′
j (zj ) ≥ 0. The determinant of the

hessian of Nj is given by

�j = 2g′
j (zj )

2−gj (zj )g
′′
j (zj )

gj (zj )3yj (pj )

(
y′′
j (pj )

zj g
′
j (zj )

gj (zj )2
+ y′′

j (pj )

gj (zj )
+4y′′

j (pj )+2(pj + δj )y
′′′(pj )

)
.

From Assumptions 1 and 2b, 2(g′
j (zj ))

2 − gj (zj )g
′′
j (zj ) ≥ 0, g′

j (zj ) ≥ 0,
2y′′

j (pj ) + pjy
′′′(pj ) ≥ 0 and y′′

j (pj ) ≥ 0 therefore �j has the same sign as
2y′′

j (pj ) + (pj + δj )y
′′′(pj ). For y′′′(pj ) ≥ 0, one notice that 2y′′

j (pj ) + (pj +
δj )y

′′′(pj ) ≥ 0 since y′′(pj ) ≥ 0 and pj + δj ≥ pj −λ+
j ≥ 0. Next for y′′′(pj ) ≤ 0,

2y′′
j (pj ) + (pj + δj )y

′′′(pj ) ≥ 0 since 2y′′
j (pj ) + pjy

′′′(pj ) ≥ 0 by Assumption 1
and δj y

′′′(pj ) ≥ 0 since δj ≤ 0 by definition. Hence �j ≥ 0 implying that the
function Nj is convex. We can then conclude that the set �2

j is convex.

Appendix E: Proof of Theorem 2

As in the additive case, optimization problem (8) can be reformulated as:

max�j(Q̃j , sj , pj ) = pjyj (pj )(1 − e−
j (zj )) + yj (pj )

×
(
λ+

j e+
j (zj ) − λ−

j e−
j (zj )

)
− cj sj − p∗

Ij sj

−
I−1∑
i=1

(p∗
ij − p∗

Ij )qij

= �1
j (sj , pj ) + �2

j (Q̃j ),

where Q̃j = (qij )
I−1
i=1 , �1

j (sj , pj ) = pjyj (pj )(1 − e−
j (zj )) +

yj (pj )
(
λ+

j e+
j (zj ) − λ−

j e−
j (zj )

)
−cj sj −p∗

Ij sj and �2
j (Q̃j ) = −

I−1∑
i=1

(p∗
ij −p∗

Ij )qij .
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Clearly, the function �2
j (Q̃j ) is concave. We need to prove that �1

j (sj , pj ) is

concave. Let us consider the first derivative of �1
j taken with respect to sj and pj :

∂�1
j

∂sj
= −pj

(
Fj (zj ) − 1

)+ λ+
j Fj (zj ) − λ−

j

(
Fj (zj ) − 1

)− cj − p∗
Ij

= λ−
j + pj − cj − p∗

Ij −
(
pj + λ−

j − λ+
j

)
Fj (zj ).

∂�1
j

∂pj

= yj (pj )(1 − e−
j (zj )) + pjy

′
j (pj )(1 − e−

j (zj )) + pjzjy
′
j (pj )(Fj (zj ) − 1)

+y′
j (pj )

(
λ+

j e+
j (zj )−λ−

j e−
j (zj )

)
−zj y

′
j (pj )

(
λ+

j Fj (zj )−λ−
j (Fj (zj )−1)

)

= yj (pj )(1 − e−
j (zj )) + y′

j (pj )

×
[
(pj + λ−

j − λ+
j )[(1 − e−

j (zj )) + zj (Fj (zj ) − 1)] − λ−
j

]
.

Straightforward computations show that:

∂2�1
j

∂s2j

= − 1

yj (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ),

∂2�1
j

∂sj ∂pj

= zj

yj (pj )
y′
j (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ) + 1 − Fj (zj ),

∂2�1
j

∂p2
j

= −z2j y
′
j (pj )

2

yj (pj )

(
pj + λ−

j −λ+
j

)
fj (zj )+2y′

j (pj )
[
(1−e−

j (zj )) + zj (Fj (zj )−1)
]

+y′′
j (pj )

[(
pj + λ−

j − λ+
j

) (
(1 − e−

j (zj )) + zj (Fj (zj ) − 1)
)

− λ−
j

]
.

Let Hj denotes the hessian matrix associated with �1
j (sj , pj ). The matrix Hj is

computed as: (
Hsj sj Hpj sj

Hpj sj Hpj pj

)
,

with Hsj sj = − 1
yj (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ), Hpj sj = Hsj pj

=
zj

yj (pj )
y′
j (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ) + 1 − Fj (zj ) and

Hpj pj
= −z2j y

′
j (pj )

2

yj (pj )

(
pj +λ−

j −λ+
j

)
fj (zj ) + 2y′

j (pj )
[
(1−e−

j (zj )) + zj (Fj (zj )−1)
]

+y′′
j (pj )

[(
pj + λ−

j − λ+
j

) (
(1 − e−

j (zj )) + zj (Fj (zj ) − 1)
)

− λ−
j

]

= −z2j y
′
j (pj )

2

yj (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ) + 2y′

j (pj )

∫ zj

Aj

xfj (x)dx

+y′′
j (pj )

[(
pj + λ−

j − λ+
j

) ∫ zj

Aj

xfj (x)dx − λ−
j

]
.
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We will show that the matrix −Hj is positive definite. Clearly, −Hsj sj =
1

yj (pj )

(
pj + λ−

j − λ+
j

)
fj (zj ) is positive. If det (−Hj) > 0 then −Hpj pj

>
(
Hpj sj

)2
−Hsj sj

> 0.

det (−Hj) = −y′′
j (pj )

yj (pj )
(pj + λ−

j − λ+
j )fj (zj )

[(
pj + λ−

j − λ+
j

) ∫ zj

Aj

xfj (x)dx − λ−
j

]

−2
y′
j (pj )

yj (pj )
(pj + λ−

j − λ+
j )fj (zj )

∫ zj

Aj

xfj (x)dx

−2
y′
j (pj )

yj (pj )
(pj + λ−

j − λ+
j )fj (zj )zj

(
1 − Fj (zj )

)− (1 − Fj (zj ))
2

= (pj + λ−
j − λ+

j )fj (zj )

yj (pj )

∫ zj

Aj

xfj (x)dx
[
−2y′

j (pj ) − pjy
′′
j (pj )

]

+ (pj + λ−
j − λ+

j )fj (zj )

yj (pj )
y′′
j (pj )

[
λ−

j

∫ Bj

zj

xfj (x)dx + λ+
j

∫ zj

Aj

xfj (x)dx

]

+2(1 − Fj (zj ))
2

[−y′
j (pj )(pj + λ−

j − λ+
j )gj (zj )

yj (pj )
− 1

2

]
.

The first term in the above is nonnegative because 2y ′
j (pj ) + pjy

′′
j (pj ) ≤ 0.

The second term is also nonnegative because y′′
j (pj ) ≥ 0. The last term is non-

negative since it can be written as 2(1 − Fj (zj ))
2
[
η2j (sj , pj ) − 1/2

]
+ 2(1 −

Fj (zj ))
2 max(λ−

j − λ+
j , 0)

−y′
j (pj )gj (zj )

yj (pj )
and η2j (sj , pj ) ≥ 1/2. Hence, we have

det (−Hj) ≥ 0 implying that the matrix −Hj is positive definite. Therefore, �1
j is

concave in the set �2
j .

Appendix F: Proof of Proposition 2

We need to show that the optimal vector (s∗
j , p∗

j ) belongs to the set �2
j . In other

words, we need to show that η2j (sj , pj ) ≥ 1/2 when
∂�1

j

∂pj
= 0.

y′
j (pj ) = −yj (pj )(1 − e−

j (zj ))(
pj + λ−

j − λ+
j

) [
(1 − e−

j (zj )) + zj (Fj (zj ) − 1)
]

− λ−
j

=
−yj (pj )

(∫ zj

Aj
xfj (x) dx + zj (1 − Fj (zj ))

)
(
pj + λ−

j − λ+
j

) ∫ zj

Aj
xfj (x) dx − λ−

j

.
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Since y′
j (pj ) ≤ 0 and

∫ zj

Aj
xfj (x) dx + zj (1 − Fj (zj )) ≥ 0 one see that when

∂�1
j

∂pj
= 0 one has

(
pj + λ−

j − λ+
j

) ∫ zj

Aj
xfj (x) dx − λ−

j > 0.

η2j (sj , pj ) ≥ 1/2 ⇐⇒ −(pj + δj )y
′
j (pj )gj (zj )

yj (pj )
− 1

2
≥ 0

⇐⇒ −(pj + δj )y
′
j (pj )

yj (pj )
− 1

2gj (zj )
≥ 0

⇐⇒
(pj + δj )

[∫ zj

Aj
xfj (x) dx + zj (1−Fj (zj ))−

∫ zj
Aj

xfj (x) dx

2gj (zj )

]

(
pj + λ−

j − λ+
j

) ∫ zj

Aj
xfj (x) dx − λ−

j

+
λ−

j

∫ Bj

zj
xfj (x) dx + min(λ−

j , λ+
j )
∫ zj

Aj
xfj (x) dx

2gj (zj )
[(

pj + λ−
j − λ+

j

) ∫ zj

Aj
xfj (x) dx − λ−

j

] ≥ 0.

The last inequality holds if ψj(zj ) ≥ 0 where ψj (zj ) = ∫ zj

Aj
xfj (x) dx +

zj (1 − Fj (zj )) −
∫ zj
Aj

xfj (x) dx

2gj (zj )
. Note that ψj (Aj ) = Aj and ψ ′

j (zj ) = 1−Fj (zj )

2 +
g′
j (zj )

∫ zj
Aj

xfj (x) dx

2gj (zj )2
≥ 0 because g′

j (zj ) ≥ 0. This yields ψj(zj ) ≥ Aj for all

zj ∈ [Aj , Bj ]. Then ψj (zj ) ≥ 0. Therefore, η2j (sj , pj ) ≥ 1/2 when
∂�1

j

∂pj
= 0.

Appendix G: Proof of Theorem 3

As in the retailer case, without loss of generality, we assume that p∗
mI = max

i
{p∗

mi}.
Optimization problem (11) can be then reformulated as:

max�m(Q̃m, qm, pm) =
I−1∑
i=1

(p∗
mi − p∗

mI )qmi + p∗
mI qm + srecym(pm)−(cu

m + cuχ̄m

)
qm

−pmym(pm) + λ+
me+

m(zm) − λ−
me−

m(zm),

= �1
m(qm, pm) + �2

m(Q̃m),

where Q̃m = (qmi)
I−1
i=1 , �

1
m(qm, pm) = p∗

mIqm + srecym(pm) − (cu
m + cuχ̄m

)
qm −

pmym(pm) + λ+
me+

m(zm) − λ−
me−

m(zm) and �2
m(Q̃m) =

I−1∑
i=1

(p∗
mi − p∗

mI )qmi .
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Clearly, the function �2
m(Q̃m) is concave. We need to show that �1

m(qm, pm) is
concave. The first derivative of �1

m taken with respect to qm and pm and are given as:

∂�1
m

∂qm

= p∗
mI − cu

m − cuχ̄m + λ+
m

χm

(Fm(zm) − 1) − λ−
m

χm

Fm(zm)

= p∗
mI − cu

m − cuχ̄m − λ+
m

χm

−
(
λ−

m − λ+
m

)
χm

Fm(zm).

∂�1
m

∂pm

= srecy′
m(pm) − pmy′

m(pm) − ym(pm)

+y′
m(pm)λ+

m (1 − Fm(zm)) + y′
m(pm)λ−

mFm(zm)

= −ym(pm) + y′
m(pm)

(
srec − pm + λ+

m + Fm(zm)(λ−
m − λ+

m)
)
.

Straightforward computations show that:

∂2�1
m

∂q2
m

= − 1

χ2
m

(
λ−

m − λ+
m

)
fm(zm),

∂2�1
m

∂qm∂pm

= y′
m(pm)

χm

(
λ−

m − λ+
m

)
fm(zm),

∂2�1
m

∂p2
m

= −y′
m(pm)2

(
λ−

m − λ+
m

)
fm(zm) − 2y′

m(pm)

+y′′
m(pm)

[(
λ−

m − λ+
m

)
Fm(zm) + srec − pm + λ+

m

]
.

Let Hm denotes the hessian matrix associated with �1
m(qm, pm). The matrix Hm

is calculated as: (
Hqmqm Hpmqm

Hpmqm Hpmpm

)
,

with Hqmqm = − 1
χ2

m

(
λ−

m − λ+
m

)
fm(zm), Hpmqm = Hqmpm = y′

m(pm)

χm

(
λ−

m − λ+
m

)
fm(zm) and Hpmpm = −y′

m(pm)2
(
λ−

m − λ+
m

)
fm(zm) − 2y′

m(pm) + y′′
m(pm)[(

λ−
m − λ+

m

)
Fm(zm) + srec − pm + λ+

m

]
.

We will show that the matrix −Hm is positive definite. Clearly, −Hqmqm =
1

χ2
m

(
λ−

m − λ+
m

)
fm(zm) > 0. If det (−Hm) ≥ 0 then −Hpmpm ≥ (Hpmqm)

2

−Hqmqm
≥ 0.

χ2
mdet (−Hm) = −(λ−

m − λ+
m)fm(zm)

((
λ−

m − λ+
m

)
Fm(zm) + srec − pm + λ+

m

)
y′′
m(pm)

+2(λ−
m − λ−

m)fm(zm)y′
m(pm)

= (λ−
m − λ+

m)fm(zm)
[
2y′

m(pm) + pmy′′
m(pm)

]
−(λ−

m − λ+
m)fm(zm)y′′

m(pm)
[
λ−

mFm(zm) + λ+
m(1 − Fm(zm)) + srec

]
.

The first part of the last term is nonnegative because 2y′′
m(pm) + pmy′′

m(pm) ≥
0. The second part is also nonnegative because y′′

m(pm) ≤ 0. Hence, we have
det (−Hm) ≥ 0 implying that the matrix −Hm is positive definite. Therefore, �1

m is
concave.
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Appendix H: Proof of Theorem 4

Similar to the additive case, optimization problem (13) can be reformulated as:

max�m(Q̃m, qm, pm) =
I−1∑
i=1

(p∗
mi − p∗

mI )qmi + p∗
mI qm + srecym(pm)−(cu

m + cuχ̄m

)
qm

−pmym(pm) + ym(pm)
(
λ+

me+
m(zm) − λ−

me−
m(zm)

)
= �1

m(qm, pm) + �2
m(Q̃m),

where Q̃m = (qmi)
I−1
i=1 , �

1
m(qm, pm) = p∗

mIqm + srecym(pm) − (cu
m + cuχ̄m

)
qm −

pmym(pm)+ym(pm)
(
λ+

me+
m(zm) − λ−

me−
m(zm)

)
and�2

m(Q̃m) =
I−1∑
i=1

(p∗
mi −p∗

mI )qmi .

Clearly, the function �2
m(Q̃m) is concave. We need to show that �1

m(qm, pm)

is concave. The first derivative of �1
m taken with respect to qm and pm and are

computed as:

∂�1
m

∂qm

= p∗
mI − cu

m − cuχ̄m + λ+
m

χm

(Fm(zm) − 1) − λ−
m

χm

Fm(zm)

= p∗
mI − cu

m − cuχ̄m − λ+
m

χm

−
(
λ−

m − λ+
m

)
χm

Fm(zm).

∂�1
m

∂pm

= −ym(pm) − y′
m(pm)pm + y′

m(pm)srec

+y′
m(pm)

[(
λ+

me+
m(zm) − λ−

me−
m(zm)

)− λ+
mzm(Fm(zm) − 1) + λ−

mzmFm(zm)
]

= −ym(pm) + y′
m(pm)

[
srec−pm + λ−

m−(λ−
m−λ+

m)
(
(1 + e−

m(zm))−zmFm(zm)
)]

.

Straightforward computations show that:

∂2�1
m

∂q2
m

= − 1

χ2
mym(pm)

(
λ−

m − λ+
m

)
fm(zm),

∂2�1
m

∂qm∂pm

= y′
m(pm)zm

χmym(pm)

(
λ−

m − λ+
m

)
fm(zm),

∂2�1
m

∂p2
m

= −z2my′
m(pm)2

ym(pm)

(
λ−

m − λ+
m

)
fm(zm) − 2y′

m(pm)

+y′′
m(pm)

[
srec−pm+λ−

m−(λ−
m − λ+

m)
(
(1 + e−

m(zm)) − zmFm(zm)
)]

.

Let Hm denotes the hessian matrix associated with �1
m(pm, pm). The matrix Hm

is calculated as: (
Hqmqm Hpmqm

Hpmqm Hpmpm

)
,
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with Hqmqm = − 1
χ2

mym(pm)

(
λ−

m − λ+
m

)
fm(zm), Hqmpm = Hpmqm

y′
m(pm)zm

χ2
mym(pm)

(
λ−

m − λ+
m

)
fm(zm) and Hpmpm = − z2my′

m(pm)2

ym(pm)

(
λ−

m − λ+
m

)
fm(zm) − 2y′

m(pm) + y′′
m(pm)[

srec − pm + λ−
m − (λ−

m − λ+
m)
(
(1 + e−

m(zm)) − zmFm(zm)
)]
.

We will show that the matrix −Hm is positive definite. Clearly, −Hqmqm =
1

χ2
mym(pm)

(
λ−

m − λ+
m

)
fm(zm) > 0. If det (−Hm) > 0 then −Hpmpm ≥ (Hpmqm)

2

−Hqmqm
≥ 0.

χ2
mdet (−Hm) = −(λ−

m − λ+
m)fm(zm)

(
λ−

m + srec − pm − (λ−
m − λ+

m)

(
(1 + e−

m(zm)) − zmFm(zm)
)) y′′

m(pm)

ym(pm)
+ 2(λ−

m − λ+
m)fm(zm)

y′
m(pm)

ym(pm)

= −(λ−
m − λ+

m)fm(zm)

×
(

λ−
m + srec − pm − (λ−

m − λ+
m)

∫ Bm

zm

xfm(x)dx

)
y′′
m(pm)

ym(pm)

+2(λ−
m − λ+

m)fm(zm)
y′
m(pm)

ym(pm)

= (λ−
m − λ+

m)fm(zm)

ym(pm)

[
2y′

m(pm) + pmy′′
m(pm)

]

− (λ−
m − λ+

m)fm(zm)

ym(pm)
y′′
m(pm)

×
[
λ−

m

∫ zm

Am

xfm(x) dx + λ+
m

∫ Bm

zm

xfm(x) dx + srec

]
.

The first part of the last term is nonnegative because 2y′′
m(pm) + pmy′′

m(pm) ≥
0. The second part is also nonnegative because y′′

m(pm) ≤ 0. Hence, we have
det (−Hm) ≥ 0 implying that the matrix −Hm is positive definite. Therefore, �1

m is
concave.

Appendix I: Proof of Theorem 9

We will only consider the case with additive demand and returns. The proof is sim-
ilar in the multiplicative case. The expression 〈F(X′) − F(X′′), X′ − X′′〉 ≥ 0 is
equivalent to (after some algebraic simplification):

N∑
n=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f r
i

(
βr

i ,
N∑

n=1
q ′
ni

)

∂qni

−
∂f r

i

(
βr

i ,
N∑

n=1
q ′′
ni

)

∂qni

+
∂f r

n

(
I∑

i=1
q ′
ni

)

∂qni

−
∂f r

n

(
I∑

i=1
q ′′
ni

)

∂qni

+∂cni(q
′
ni)

∂qni

− ∂cni(q
′′
ni)

∂qni

]
× [q ′

ni − q ′′
ni]
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+
M∑

m=1

I∑
i=1

⎡
⎢⎢⎢⎣

∂f u
i

(
βu

i ,
M∑

m=1
q ′
mi

)

∂qmi

−
∂f u

i

(
βu

i ,
M∑

m=1
q ′′
mi

)

∂qmi

+ ∂cmi(q
′
mi)

∂qmi

− ∂cmi(q
′′
mi)

∂qmi

⎤
⎥⎥⎥⎦

× [q ′
mi − q ′′

mi

]

+
I∑

i=1

J∑
j=1

[
∂cij (q

′
ij )

∂qij

− ∂cij (q
′′
ij )

∂qij

]
× [q ′

ij − q ′′
ij ]

+
I∑

i=1

J∑
j=1

[(
p′

j + λ−
j − λ+

j

)
Fj (z

′
j ) −

(
p′′

j + λ−
j − λ+

j

)
Fj (z

′′
j )
]

× [q ′
ij − q ′′

ij ]

+
J∑

j=1

[
−yj (p

′
j ) + e−

j (z′
j ) − y′

j (p
′
j )
[
(p′

j + λ−
j − λ+

j )Fj (z
′
j )
]

−
(
yj (p

′′
j ) + e−

j (z′′
j ) − y′

j (p
′′
j )
[
(p′′

j + λ−
j − λ+

j )Fj (z
′′
j )
])]

× [p′
j − p′′

j ]

+
M∑

m=1

I∑
i=1

[(
λ−

m − λ+
m

)
χm

Fm(z′
m) −

(
λ−

m − λ+
m

)
χm

Fm(z′′
m)

]
× [q ′

mi − q ′′
mi]

+
M∑

m=1

[
ym(p′

m) − y′
m(p′

m)
(
srec − p′

m + λ+
m

)− y′
m(p′

m)Fm(z′
m)
(
λ−

m − λ+
m

)

− (ym(p′′
m) − y′

m(p′′
m)
(
srec − p′′

m + λ+
m

)− y′
m(p′′

m)Fm(z′′
m)
(
λ−

m − λ+
m

))]
× [p′

m − p′′
m

] ≥ 0

which is equivalent to (I ) + (II ) + (III ) + (IV ) + (V ) + (V I) + (V II) ≥ 0.
Based on the convexity of the cost functions, f r

n , f r
i , f u

i , cni, cmi ,and cij , one can
have (I ) ≥ 0, (II ) ≥ 0, and (III ) ≥ 0. The proof of (IV )+ (V ) ≥ 0 can be derived
from Theorem 1 since the function �j is concave for each j, j = 1, ..., J . Similarly,
we can also show that (V I) + (V II) ≥ 0 under the assumptions of Theorem 3.
Therefore F(X) is monotone.
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