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1 Introduction

Ever since the seminal work of Hotelling (1929), competitive location models have
been intensively studied in the economic and operations research literature. This is
reflected in the large amount of review articles and special issues that have appeared
over the past decades, such as Drezner (1995), Eiselt et al. (1993), Eiselt and Laporte
(1996), Kress and Pesch (2012b), Plastria (2001), Serra and ReVelle (1995), Friesz
(2007) and Santos-Peñate et al. (2007). Essentially, one seeks to locate (physical
or nonphysical) facilities in some given space with respect to some objective func-
tion, incorporating the fact that location decisions have been or will be made by
independent decision-makers (players) who will subsequently compete with each
other.

A well known competitive location problem, formally introduced by Hakimi
(1983), is the (r|Xp)-medianoid problem. Here, given a network with customers
located in the vertices and a predefined set of p leaders’s (or incumbent’s) facil-
ities Xp, a follower (or entrant) wants to enter the market with a given number
of r facilities so that the market share is maximized. When restricting the set of
potential facility sites to the vertex set of the network, this problem is sometimes
referred to as the maximum capture problem (MAXCAP, ReVelle 1986) or discrete
(r|Xp)-medianoid problem. Obviously, when players compete for market share, the
researcher needs to apply some kind of customer choice model. Typically, as in
Hakimi (1983), customer choice is assumed to be binary, i.e. it is assumed to be
deterministic from the perspective of the players with the total demand of each cus-
tomer being served by a single facility. For example, one may suppose that customers
patronize the closest facility only.1 Fernández et al. (2007) and Benati and Hansen
(2002), among others, deviate from this assumption. In the latter paper, the authors
introduce the maximum capture problem with random utilities. Here, probabilis-
tic customer behavior is modeled by random utility functions that are composed of
deterministic and stochastic components. They select the multinomial logit approach,
which is well established in the economics, marketing and operations research lit-
erature (see, for example, Anderson et al. 1992; Hensher et al. 2005; Train 2003),
to model the decision process of utility maximizing customers. In their definition of
the deterministic component, the authors focus on incorporating effects of distances
from customers to facility locations. An overview of other location models utiliz-
ing probabilistic choice models can be found in the review papers mentioned above.
Braid (1988) and Chisholm and Norman (2004), for instance, consider the choice of
locations of two or more (single-product or multiple-product) firms on small chain
networks under the multinomial logit model.

As Hotelling (1929) considers not only location, but also price decisions, another
stream of research focuses on the incorporation of price competition into competitive
location models. The majority of these models is concerned with one-dimensional
location spaces (see Kress and Pesch 2012b, for a recent overview). For example, de
Palma et al. (1985) consider equilibrium locations of two or more firms along a line

1Additionally, a tie breaking criterion is needed.
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segment with uniformly spread customers with and without price competition under
the multinomial logit model. Another related example is Lederer (2003). Fik and
Mulligan (1991), Fik (1991) and Braid (1993) are examples of (economic) models
of spatial competition that consider network structures with discrete and continu-
ous (customers are dispersed over the edges of the network) demand distributions.
Serra and ReVelle (1999) consider the maximum capture problem on networks under
a binary choice rule, where players are allowed to compete in prices after having
chosen locations.

As proposed by Benati and Hansen (2002), this paper contributes to the literature
by applying the idea of competition in prices to the maximum capture problem with
random utilities in order to “improve the realism of the model”. Hence, our research
is closely related to de Palma et al. (1985). Related models can also be found in
the field of product positioning, cf. Choi et al. (1990) and Rhim and Cooper (2005).
We additionally contribute to the literature by providing complexity results for the
resulting location problem. In order to compute equilibrium prices under multino-
mial logit demand, we adapt a fixed-point iteration approach that has previously been
introduced in the literature by Morrow and Skerlos (2011) (cf. also Morrow 2008).
In this context, we present examples of problem instances with fixed location sets of
the players, that demonstrate the potential non-existence of price equilibria and the
case of multiple local equilibria in prices. Finally, we show that different price sensi-
tivity levels of customers may actually affect optimal locations of facilities, and we
provide first insights into the performance of heuristic algorithms for the location
problem.

This paper proceeds as follows. First, we introduce the basic notation and defini-
tions in Section 2. A detailed problem formulation is given in Section 3 with results
concerning the existence of price equilibria and the computational complexity in
Sections 3.1 and 3.2, respectively. In Section 4 we are concerned with the aforemen-
tioned fixed-point iteration approach (Section 4.1), example instances (Section 4.2)
and some computational tests (Section 4.3). Heuristic approaches for solving the
location problem are subject of Section 5. The paper closes with a conclusion in
Section 6.

2 Notation and Definitions

In the course of this paper we assume the reader to be familiar with the basic concepts
of graph theory (see, for example, Gross and Yellen 2004; Swamy and Thulasiraman
1981) and game theory. We refer to Fudenberg and Tirole (1991) for an excellent
introduction to the latter topic.

We use the graph theoretic notation of Bandelt (1985), Bauer et al. (1993), Kress
and Pesch (2012a). Hence, we will denote a network by N = (V , E, λ), with V

(|V | = n) being the (finite) vertex set and E (|E| = m) being the (finite) edge set of
the underlying graph. The mapping λ : E → R

+ defines the lengths of the network’s
edges. An edge e ∈ E joining two vertices u and v is denoted by e = [u, v]. We
assume that the networks considered in this paper are undirected, connected and that
there are no multiple edges. Moreover, we assume that there are no loops at the
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vertices. We denote the length of a shortest path (distance) connecting two vertices x

and y of a network by d(x, y) = dxy .
We will consider games in strategic form that have three basic elements

(Fudenberg and Tirole 1991, p. 4): A set of players Θ which we assume to be finite
(Θ = {1, ..., θ}), a (pure) strategy space �i for each player i ∈ Θ , and a payoff
function ui(ψ) for each player i ∈ Θ that assigns a utility level to every vector of
strategies ψ = (ψ1, ..., ψθ ), ψi ∈ �i . A strategy vector ψN = (ψN

1 , ..., ψN
θ ) is said

to be a Nash equilibrium in pure strategies, if no player can unilaterally increase his
utility, i.e. ui(ψ

N) ≥ ui(ψi, ψ
N
Θ\{i}) for all ψi ∈ �i , where ψN

Θ\{i} = (ψN
j |j ∈

Θ, j �= i) (cf. Gabay and Moulin 1980).

3 Problem Formulation

Consider a network N = (V , E, λ). A finite number of (homogenous) customers is
located at the vertices of N . At each vertex there may be several customers or none
at all. Their demand is described by a weight function π : V → R

+
0 , where π is

different from the zero function. When facing real world data, this weight function
will typically have to be derived via aggregation (Plastria and Vanhaverbeke 2007). A
firm I (incumbent) acts as a monopolist with multiple facilities in this spatial market.
I’s facilities are located at p > 0 distinct vertices Xp ⊆ V of the network. A com-
petitor E (entrant) wants to enter the market with an a priori fixed number of facilities
r > 0.2 E’s potential facility sites are restricted to the vertex set of the network.
Hence, E solves a discrete (r|Xp)-medianoid problem. At most two facilities, one of
the incumbent’s and one of the entrant’s facilities, may be located at each vertex. The
players are profit maximizing and sell a single homogeneous product. As, in most
markets, the choice of location is usually less flexible than the choice of prices, we
assume that simultaneous price competition occurs after E’s location decisions have
been made. Thus, the game under consideration is composed of multiple stages (see
Fig. 1, cf. also Rhim and Cooper (2005)). In the first stage, E decides on the locations
Yr ⊆ V of the facilities. In the second stage, both players simultaneously decide on
a (mill) price for the product. This stage – as characterized by Eiselt et al. (1993) –
is a noncooperative game in which the strategies are prices and payoffs are profits.
A solution to this stage is a pure strategy Nash equilibrium in prices, assuming that
such an equilibrium exists. After the prices have been set, customers accommodate
their demand and market shares are established.

The utility u
q
ij of a customer located in vertex i ∈ V from patronizing a facility

located in vertex j ∈ V and belonging to player q ∈ {I, E} is composed of a deter-
ministic component v

q
ij and a stochastic component ε

q
ij , the latter being related to

unobservable, utility affecting factors:

u
q
ij = v

q
ij + ε

q
ij . (1)

2An alternative model does not fix the number of facilities in advance, but incorporates fixed setup costs
fj ∈ R

+
0 for (potential) facilities j ; cf. Benati (2003) for a version of this problem without (explicit) price

competition.
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Fig. 1 Stages of the game

Based on Benati and Hansen (2002), we define

v
q
ij := a

q
j − αdij − βpq, (2)

where

– a
q
j ∈ R is the player-specific (index q) average quality level associated with a

facility located in vertex j (related to opening hours, size, etc.),
– α ≥ 0 is a scaling parameter for distance (“coefficient of spatial friction”, Benati

and Hansen (2002)),
– β > 0 is a sensitivity parameter for price,
– pq is the unit mill price charged at all of player q’s facilities.

In the remainder of the paper we will simplify the notation by referring to the set
of facilities (choice set) by simply writing Xp ∪ Yr . For an element l ∈ Xp ∪ Yr , the
appropriate player q ∈ {I, E} “owning” facility l will always become clear from the
context. Then, the probability P

q
ij that a customer located in vertex i ∈ V chooses

facility j ∈ Xp ∪ Yr of player q is

P
q
ij = Prob(u

q
ij > u

q̃
ik ∀ k ∈ Xp ∪ Yr, k �= j).

A closed form expression for P
q
ij can be derived when assuming that the stochas-

tic components are independently and identical extreme value distributed (Gumbel
distributed) with the cumulative distribution

F(ε
q
ij ) = e−e

−ε
q
ij

/δ

.

The variance is δ2π2/6, where δ is a scaling parameter. As δ approaches zero, cus-
tomer choices become deterministic. The mean is δγ , where γ is Euler’s constant.
For the sake of notational convenience we define s := 1/δ and assume s > 0. The
closed form expression that one derives after some algebraic transformations corre-
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sponds to a well known random utility model, i.e. the multinomial logit model (see
McFadden 1974; Train 2003, for more details):

P
q
ij = e

sv
q
ij

∑

k∈Xp

esvI
ik + ∑

k∈Yr

esvE
ik

∀ i ∈ V, j ∈ Xp ∪ Yr . (3)

To simplify the notation, let q ∈ {I, E}, and define

Zq :=
{

Xp if q = I,

Yr if q = E.
(4)

Furthermore, define



q
i := ln

⎛

⎝
∑

k∈Zq

es(a
q
k −αdik)

⎞

⎠ ∀i ∈ V, q ∈ {I, E}, (5)

so that

P
q
ij = e

sv
q
ij

e
I
i −sβpI + e
E

i −sβpE

∀ i ∈ V, j ∈ Xp ∪ Yr . (6)

As pointed out by Choi et al. (1990), this model forces every customer to choose
a facility regardless of prices. Hence, a “no purchase” option with a corresponding
deterministic utility component of zero is included, so that we get

P
q
ij = e

sv
q
ij

e
I
i −sβpI + e
E

i −sβpE + 1
∀ i ∈ V, j ∈ Xp ∪ Yr . (7)

Let cq , q ∈ {I, E}, be the cost of producing one unit of the product at one of player
q’s facilities. Then, given Yr , pE , Xp and pI , the (expected) profit �q of player q is
as follows:

�q = (pq − cq)
∑

i∈V

∑

j∈Zq

π(i)P
q
ij . (8)

Additionally, we will consider an exogenous upper bound (parameter p̄ >

max
q∈{I,E}cq ) on the prices charged by the players. This bound may, for example,

correspond to a price-cap that is imposed by a regulator of the market.
We define the binary variables

yE
j :=

{
1 if E locates a facility in vertex j,
0 else,

∀ j ∈ V.
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Then, a mathematical programming formulation for the problem under consideration
is as follows:

max
pI ,pE,yE

�E(pI , pE, yE) = (pE − cE)
∑

i∈V

∑

j∈V

π(i)yE
j (9)

e
s(aE

j −αdij −βpE)

e
I
i −sβpI + ∑

k∈V

yE
k es(aE

k −αdik−βpE) + 1

subject to pI ∈ argmax
pI

�I (pI , pE, yE) = (pI − cI )
∑

i∈V

π(i) (10)

e
I
i −sβpI

e
I
i −sβpI + ∑

k∈V

yE
k es(aE

k −αdik−βpE) + 1
,

pE ∈ argmax
pE

�E(pI , pE, yE) = (pE − cE)
∑

i∈V

∑

j∈V

π(i)yE
j (11)

e
s(aE

j −αdij −βpE)

e
I
i −sβpI + ∑

k∈V

yE
k es(aE

k −αdik−βpE) + 1
,

∑

j∈V

yE
j = r, (12)

pI , pE ≤ p̄, (13)

pI , pE ≥ 0, (14)

yE
j ∈ {0, 1} ∀j ∈ V. (15)

The objective function Eq. 9 corresponds to the entrant’s (expected) profit maxi-
mization. Equations 10 and 11 enforce a Nash equilibrium in prices, assuming that
such an equilibrium exists. Equation 12 guarantees that exactly r facility locations
are selected. The remaining constraints, Eqs. 13, 14, and 15, define the domains of
the variables, including the restriction of the prices by the upper bound p̄.

We will refer to the problem defined by Eqs. 9–15 as the location-then-price game
under a logit assumption and denote it by LPL. We will use index q ∈ {I, E} to
refer to the players of LPL throughout the remainder of this paper. Moreover, given
a player q ∈ {I, E}, we will refer to the opposing player by q̄ := {I, E} \ q.

Note that there exists an (endogenous) upper bound on prices even if we set
p̄ = ∞, which is well known for logit choice probabilities (including a no purchase
option):

Lemma 1 Even if p̄ = ∞, there exist finite upper bounds on the prices charged by
the incumbent and the entrant, i.e. pq < ∞, q ∈ {I, E}.
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Proof It is easy to verify that

∂P
q
ij

∂pq

= −sβP
q
ij

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ , (16)

for all i ∈ V and j ∈ Zq , q ∈ {I, E}, as defined in Eq. 4.
We have

lim
pq→∞�q =

∑

i∈V

∑

j∈Zq

π(i) · lim
pq→∞

pq − cq

(P
q
ij )

−1
.

Using L’Hospital’s rule for any i ∈ V , j ∈ Zq , we get

lim
pq→∞

pq − cq

(P
q
ij )

−1
= lim

pq→∞
1

∂(P
q
ij )−1

∂pq

= lim
pq→∞

1

− 1
(P

q
ij )2

∂P
q
ij

∂pq

= lim
pq→∞

1

sβ

(
1

P
q
ij

−
∑

k∈Zq
P

q
ik

P
q
ij

)

= lim
pq→∞

1

sβ

(
1

P
q
ij

− ∑
k∈Zq

e
s(a

q
k −a

q
j −α(dik−dij ))

) = 0

because

lim
pq→∞P

q
ij = lim

pq→∞
e
s(a

q
j −αdij −βpq)

∑

k∈Xp

es(aI
k −αdik−βpI ) + ∑

k∈Yr

es(aE
k −αdik−βpE) + 1

= lim
pq→∞

1
∑

k∈Zq

e
s(a

q
k −a

q
j −α(dik−dij )) + c

e
s(a

q
j

−αdij −βpq )

= 0,

where we define

c :=

⎧
⎪⎨

⎪⎩

∑

k∈Yr

esvik + 1 if q = I,

∑

k∈Xp

esvik + 1 if q = E.
(17)

Thus, the players have no incentive to charge infinite prices. This proves the assertion.

3.1 Pricing Stage: Nash Equilibria and Local Equilibria

In this section, we provide a sufficient condition for the existence of a pure strategy
Nash equilibrium in prices. Similar results are due to Choi et al. (1990) and Rhim
and Cooper (2005). Note, however, that their proofs and discussions do not directly
apply to the case r, p > 1.

Observe that �q , q ∈ {I, E}, is negative for any pq < cq . Thus, it is reasonable
to assume that prices are bounded below by the unit production costs, i.e. cq ≤ pq ,
for the remainder of this paper. Then we may restrict the player q’s strategy space to
the nonempty, compact and convex interval [cq, p̄].

The following theorem is well known (see, for instance, Fudenberg and Tirole
1991):
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Theorem 1 Let Θ be a nonempty set of players and consider a strategic-form game
whose strategy spaces �i , i ∈ Θ , are nonempty, compact and convex subsets of an
Euclidean space. If the payoff functions ui are continuous in ψ and quasiconcave in
ψi , then there exists a pure strategy Nash equilibrium.

Based on this theorem, a sufficient condition for the existence of a pure strategy
Nash equilibrium in prices can easily be derived. To do so, we will require the payoff
functions �q , q ∈ {I, E}, to be concave in pq on [cq, p̄]. Hence, for each player, a
unique best response exists for each strategy of the opponent.

Theorem 2 A sufficient condition for the existence of a pure strategy Nash equilib-
rium in prices is

sβ ≤ 2

p̄ − cq

(18)

for q ∈ {I, E}.

Proof It is easy to verify that the payoff functions stated in Eq. 8 are continuous
in [cI , p̄] × [cE, p̄]. In the following we will derive sufficient conditions for the
concavity of the payoff functions in pq on [cq, p̄].

Define Zq , q ∈ {I, E}, as in Eq. 4. From Eq. 16, we get

∂2P
q
ij

∂p2
q

= sβP
q
ij

∑

k∈Zq

∂P
q
ik

∂pq

− sβ
∂P

q
ij

∂pq

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ , (19)

for all i ∈ V and j ∈ Zq , and hence

∂�q

∂pq

= ∑

i∈V

∑

j∈Zq

π(i)P
q
ij + (pq − cq)

∑

i∈V

∑

j∈Zq

π(i) · ∂P
q
ij

∂pq
, (20)

∂2�q

∂p2
q

= 2
∑

i∈V

∑

j∈Zq

π(i)
∂P

q
ij

∂pq
+ (pq − cq)

∑

i∈V

∑

j∈Zq

π(i) · ∂2P
q
ij

∂p2
q

. (21)

�q , q ∈ {I, E}, is concave in pq if

∂2�q

∂p2
q

≤ 0.

This is guaranteed if

2
∂P

q
ij

∂pq

+ (pq − cq)sβP
q
ij

∑

k∈Zq

∂P
q
ik

∂pq

− (pq − cq)sβ
∂P

q
ij

∂pq

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ ≤ 0

for all i ∈ V and j ∈ Zq . It is easy to see that ∂P
q
ij /∂pq < 0 for all i ∈ V and

j ∈ Zq . Thus,

(pq − cq)sβP
q
ij

∑

k∈Zq

∂P
q
ik

∂pq

≤ 0, (22)
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for all i ∈ V and j ∈ Zq , so that it is sufficient to require

2
∂P

q
ij

∂pq

− (pq − cq)sβ
∂P

q
ij

∂pq

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ ≤ 0,

or, equivalently,

2 − (pq − cq)sβ

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ ≥ 0,

for all i ∈ V and j ∈ Zq . Given Eq. 18, the latter inequality holds for all i ∈ V and
j ∈ Zq , since

0 <

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ < 1,

for all i ∈ V . This proves the claim.

The derivation of a less restrictive existence result, for example by providing a bet-
ter upper bound than the one used in Eq. 22, is left for future research. Similarly, apart
from the rather trivial uniqueness result of Section 3.2, the “complexity of the demand
function prohibits the derivation of a [more general] global uniqueness condition”
(Choi et al. 1990), for example by requiring strict diagonal dominance of the Jaco-
bian of the first order conditions for profit maximization (Gabay and Moulin 1980).
Hence, when Eq. 18 do not hold, we must rely on local conditions for optimality of
prices (Morrow and Skerlos 2011; Morrow 2008):

Definition 1 (Morrow (2008)) A price vector p = (pI , pE) ∈ [cI , p̄] × [cE, p̄] is
called a local (global) price equilibrium, if element pq is a local (global) maximizer
of �q(pq, p̂q̄ ) for each q ∈ {I, E}, where p̂q̄ denotes a fixed price of player q̄.

Note that any global price equilibrium is a pure strategy Nash equilibrium in
prices. Additionally observe that, when Eqs. 18 hold, any local price equilibrium is a
global price equilibrium.

3.2 Computational Complexity

In this subsection we will show that LPL, i.e. the problem defined by Eqs. 9–15, is
NP-hard.

Lemma 2 Let

sβ ≤ 1

p̄ − cq

(23)

for q ∈ {I, E}. Then there exists a unique pure strategy Nash equilibrium in prices
with pI = pE = p̄ for all feasible location settings.

Proof Let q ∈ {I, E} and Zq as defined in Eq. 4. We will show that �q is strictly
monotonic increasing in pq on the interval I = [cq, p̄] if Eq. 23 holds. This will
prove the claim.
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�q is strictly monotonic increasing on I if

∂�q

∂pq

=
∑

i∈V

∑

j∈Zq

π(i)P
q
ij + (pq − cq)

∑

i∈V

∑

j∈Zq

π(i) · ∂P
q
ij

∂pq

> 0

on I . It is sufficient to require

P
q
ij + (pq − cq)

∂P
q
ij

∂pq

= P
q
ij − (pq − cq)sβP

q
ij

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ > 0

or, equivalently,

1 − (pq − cq)sβ

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ > 0

for all i ∈ V and j ∈ Zq . It is easy to see that this condition holds if we assume
Eq. 23 to hold.

The maximum capture problem with random utilities (Benati and Hansen 2002;
Benati 2000) (MAXCAP-R) is closely related to LPL. The former problem considers
stages 1 (location) and 3 (sales) of Fig. 1 only and uses the definition v

q
ij

′ := a
q
j

′ −
α′dij instead of Eq. 2. A no purchase option is not considered in MAXCAP-R, i.e.
we have Eq. 6 instead of Eq. 7. Furthermore, cI = cE = 0. The model defined by
Eqs. 9–15 “reduces” to:3

max
yE

�′
E(yE) =

∑

i∈V

∑

j∈V

π(i)yE
j · e

s(aE
j

′−α′dij )

e
I
i

′ + ∑

k∈V

yE
k es(aE

k

′−α′dik)
(24)

subject to Eqs. 12 and 15.

Note that MAXCAP-R can not directly be interpreted to be a special case of LPL
even if LPL’s no purchase option is dropped, since we assume β > 0 and p̄ >

max
q∈{I,E}cq .

Theorem 3 (Benati and Hansen (2002), Benati (2000)) MAXCAP-R is NP-hard.

In the following, we will adapt the NP-hardness proof of Theorem 3 as presented
by Benati (2000) and Benati and Hansen (2002) to the MAXCAP-R with an addi-
tional no purchase option (MAXCAP-RNP).4 Here, the probability that a customer
located in vertex i ∈ V chooses facility j ∈ Xp ∪ Yr of player q is given by

P
q
ij

′ = e
s(a

q
j

′−α′dij )

e
I
i

′ + e
E
i

′ + 1
.

3Note that, differing from Benati (2000), we allow co-location of the players.
4While the statements are essentially the same as in Benati (2000), modifications are needed with respect
to the transformation of Dominating Set instances and the proofs of Lemmas 3 and 4.
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Given a set Yr of entrant locations, we define zi(Yr) := ∑

j∈Yr

π(i)P E
ij

′
.

The proof is based on a reduction of the NP-hard Dominating Set (DS) problem
(Garey and Johnson 1979): Given a network N = (V , E, λ) with λ(uv) = 1 for all
[u, v] ∈ E and a positive integer r ≤ |V |, is there a set V ′ ⊆ V with |V ′| ≤ r and
D(i, V ′) := min{d(i, j)|j ∈ V ′} ≤ 1 for all i ∈ V ?

Given an instance IDS of DS, we construct an instance IM of MAXCAP-RNP as
follows. Set π(v) = 1 for every vertex v ∈ V and add a vertex z with π(z) = 0.
Denote the augmented vertex set by V ′. Connect z to every vertex v ∈ V by an
edge [z, v] of length λ(zv) = 2. Set p = 1 and locate the incumbent’s facility in z.
Moreover, choose aE

j

′ = 1.5α′ for all potential entrant facility sites j and aI
z
′ = 1.5α′

for the incumbent facility in z. Set s = 1. We will prove (in analogy to Benati 2000)
that there exists a value α′ > 0 such that any optimal solution to IM provides a
dominating set of IDS if one exists.

Given a solution Yr to IM , define V0 := {v ∈ V |D(v, Yr) = 0}, V1 := {v ∈
V |D(v, Yr) = 1} and V2 := {v ∈ V |D(v, Yr) ≥ 2}. Note that Yr may contain vertex
z while this is not the case for the sets V0 to V2. V0 and V1 are referred to as dominated
sets of V , V2 is the non-dominated set of V . The elements are called dominated and
non-dominated vertices, respectively. Observe that zz(Yr) = 0.

Lemma 3 Let i ∈ V2. Then, for every ε1 > 0, there exists a value α′
1, such that for

every α′ ≥ α′
1 we have zi(Yr) ≤ ε1.

Proof It is easy to see that
∑

j∈Yr
e
aE
j

′−α′dij ≤ re−0.5α′
. Therefore,

zi(Yr) ≤ re−0.5α′

re−0.5α′ + e−0.5α′ + 1
= r

r + 1 + e0.5α′ .

Now lim
α′→∞

r

r+1+e0.5α′ = 0 which proves the claim.

Lemma 4 Let i ∈ V0 ∪ V1. Then, for every ε2 > 0, there exists a value α′
2, such that

for every α′ ≥ α′
2 we have zi(Yr) ≥ 1 − ε2.

Proof It is easy to see that
∑

j∈Yr
e
aE
j

′−α′dij ≥ e0.5α′
. Therefore,

zi(Yr) ≥ e0.5α′

e0.5α′ + e−0.5α′ + 1
= 1

1 + e−α′ + e−0.5α′ = 1 − e−α′ + e−0.5α′

1 + e−α′ + e−0.5α′ .

Now lim
α′→∞

(
1 − e−α′+e−0.5α′

1+e−α′+e−0.5α′
)

= 1 which proves the claim.

Lemma 5 (Benati (2000)) There exists a finite value α̂′ such that any optimal
solution to IM dominates the maximum number of vertices of V .

Proof Let Y 1
r and Y 2

r be two feasible solutions to IM with |V0 ∪ V1| = τ and
|V0 ∪ V1| = κ , respectively. That is, Y 1

r dominates τ vertices and Y 2
r dominates
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κ vertices of V . Assume τ > κ . Then, from Lemma 4 we get
∑

i∈V ′ zi(Y
1
r ) ≥

τ(1 − ε2), where we define ε2 := e−α′+e−0.5α′

1+e−α′+e−0.5α′ . Similarly, from Lemma 3 we get
∑

i∈V ′ zi(Y
2
r ) ≤ κ + (n − κ)ε1, where we define ε1 := r

r+1+e0.5α′ .

Define ε := max{ε1, ε2}. We want to guarantee that
∑

i∈V ′ zi(Y
1
r ) >∑

i∈V ′ zi(Y
2
r ). A sufficient condition is τ(1 − ε) > κ + (n − κ)ε, or, equivalently,

τ − κ > (n − κ + τ)ε. It is easy to see that the latter statement is true if ε < 1/(2n),
because τ − κ ≥ 1 and (n − κ + τ) ≤ 2n. Since we can make ε arbitrarily small by
increasing α′, we have proven the claim.

It is easy to confirm that ε < 1/(2n) (as required in the proof of Lemma 5) is true
if α′ > 2 ln(4rn). Therefore, there exists a polynomially bounded, finite value α̂′
which guarantees that any optimal solution to IM provides a dominating set of IDS if
one exists. The fact that MAXCAP-RNP is NP-hard follows readily:

Theorem 4 MAXCAP-RNP is NP-hard.

We conclude:

Theorem 5 LPL is NP-hard.

Proof Consider an arbitrary instance IM of MAXCAP-RNP. Now construct an
instance ILPL of LPL on the same network and with the same number and predefined
locations of incumbent and entrant facilities, by setting cI = cE = 0 and choosing
arbitrary values p̄ > 0 and β > 0 such that Eqs. 23 hold. ILPL reduces to a pure
location game with parametric prices pI = pE = p̄ (Lemma 2). Set α = α′ and
a

q
j = a

q
j

′ + βp̄, q ∈ {I, E} for all of the players’ potential facility locations j .
It is easy to see that any optimal solution of ILPL is optimal for IM as well.

Observe that the objective function values differ by a factor of p̄ as chosen above.
Thus, we have shown that, given an instance of the NP-hard MAXCAP-RNP, there
exists a polynomial transformation to an instance of LPL, which, in turn, proves that
LPL is NP-hard.

4 Pricing Stage

In this section we will analyze numerical approaches to computing local price equi-
libria. Since the players are profit maximizers, the first order conditions (stationary
conditions) for finding an equilibrium are as follows:

∂�q

∂pq

(pI , pE)

⎧
⎨

⎩

≤ 0 if pq = cq,

= 0 if 0 < pq < p̄,

≥ 0 if pq = p̄,

q ∈ {I, E}. (25)

Observe, that, due to the restriction of the players’ strategy spaces by upper and
lower bounds, a local price equilibrium will not necessarily be characterized by
∂�q/∂pq = 0 for both players q ∈ {I, E}. Figure 2 depicts the contour plot of
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Fig. 2 Nash equilibrium with ∂�I /∂pI > 0

an example instance.5 The curves (called contours) track the finite zeros of the par-
tial profit derivatives of the players. In Fig. 2 these lines divide the plane into areas
of positive and negative partial profit derivatives. The unique Nash equilibrium is
pN

I = p̄ = 100 (∂�I/∂pI > 0), pN
E = 85.87 (∂�E/∂pE = 0). We will refer

to equilibria of this type as degenerate. Numerical approaches will have to suitably
address the potential existence of such degenerate equilibria.

It is easy to show that

∂2�q

∂p2
q

(pI , pE) = −2sβ
∑

i∈V

π(i)(Ziq − Z2
iq )

+(pq − cq)s2β2
∑

i∈V

π(i)(2Z3
iq − 3Z2

iq + Ziq), (26)

where Zq is defined as in Eq. 4 and we define Ziq := ∑
k∈Zq

P
q
ik for a given i ∈ V ,

by applying results of Section 3.1 (see, in particular, Eqs. 16–21). To make sure that
a solution p = (pI , pE) to Eq. 25 locally maximizes the payoff function of each
player in the player’s price (second order conditions), we proceed as follows: If both
elements of p are smaller than p̄ and larger than cI and cE , respectively, we check if
Eq. 26 is strictly smaller than zero for both players q ∈ {I, E}. Similarly, if exactly
one element pq , q ∈ {I, E}, of p is at its upper bound and pq̄ > cq̄ , we check if the
opposing player q̄’s second order condition Eq. 26 is strictly smaller than zero. For
each element pq , q ∈ {I, E}, of p, however, that is at its upper bound, we check, if

– ∂�q

∂pq
(p) > 0, or

5 Please refer to Online Resource “Degenerate Equilibrium Example Instance” (provided as supplementary
material with this paper) for details on the example instance.
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– ∂�q

∂pq
(p) = 0 and ∂2�q

∂p2
q

(p) < 0, or

– ∂�q

∂pq
(p) = 0, ∂2�q

∂p2
q

(p) = 0, and ∂�q

∂pq
(pq − ε, pq̄) > 0 for a sufficiently small ε.

We proceed analogously if elements of p are at their lower bounds.

4.1 Computing Equilibrium Prices

As shown by Morrow and Skerlos (2011), natural (numerical) candidates to solving
Eq. 25 include Newton’s method and fixed-point iteration approaches.6 The authors
show a specific fixed-point iteration to result in a reliable method for computing sta-
tionary points. In the following, we will have to adapt their approach to include upper
and lower bounds on prices and, thus, be able to potentially find degenerate local
price equilibria. The fixed-point iteration is based on reformulating ∂�q/∂pq = 0 by
substituting Eqs. 16 and 20 and applying some straightforward algebraic operations:

(
pI

pE

)

=
(

cI

cE

)

+
(

ζI (pI , pE)

ζE(pI , pE)

)

, (27)

where we define
(

ζI (pI , pE)

ζE(pI , pE)

)

:=
⎛

⎝
(pI − cI )

∑
i∈V π(i)Z2

iI (pI ,pE)
∑

i∈V π(i)ZiI (pI ,pE)

(pE − cE)

∑
i∈V π(i)Z2

iE(pI ,pE)
∑

i∈V π(i)ZiE(pI ,pE)

⎞

⎠ +
(

1
sβ
1
sβ

)

. (28)

In analogy to Morrow and Skerlos (2011), we will refer to Eq. 27 as a markup
equation. This name is motivated by the fact that, on the right hand side of Eq. 27, a
nonnegative value (markup) is added to the cost cq of player q ∈ {I, E}.

The combined conditions of Eq. 25 are, by definition, equivalent to the Mixed
Complementary Problem (Munson 2000; Ferris and Pang 1997)

cq ≤ pq ≤ p̄ ⊥ − ∂�q

∂pq

(pI , pE), q ∈ {I, E}. (29)

Because

−∂�q

∂pq

(pI , pE)=sβ

(
∑

i∈V

π(i)Ziq(pI , pE)

)
[
pq −cq −ζq(pI , pE)

]
, q ∈ {I, E},

and, because sβ
∑

i∈V π(i)Ziq(pI , pE) > 0, the combined conditions of Eq. 25 are
equivalently

cq ≤ pq ≤ p̄ ⊥ pq − cq − ζq(pI , pE), q ∈ {I, E}. (30)

Define
�q(p) := max{min{p, p̄}, cq}, q ∈ {I, E}, (31)

6Choi et al. (1990) and Rhim and Cooper (2005), among others, apply a variational inequality approach to
compute Nash equilibria in prices. In the context of LPL, a major drawback of this approach is, among oth-
ers, the necessity of having to solve a series of optimization problems. In each of these solution processes,
divergence issues may arise.
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to be the Euclidean projection of p ∈ R onto [cq, p̄]. The solutions to (30) are
projections of the zeros of the Normal Map (Dirkse 1994). In this case,

pq − cq − ζq(�I (pI ), �E(pE)) = 0, q ∈ {I, E},
for any (pI , pE) ∈ R

2 if and only if (�I (pI ), �E(pE)) solves (30). Hence, we can
do a fixed-point iteration

pq ← cq + ζq(�I (pI ), �E(pE)), q ∈ {I, E},
but this iterates over R2. We can, however, work with [cI , p̄] × [cE, p̄] by projecting
after updating:

pq ← �q

(
cq + ζq(pI , pE)

)
, q ∈ {I, E}, (32)

given that the outer projection keeps iterates within [cI , p̄] × [cE, p̄], Eq. 31.
In the remainder of this paper we will refer to fixed-point iteration (32) as FPI.

Note that FPI may converge to stationary points that do not correspond to local price
equilibria, as these points might relate to a local profit minimum of a player’s profit
function when taking the price of the other player as given. Thus, we provide 625
starting price vectors, being equally dispersed over [cI , p̃I ] × [cE, p̃E], where p̃q ,
q ∈ {I, E}, is computed by applying Algorithm 1 (see Appendix A) to avoid starting
FPI in areas of low profits and small partial profit derivatives of both players (recall
that limpq→∞ �q = 0 and note that limpq→∞ ∂�q

∂pq
= 0 for q ∈ {I, E}, see Appendix

B). Basically, the algorithm gradually “cuts off” parts of the domain of prices until
the profit of at least one of the players is larger than 10−4 at the resulting vector of
maximal prices. We set the maximum number of FPI iterations in each call to 230.

4.2 Some Example Instances

Figure 3 presents the contour plot of an example instance without a local equilibrium
in prices.7 Note that we have ∂2�I/∂p2

I > 0 in the intersection point (pI = 39.98,
pE = 118.83) of the incumbent and entrant contour (see Fig. 4). Furthermore, even
if we increase the value of p̄ by an arbitrarily large value, this instance will not have
an equilibrium in prices. However, it is easy to see that we can enforce a degenerate
equilibrium in prices when lowering p̄ to - for example - a value of 80.

Similarly, Fig. 5 depicts the contour plot of an example instance with multiple
local equilibria in prices (marked by circles), (10.87, 12.43) and (12.27, 16.05).8

Figure 6 shows the corresponding profit functions of the players. It is easy to see
that neither of the local equilibria represent a Nash equilibrium in prices. As before,
we can enforce a degenerate equilibrium in prices when lowering p̄ to a sufficiently
small value.

7Please refer to Online Resource “No Equilibrium Example Instance” (provided as supplementary material
with this paper) for details on the example instance.
8Please refer to Online Resource “Multiple Local Equilibria Example Instance” (provided as supplemen-
tary material with this paper) for details on the example instance.
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Fig. 3 Contour plot of example instance without local equilibrium

4.3 Computational Experiments

In order to analyze the performance of FPI, we have conducted a series of computa-
tional experiments with the location stage being excluded from the numerical tests by
randomly selecting the players’ facility sites from the vertex set of the test networks.
Test instances were run on a laptop with an Intel Core i7-4700MQ CPU, 2.4 GHz,
8GB system memory, running under the 64bit Windows 7 Professional operating
system.

All test instances have been generated randomly with each parameter being drawn
from a uniform distribution over a specific interval. The underlying networks are
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Fig. 4 Profit functions of example instance without local equilibrium
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Fig. 5 Contour plot of example instance with multiple local equilibria

complete with edge length λ(uv) ∈ [1, 50] for all [u, v] ∈ E and customer demand
π(u) ∈ [0, 100] for all u ∈ V . Moreover, cq ∈ [1, 10], q ∈ {I, E}. If not stated
otherwise, we fix s to one (as frequently done in the literature), we set n = 100, and
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(c) Incumbent profit for pE = 16.05 (d) Entrant profit for pI = 12.27

(a) Incumbent profit for pE = 12.43 (b) Entrant profit for pI = 10.87

Fig. 6 Profit functions of example instance with multiple local equilibria
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we select a
q
j from the interval [10, 50] for all j ∈ Yr ∪ Xp. All algorithms have been

coded in C++.
Sensitivity parameters for price and distance typically range from zero to about 4

in the literature (for similar ranges of the other parameters as above), see, for exam-
ple, Rhim and Cooper (2005), Benati and Hansen (2002), Thomadsen (2005), Benati
(2000). We have therefore generated six sets of LPL instances with n = 100 and
10,000 instances in each set. Table 1 presents the underlying ranges for the random
generation of the corresponding parameters. Note that Theorem 2 holds for every
instance of Set 1. Hence, the players’ payoff functions are concave and every local
price equilibrium is a pure strategy Nash equilibrium in prices.

Figures 7 and 8 provide results on the convergence behavior of FPI (with poten-
tially more than one starting price vector, as described in Section 4.1) for the test sets.
Figure 7a shows that almost all calls of FPI converge to a local equilibrium in prices
instantly (given that a local equilibrium exits). Only one instance of set 5 and two
instances of set 6 required additional FPI calls with different starting price vectors.
Two instances of set 5 and 28 instances of set 6 do not have a local price equilibrium
(Fig. 7b, cf. also Section 4.2). The nonexistence of local price equilibria has been
manually confirmed for all those instances.

Computational times are rather small, as can be seen from Fig. 8. The figure
presents average (Fig. 8a) and maximum (Fig. 8b) running times of FPI over the
instances that have local price equilibria. It is apparent from these figures that a (com-
bined) increase of the upper bounds on the sensitivity parameters α and β induces
the need for more computational effort.

As to be expected (Morrow and Skerlos 2011), we conclude that FPI reliably
converges to local price equilibria in case of their existence.

When analyzing the effects of increasing sensitivity parameters separately, we
found that α’s effect on the potential nonexistence of local price equilibria is stronger
than β’s influence. Hence, Fig. 9a takes a closer look at α’s effect on the existence
of local equilibria. Here, we have increased both, the upper and lower bound on α,
simultaneously for 1,000 test instances in 16 test sets for three different values of
p̄ and β ∈ [0.015, 0.5]. p and r have been fixed to 5. For each test set, α’s lower
bound equals the upper bound of the prior test set, with a lower bound of zero in
the first set. Increasing coefficients of spatial friction at first increase the amount of

Table 1 Sets of test instances

α β p̄ s a
q
j for all j ∈ XP ∪ Yr r p

Set 1 [0.015, 0.4] [0.015, 0.2] 100 0.1 [0, 20] [1, 5] [1, 5]
Set 2 [0.015, 0.5] [0.015, 0.5] 150 1 [10, 50] [1, 5] [1, 5]
Set 3 [0.015, 1] [0.015, 1] 150 1 [10, 50] [1, 5] [1, 5]
Set 4 [0.015, 2] [0.015, 2] 150 1 [10, 50] [1, 5] [1, 5]
Set 5 [0.015, 3] [0.015, 3] 150 1 [10, 50] [1, 5] [1, 5]
Set 6 [0.015, 4] [0.015, 4] 150 1 [10, 50] [1, 5] [1, 5]
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(a) (b)

Fig. 7 Computational results - FPI convergence

instances without local price equilibria. If we keep increasing α, however, instances
tend to “regain” local equilibria. The latter statement holds for decreasing values of
p̄ as well.

Figure 9b presents results on the effect of increasing network size on computa-
tional times. The plot is based on 1,000 test instances in six sets with α ∈ [0.015, 1.5],
β ∈ [0.015, 1.5], p̄ = 150 and r = p = 5. Corresponding instances of different
sets vary in network size and facility locations. We find an almost linear increase of
average computational times over the network size.

5 Location Stage

Benati and Hansen (2002) provide examples, showing that the incorporation of ran-
dom utility models into competitive location models may actually affect the optimal
locations of facilities. It is the aim of this section to show that including an additional
pricing game supports the same reasoning.

Let r = p = 1, consider the network and the parameters of Fig. 10 (edge weights
correspond to edge lengths) and set X1 = {0} (gray vertex), α = 1.974, p̄ = 42,
cI = 2.87, cE = 4.1 and s = 1. For all potential entrant locations and three different
price sensitivity levels, Table 2 presents the corresponding unique Nash equilibria in

(a) (b)

Fig. 8 Computational results - FPI running time
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(a) (b)

Fig. 9 Existence of equilibria and influence of network size

prices9 and entrant’s profits. As claimed above, we find a strong effect of β on the
optimal entrant’s choice (marked by an asterisk in Table 2). While β ≈ 0 induces
co-location of the players, larger price sensitivity levels enforce differentiation of
locations (in the case of the example instances).10

Hence, we may conclude that price competition is worth being considered in com-
petitive location models that utilize random utility models. This, of course, is only
true if this is not necessarily accompanied by large computational costs. Therefore,
in order to roughly analyze solution times and qualities of related heuristics, we have
implemented two straight forward algorithms that apply FPI (Section 4.1) in C++.
The development of more sophisticated approaches is left for future research. Espe-
cially, such approaches will need to provide adequate strategies to overcome FPI’s
major drawback, i.e. the fact that (in the case of existence of at least one local price
equilibrium) it determines one local price equilibrium only. In our analysis, we will
refer to a entrant’s choice of r different locations as a solution to an instance of LPL,
if there exists a corresponding local equilibrium in prices.

The greedy algorithm proceeds as follows: Initialize it := 1 and Y0 := ∅ (none of
the entrant’s facilities have been located). Repeat for all potential facility sites v ∈ V \
Yit−1: Set Yit = Yit−1 ∪{v}, determine a local equilibrium in prices (if an equilibrium
exists) by calling FPI, calculate the corresponding entrant’s profit (if no equilibrium
exists, assume the entrant’s profit to be -1) and reset Yit = Yit−1. Eventually, locate
j in the candidate location v′ yielding the maximal profit, Yit = Yit−1 ∪ {v′}. If no
local equilibrium in prices exists for any candidate location, choose a random (and
feasible) vertex. If all facilities have been located, i.e. it = r , and a local equilibrium
in prices exists, then stop. Otherwise, if it < r proceed by setting it = it + 1 and

9The uniqueness of the price equilibria has been manually confirmed by plotting the corresponding profit
derivatives over the domain of prices.
10Note that β ≈ 0 results in LPL reducing to a pure location game with parametric prices, i.e. a model
“without” price competition, see Theorem 4 and Lemma 2.
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Fig. 10 Example network

locating the next facility in the same manner. If it = r and a local equilibrium in
prices does not exist, keep generating random sets of entrant’s locations until a set
with an existing local price equilibrium is found. If no such set is found within a time
limit tmax , then stop.

Additionally, we have implemented a basic tabu search heuristic (cf. Glover and
Laguna 1997, for an introduction to tabu search) with the following neighborhood
structure: For a set of entrant’s locations Yr and for every i ∈ Yr and j ∈ V \ Yr ,
generate Yr \ {i} ∪ {j} (1-interchange moves, denoted by (ī, j)). Evaluate each set of
locations by calling FPI as in the greedy algorithm. Execute the best non-tabu move.
Additionally, apply a simple aspiration criterion, i.e. allow a tabu move if it results in
a solution with an objective value that is better than the currently best known entrant’s
profit. If no neighboring set of locations has a local equilibrium in prices, choose a
random neighbor. If a move (ī, j) is executed, record the opposing move (j̄ , i) and,
additionally, the same move as tabu for tl iterations. Start the procedure by selecting
a random set of p different locations. If circling around a local optimum is detected,
restart the search process at a randomly generated set of locations (diversification).
Terminate the tabu search heuristic after a fixed number of maxit iterations or if the
same local optimum has been found maxloc times.

We have randomly generated a total of 400 test instances as described in
Section 4.3, with λ(uv) ∈ [1, 50] for all [u, v] ∈ E, π(u) ∈ [0, 100] for all u ∈ V ,
s = 1, p̄ = 150, cq ∈ [1, 10], a

q
j ∈ [30, 40] for all j ∈ V and q ∈ {I, E}.

The test instances are grouped with respect to their (randomly drawn) sensitivity

Table 2 Optimal entrant locations under different price sensitivity levels

β Entrant location Unique Nash equilibrium in prices, (pN
I , pN

E ) �E

6.46 · 10−6 0* (42,42) 2006.41

1 (42,42) 644.227

2 (42,42) 1250.56

0.629 0 (4.8,13.3) 400.645

1 (30.8,41.4) 607.43

2* (30.8,28.6) 756.927

2.323 0 (3.4,5.9) 72.531

1* (8.5,11.4) 116.205

2 (8.5,8.0) 114.543
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parameters, as well as their network sizes and the number of players’ facilities; see
Tables 3 and 4. Five instances were generated in each group. The incumbent’s loca-
tions were randomly drawn from the vertex set. The tabu search parameters have
been fixed to t l = 25, maxit = 100 and maxloc = 4.

Table 3 depicts results on the quality of the heuristics’ solutions. Solution quality
is measured in terms of objective function values (at the corresponding local price
equilibria) in relation to the objective function values of the best solutions found by
complete enumeration over all potential location settings. However, as before, we
apply FPI to determine a local price equilibrium for each of these location settings,
so that the enumeration algorithm is not guaranteed to find optimal solutions. All cell
entries in Table 3 are average values over the corresponding group of test instances.
Table 4 presents the corresponding average computational times.

These basic results indicate that our observations of Section 4.3 (reliable conver-
gence behavior of FPI within rather small computational times) result in standard
heuristics tending to determine high quality solutions within acceptable time, even for
“challenging” ranges of the sensitivity parameters. Thus, as claimed above, it seems
to be reasonable to include price competition into basic location problems that uti-
lize random utility models. As to be expected, the tabu search heuristic outperforms
the simple greedy algorithm in terms of solution quality. Additionally, note that we
did not encounter test instances without any locational setting with an existing local
price equilibrium.

Table 3 Average solution quality of location heuristics

β ∈ [0.015, 2] β ∈ [0.015, 2] β ∈ [0.015, 2] β ∈ [2, 3] β ∈ [3, 4]
α ∈ [0.015, 2] α ∈ [2, 3] α ∈ [3, 4] α ∈ [0.015, 2] α ∈ [0.015, 2]

n p r greedy tabu greedy tabu greedy tabu greedy tabu greedy tabu

30 3 3 0.92 1.00 0.92 1.01 0.83 1.00 0.92 1.01 0.95 1.00

4 0.98 1.00 0.95 1.00 0.88 1.02 0.88 1.00 1.00 1.00

5 0.94 1.00 0.77 1.00 0.88 0.96 0.98 0.99 1.00 1.00

4 3 0.91 1.00 0.84 1.02 0.96 0.99 1.00 1.02 0.98 0.99

4 0.94 1.00 0.89 1.00 0.94 1.05 0.95 1.00 0.99 1.00

5 0.93 0.98 0.94 0.99 0.69 1.01 0.95 1.00 1.00 1.00

50 3 3 0.99 1.00 0.71 0.97 0.86 0.94 0.97 1.00 1.00 1.00

4 0.99 1.00 0.82 1.00 0.89 1.01 1.00 1.00 0.96 1.00

5 0.96 1.00 0.76 0.82 0.75 0.99 0.98 1.00 1.00 1.00

4 3 0.99 1.00 0.95 1.00 0.82 0.94 0.98 1.00 1.00 1.00

4 0.94 1.00 0.83 1.00 0.90 0.96 0.99 1.00 0.98 1.00

5 0.97 1.00 0.62 0.79 0.75 0.98 1.00 1.00 0.91 1.00

90 3 3 1.00 1.00 0.98 1.00 0.84 0.95 1.00 1.00 1.00 1.00

4 0.99 1.00 0.91 1.00 0.93 0.99 1.00 1.00 1.00 1.00

4 3 1.00 1.00 0.98 1.00 0.92 1.00 0.99 1.00 1.00 1.00

4 1.00 1.00 0.93 1.00 0.77 0.83 1.00 1.00 1.00 1.00
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Table 4 Average solution time of location heuristics (minutes)

β ∈ [0.015, 2] β ∈ [0.015, 2] β ∈ [0.015, 2] β ∈ [2, 3] β ∈ [3, 4]
α ∈ [0.015, 2] α ∈ [2, 3] α ∈ [3, 4] α ∈ [0.015, 2] α ∈ [0.015, 2]

n p r greedy tabu greedy tabu greedy tabu greedy tabu greedy tabu

30 3 3 0.448 13.501 1.280 4.833 0.521 7.821 0.062 1.888 0.028 1.406

4 0.006 0.062 0.251 25.130 0.650 5.691 0.093 3.396 0.046 0.179

5 0.003 10.502 0.104 17.896 0.153 14.614 0.059 4.343 0.016 0.072

4 3 0.026 2.121 0.128 13.385 0.069 1.922 0.228 19.133 0.020 0.136

4 0.079 5.378 0.124 5.705 0.130 18.841 0.096 18.505 0.317 1.172

5 0.214 14.922 0.136 13.029 0.192 38.202 0.141 4.934 0.018 0.579

50 3 3 0.034 1.621 1.606 41.607 0.313 12.593 0.009 0.699 0.010 0.318

4 0.011 0.592 0.558 59.089 0.590 47.934 0.090 0.593 0.037 31.596

5 0.013 2.335 0.179 56.748 0.250 42.414 0.023 1.302 0.012 0.219

4 3 0.088 2.200 0.104 9.850 0.290 40.927 0.009 0.132 0.008 0.158

4 0.053 6.243 0.504 37.619 0.573 71.752 0.012 2.251 0.010 0.671

5 0.107 6.944 0.966 144.270 0.139 25.335 0.116 3.201 0.088 1.136

90 3 3 0.020 0.186 0.019 0.489 0.306 6.056 0.015 0.309 0.016 0.123

4 0.029 0.264 0.324 5.519 0.646 78.288 0.015 0.266 0.024 0.218

4 3 0.018 0.140 0.049 5.701 0.134 5.130 0.011 0.195 0.018 0.127

4 0.022 0.227 0.014 1.025 0.580 112.436 0.014 0.200 0.024 0.261

6 Conclusion

In this paper, we have discussed a competitive location problem – the (r|Xp)-
medianoid problem – with an additional pricing stage (price competition). As in
Benati and Hansen (2002), we have assumed customers to be utility maximizers and
we have applied the well known multinomial logit approach to model their behavior.
Hence, customer behavior has been assumed to be probabilistic.

We have provided insights into the existence of (local) price equilibria and the
computational complexity of the problem. Additionally, we have provided examples
of problem instances with fixed location sets of the players, that demonstrate the
potential non-existence of price equilibria and the case of multiple local equilibria.
We have adapted a reliable fixed-point iteration method to quickly determine local
equilibria in prices, assuming that the players’ locations are given. Based on this
numerical method, we have presented first insights into heuristic algorithms to solv-
ing the location problem itself. Finally, we have shown that different price sensitivity
levels of customers affect optimal entrant’s locations

Future research may focus on several issues. First, adequate strategies to find-
ing global equilibria (Nash equilibria) in prices may be developed. Furthermore, the
model may be generalized in multiple ways. For example, one may let the play-
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ers charge different prices in different locations. Research may also focus on the
incorporation of other, more general, random utility models and the estimation of
the corresponding parameters from real world data (see, for example, Cherchi and
de Dios Ortúzar, 2008; de Grange et al. 2015; Yáñez et al. 2011). Other than the
multinomial logit model, such models may, for instance, take account of flexible sub-
stitution patterns, as their non-consideration is one of the most limiting factors of our
model (cf. already Benati and Hansen 2002). Additionally, more general existence
and uniqueness conditions on price equilibria may be derived and analyzed. Here,
one may also analyze the economical reasons and effects of nonexistence of price
equilibria.

Appendix A: Determining p̃q
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Appendix B: Vanishing Profit Derivatives

Lemma 6 lim
pq→∞

∂�q

∂pq
= 0 for q ∈ {I, E}.

Proof Making use of the results of Section 3.1 and defining Zq , q ∈ {I, E}, as in
Eq. 4, we get

lim
pq→∞

∂�q

∂pq

= lim
pq→∞

⎛

⎝
∑

i∈V

∑

j∈Zq

π(i)P
q
ij + (pq − cq)

∑

i∈V

∑

j∈Zq

π(i) · ∂P
q
ij

∂pq

⎞

⎠

= −sβ lim
pq→∞ (pq − cq) ·

∑

i∈V

∑

j∈Zq

π(i)P
q
ij

⎛

⎝1 −
∑

k∈Zq

P
q
ik

⎞

⎠ = 0,

because, by applying L’Hospital’s rule, we derive

lim
pq→∞pqP

q
ij = lim

pq→∞
pq

∑

k∈Zq

e
s(a

q
k −a

q
j −α(dik−dij )) + c

e
s(a

q
j

−αdij −βpq )

= lim
pq→∞

e
s(a

q
j −αdij −βpq)

csβ
= 0

for any i ∈ V , j ∈ Zq and c as defined in Eq. 17.
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Fernández J, Pelegrı́n B, Plastria F, Tóth B (2007) Planar location and design of a new facility with inner

and outer competition: An interval lexicographical-like solution procedure. Netw Spat Econ 7(1):19–
44

Ferris MC, Pang JS (1997) Engineering and economic applications of complementarity problems. Siam
Rev 39(4):669–713

Fik TJ (1991) Price competition and node-linkage association. Pap Reg Sci 70(1):53–69
Fik TJ, Mulligan GF (1991) Spatial price competition: a network approach. Geogr Anal 23(1):79–89
Friesz TL (2007) Competitive facility location. Netw Spat Econ 7(1):1–2
Fudenberg D, Tirole J (1991) Game theory. MIT Press, Cambridge
Gabay D, Moulin H (1980) On the uniqueness and stability of Nash-equilibria in noncooperative games.

In: Bensoussan A, Kleindorfer P, Tapiero CS (eds) Applied stochastic control in econometrics and
management science. North-Holland, Amsterdam, pp 271–293

Garey MR, Johnson DS (1979) Computers and intractability - a guide to the theory of NP-completeness.
Freeman, New York

Glover F, Laguna M (1997) Tabu search. Kluwer, Dordrecht
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Yáñez MF, Cherchi E, Heydecker BG (2011) On the treatment of repeated observations in panel data:

efficiency of mixed logit parameter estimates. Netw Spat Econ 11(3):393–418


	Competitive Location and Pricing on Networks
	Abstract
	Introduction
	Notation and Definitions
	Problem Formulation
	Pricing Stage: Nash Equilibria and Local Equilibria
	Computational Complexity

	Pricing Stage
	Computing Equilibrium Prices
	Some Example Instances
	Computational Experiments

	Location Stage
	Conclusion
	Appendix A A: Determining q
	 B: Vanishing Profit Derivatives
	Appendix B B: Vanishing Profit Derivatives
	References


