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Abstract The classical Braess paradox problem refers to a user-equilibrium assign-
ment model which all started with Braess’s (Unternehmensforschung 12; 258–268,
1968) demonstrated example network. Some variants of Braess paradox and related
theories were subsequently developed to detect this paradoxical phenomenon on a
general network. In this paper, the authors are devoted to the classical Braess paradox
problem involving situations whenever considering new links to be added to a network.
Historical literature told us that existing theories for this problem were limited to
networks which admit unique path flow solution. A generalized inverse approach is
suggested to solve this problem without the assumption of unique path flow solution in
this study. The change of equilibrium cost after link additions is derived as a general-
ized inverse formulation of which solution possesses the non-uniqueness and flow
conservation over all perturbed paths. Based on this generalized inverse formulation of
the change of equilibrium cost, the authors show that there exists at least one of the O/D
pairs, connected by new added routes, such that Braess paradox doesn’t (does) occur if
the proposed test matrix is positive (negative) semi-definite. The derivations extend
existing theories towards the situations when multiple routes are arbitrarily generated
after link additions. These new theories deliver prior information to foresee Braess
paradox taking place on a class of transportation networks which is more general than
before and never reached by existing studies on the indicated classical Braess paradox
problem.
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1 Introduction

Braess (1968), or the English version of the original German paper translated by Braess
et al. (2005), presented two principles of traffic assignment currently known as system
optimal and user equilibrium which are similar but independent to the paper of Wardrop
(1952), as mentioned in Nagurney and Boyce (2005). In this well-known paper, Braess
described a paradoxical phenomenon, the so called “Braess paradox”: In expanding a
road network to mitigate congestion by addition of a new route seems to make the
situation worse. The paper of Braess paradox created significant concerns and variants
of Braess paradox, such as Murchland (1970), Stewart (1980), Frank (1981) and Pas
and Principio (1997). These efforts examined mathematical characterizations in the
context of the example network presented by Braess in 1968. Meanwhile, several
directions different from the original case of Braess paradox were also developed. For
instances, Smith (1978) showed another example of paradox: a reduction in total
travel cost by increasing the travel cost along the uncongested link. This result is of
particular relevance to a town with a good outer ring road or bypass. Fisk (1979)
presented some examples to contrast the belief that travel costs are sensitive to
changes in input traffic. An example demonstrated that the total travel cost is
mitigated when increasing the input flow of an origin–destination (O/D) pair. The
travel cost of the associated O/D pair get worse; however, the effect on the travel
costs of other O/D pairs are diversified (see also Steinberg and Zangwill 1983;
Dafermos and Nagurney 1984a). Fisk (1979) also provided a case for a two-mode
equilibrium network to show that a reduction in auto traffic may lead to an increase in
transit cost. In summation, these existing studies suggest that in order to prevent
traffic congestion from becoming worse unexpectedly, evaluations should be per-
formed on networks before doing something as a matter of course even these findings
are based on several specific example networks.

Steinberg and Zangwill (1983) derived necessary and sufficient conditions for
Braess paradox to occur after the addition of a new route on a general transportation
network where the link cost function is affine with respective to the link flow itself. The
proposed formulation is a system of linear equations that preserves user equilibrium
and flow conservations. However, they assumed that the derived linear equations could
be solved by applying Cramer’s Rule. It is equivalent to assume that the linear system
guarantees a unique solution (denoted as the assumption A1 hereafter). Steinberg and
Stone (1988) considered a new paradox where an increase of the congestion effect
along a route can result in decreasing volumes to zero on another path connecting the
same O/D pair. In particular, the results were obtained by formulating the question as a
parametric linear complementarity problem (PLCP) for a general transportation net-
work with affine cost functions. The PLCP model can study the general conditions that
lead to the paradox by supposing that there is a unique path flow solution, similar to
assumption A1. Dafermos (1980) considered the asymmetric equilibrium problem on a
general transportation network where the travel cost depends on the flow of every link
in the network. Existence and uniqueness of an equilibrium link flow pattern was then
provided with the assumption of strong monotonicity of link cost function. Following
the theory mentioned above, Dafermos and Nagurney (1984a) extended the results
found in Steinberg and Zangwill (1983) to networks with asymmetric link cost
functions by deriving formulas to describe the change in travelers’ cost for all
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origin–destination (O/D) pairs induced by the addition of a new route. The results can
be used to determine whether Braess paradox occurs only if assumption A1 is held.

In addition to the aforementioned studies, there are some methods generally called
sensitivity analysis of traffic equilibrium (SATE) which approximates a new equilibri-
um solution due to a variety of concurrent perturbations in model parameters. If the
SATE methods are applied to the classical Braess paradox problem whenever consid-
ering new links to be added to a network, one may assume that the new links were there
all the time but their costs were so high that they were not used by any user (see
Dafermos and Nagurney 1984b). Under this treatment, two facts about the new added
paths in the equilibrium state of this assumed network can be observed further: 1) the
flow is zero and 2) the cost is greater than the corresponding equilibrium cost.
However, we know that those SATE methods (e.g., Tobin and Friesz 1988; Cho
et al. 2000) calculate sensitivity information locally only for those paths with equilib-
rium cost and positive flow. Patriksson (2004) presented another SATE method to
compute sensitivity information by directional derivative which deals with the addi-
tional case involving those paths with equilibrium cost and zero flow. Hence, local
sensitivity of the new added paths will be declared void if these SATE methods are
applied to this assumed network. The authors refer readers to Chung et al. (2014) for a
detail clarification of the regularity conditions governing application of those SATE
methods presented in Tobin and Friesz (1988) and re-derived in Cho et al. (2000).

Recently, there are various studies about Braess paradox, sensitivity analysis of traffic
equilibrium, and their applications. Kameda (2009) addressed the degree of coincident
cost improvement by adding connections to a general Braess network with nonlinear
link cost functions can extend without bound. Three Braess paradoxes occurring in a
status different from static user equilibrium are as the followings. Zhang and Zhang
(2010) illustrated a new Braess paradox in a dynamic traffic assignment problem with
simultaneous departure time/route competitions among individuals. Park (2011) devel-
oped a general model to detect the Braess paradox under stable dynamics (Nesterov and
de Palma 2003). Di et al. (2014a) explored the occurrence of the Braess paradox in the
setting of the boundedly rational user equilibrium (e.g., Mahmassani nad Chang 1987;
Cho et al. 2004; Cho and Hwang 2005; Di et al. 2014b) which relaxes the perfect
rational behavioral assumption from the Wardrop’s first principle of traffic assignment.

Connors andWatling (2014) evaluated the demand vulnerability of stochastic equilibrium
networks based a combination of sensitivity analysis (Connors et al. 2007) and network
aggregation. Lin et al. (2014) presented an assessment criterion that can be acquired by
solving a bi-level programming problemwith environmental constraints. In some cases, such
as setting an environmental constraint in the middle link of Braess’s paradox network, it may
occur that the local environmental constraint is beneficial to the total system cost. Similarly,
the evaluation goals of sustainability can also be multiple objectives (Szeto et al. 2013).

To sum up, this paper focuses on the classical Braess paradox problem whenever
considering new links to be added to a network. The underlying scenario for this problem
assumes that: Given a network and its equilibrium flow, can one provide a method to
foresee whether Braess paradox happens or not if new links are supposed to be added to a
network. The target method should allow “what if” analyses in advance without having to
re-solve the new equilibrium solution (Tobin and Friesz 1988). As presented previously,
the SATE methods are infeasible to this problem while the other approaches are limited
due to the assumption A1. Then, the main concern of this study is to follow the underlying
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research scenario and to provide a method that detects Braess’ paradox from the aimed
network without the restrictive assumption A1. Generalized inverse (see Moore 1920;
Penrose 1955; Graybill 1969) is a generalization of the inverse of a non-singular matrix to
deal with linear systems of which solution is non-unique. The method is utilized in this
study to provide a solution formula involving the non-uniqueness of path flow.

The next section gives a brief review of the existing results on the classical Braess
paradox problem. The third section contains the proposed approach embedded with
generalized inverse formulations without assumed unique path flow. Based on this
formulation, a testing matrix is proposed to detect whether Braess paradox occurs. This
theory is also extended to cases that multiple routes are generated after geometry
change. Finally, numerical examples are prepared to demonstrate the effectiveness of
the proposed method and followed by conclusions and remarks.

2 A Brief Review of the Essential Results on the Classical Braess Paradox Problem

We briefly present the main results of historical studies on the classical Braess paradox
problem, particularly those in Steinberg and Zangwill (1983) and in Dafermos and
Nagurney (1984a). The notation system adopted in the later is also utilized in this
section. Consider a network N, composed of a set of links A, a set of paths P, and a set
ofO/D pairsW. Accordingly, the links, paths, and O/D pairs of a network N are denoted
by a, p, and w respectively. The link cost function c, in vector form, is affine with
respective to link flow vector f

c ¼ c fð Þ ¼ Lþ Gf ð1Þ
where L is the fixed link cost and G is the Jacobian matrix G=[(∂c/∂f)]. Under the strong
monotonicity assumption, it is equivalent to the statement that the Jacobian matrixG=[(∂c/
∂f)] is positive definite at every feasible f. Then at user equilibrium, there is a unique link
flow pattern f* that satisfies the incidence relations and flow conservations

f * ¼ Δh ; T ¼ Λh ð2Þ
where h and Tare the path flow vector and demands ofO/D pairs respectively; and matrices
Δ andΛ are the link-path incidence matrix andO/D pair-path incidence matrix respectively.
The mentioned existing studies assumed situations in which (2) admits only unique path
flow solutions, i.e.,

rank
Δ
Λ

� �
¼ number of paths: ð3Þ

If a network geometry change in the form of an addition of a new path r connecting
the O/D pair w is considered, the change in equilibrium cost of O/D pair δU and the
change in path flow δh can be formulated simultaneously as

Δ0GΔ
Λ

Λ0

0

����
� �

δh
−δU

� �
¼ −Δ0GΔr

−e

� �
hr; ð4Þ

whereΔ′ and Λ′ are the transpose ofΔ and Λ respectively;Δr, e and hr are the link(not
including new links)-path incidence matrix for path r, the O/D pair-path incidence
matrix for path r and the flow of path r respectively. Under the assumption (3) and
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letting w denote the first O/D pair in the list, linear system (4) can be solved by utilizing
Cramer’s rule as

δUw ¼
det

H

Λ1

���� Λ
0
1

0

" #

det
Δ0GΔ
Λ

Λ0

0

����
� �hr; ð5Þ

where matrix Λ1 is given by removing the first row of matrix Λ; and matrices H and Y are
H ¼ Δ0GΔ−Δ0GY ð6Þ

and
Y ¼ Δr ⋯ Δr 0jjj½ � ð7Þ

respectively, where the number of vectors Δr appearing in (7) equals the number of
paths connecting the O/D pair w, and the null matrix, 0. Under the assumed monoto-
nicity condition, the rank condition (3), and path flow hr positive, Dafermos and
Nagurney (1984a) showed that for positive semi-definite matrix H, δUw≤0, which
means the paradox doesn’t exist. A corollary also claimed that if the added route r
contains none of the original links of the network, then the result would be a decrease in
travel cost for users of the O/D pair w. A formula similar to (5) and the case of multiple
routes added can also be found in Steinberg and Zangwill (1983). However, their results

all rely on the assumption of det Δ0GΔ
Λ

Λ0
0

��h i
≠0.

3 The Generalized Inverse Approach

The results of (4) and (5) are mainly based on the assumption of affine link cost
functions and the unique path flow solution of (2) or equivalently the assumption of (3).
However, the configuration of a transportation network usually encapsulates notorious
non-uniqueness in nature when it is formulated as a linear matrix equation system, for
instance, see (4). Hence, the generalized inverse approach is employed to solve the
linear system (4) without the uniqueness assumption in this paper. The generalized
inverse matrix is a generalization of the inverse of a non-singular matrix historically
proposed to solve singular problems. It is used here for solving linear matrix Eq. (4),
which describes traffic equilibrium and whether paradoxes turn up. The main defini-
tions and theorems of the generalized inverse matrix are briefly introduced at the start
of this section. Let A be an m×n matrix and I the identity matrix. If a matrix A− exists
that satisfies the four conditions below, we call A− a generalized inverse of A. The
notation, A−, denotes the generalized inverse of matrix A in this paper hereafter.

Definition 3.1 (Penrose (1955) and Graybill (1969))

(i) AA− is symmetric.
(ii) A−A is symmetric.
(iii) AA−A=A
(iv) A−AA−=A−

Theorem 3.1 gives the existence and uniqueness of a generalized matrix, see
Graybill (1969). The computing formula of the generalized inverse is placed in
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Theorem 3.2. Theorem 3.2 with our proof discusses the row rank cases which meet our
concerns.

Theorem 3.1 For each matrix A, there exists a unique matrix A− which satisfies the
conditions of Definition 3.1.

Proof: The proof of Theorem 3.1 is referred to the proof of Theorem 6.2.4 in
Graybill (1969).

Theorem 3.2 If A is an m×n matrix of rank m, then

A− ¼ A0 ΑΑ0ð Þ−1 ð8Þ
, and AA−=I.

Proof: To prove the theorem, we first prove Eq. (8) satisfying the four conditions of
Definition 3.1. For condition (i), calculate (AA−) ′ by replacing

A− with the formula of A− in (8). Because matrix A is a m×nmatrix of rank m, AA′ is
a nonsingular m×m matrix. Thus, we have

AA−ð Þ0 ¼ AA0 AA0ð Þ−1
� �

0 ¼ AA0ð Þ−1
� �

0AA0 ¼ AA0ð Þ−1AA0 ¼ AA0 AA0ð Þ−1

¼ AA−: ð9Þ
This result admits AA− is symmetric. For condition (ii), similar treatments are

provided as

A−Að Þ0 ¼ A0 AA0ð Þ−1A
� �

0 ¼ A0 A0 AA0ð Þ−1
� �

0 ¼ A0 AA0ð Þ−1A
� �

¼ A0 AA0ð Þ−1A

¼ A−A: ð10Þ

Equation (10) is equivalent to saying A−A is symmetric. For condition (iii), calculate
AA−A by replacing A− with the formula of A− in (8). Then we have

AA−A ¼ A A0 AA0ð Þ−1
� �

A ¼ AA0 AA0ð Þ−1A ¼ A: ð11Þ

For condition (iv), calculate A−AA− by replacing A− with the formula of A− in (8).
Then again, we have

A−AA− ¼ A0 AA0ð Þ−1AA0 AA0ð Þ−1 ¼ A0 AA0ð Þ−1 ¼ A− ð12Þ

Collecting the results from (9) to (12) conclude that A−=A′(AA′)−1 agrees with the
definition of a generalized inverse.

Then, we prove AA−= I. Calculate AA− by replacing A− with the formula of
A− in (8). We immediately have AA−=A(A ′ (AA′)−1)=AA ′ (AA′)−1= I, due to AA ′
being a nonsingular m×m matrix. Now, the proof of Theorem 3.2 is complete.

The following theorem provides an answer for linear systems if non-unique
solutions exist.
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Theorem 3.3 Let the system of equations Ax=g have a solution, where A is an m×n
matrix with rank m and g is an m×1 vector. For each n×1 vector k, the vector y0 is a
solution, where

y0 ¼ A−g þ I−A−Að Þk: ð13Þ
Additionally, each solution to the system can be written in the form of (13) for some

n×1 vector k.
Proof: First, for the sufficient condition: If Ay0=g is given, then we have Ay0=g+(A−

A)k, where k is an arbitrary n×1 vector. By utilizing the results of Theorem 3.2 and
Definition 3.1, there exists a generalized inverse matrix A− such that Ay0=AA

−g+(A−
AA−A)k, and therefore Ay0=A(A

−g+(I−A−A)k). This is equivalent to y0=A
−g+(I−A−A)k.

Secondly, for the necessary condition: Suppose Eq. (13) is presumed, then Ay0=
AA−g+A(I−A−A)k is obtained by multiplying on both sides of (13) by A. Together with
Theorem 3.2 and Definition 3.1, that jointly imply A(I−A−A)=0 and AA−g=g, we have
Ay0=g accordingly. The proof is finished entirely

Now, the material about the generalized inverse matrix is ready to solve a linear
system that describes traffic equilibrium paradoxes on a network. First, we give a
formula to solve the equilibrium solution directly according to the generalized inverse
matrix. Given a set of link cost functions defined in (1), the equilibrium state can be
formulated as

Δ0 GΔhþ Lð Þ ¼ Λ0U
T ¼ Λh

�
ð14aÞ

where U is the equilibrium cost vector of O/D pairs. The first equation in (14a) gives
the condition that path cost is equal to the respective O/D pair cost if the equilibrium
state is reached. The incidence relations presented in (2) are built implicitly on this
equation, and the flow conservations presented in (2) are set in the second equation of
(14a). Without loss of generality, we assume that Eq. (14a) is in reduced row rank form
and rewrite it equivalently as (14b)

Δ0GΔ −j Λ0

Λ 0j
� �

h

U

� �
¼ −Δ0L

T

� �
: ð14bÞ

Applying the results of Theorem 3.3, the solution of (14b) is obtained as

h

U

� �
¼ Δ0GΔ −j Λ0

Λ 0j
� �− −Δ0L

T

� �
þ I−

Δ0GΔ −j Λ0

Λ 0j
� �− Δ0GΔ −j Λ0

Λ 0j
� �� 	

k: ð15Þ

Equation (15) works without non-unique path flow assumption, and provides
a formula to calculate non-unique solutions numerically. Due to the condition
of row rank in (14b), (15) will provide multiple answers of path flow h.
However, both the equilibrium cost of O/D pairs and link flow patterns are
unique if a feasible solution can be found. It should be noted that path flows
delivered by (15) are not guaranteed to be positive. The following program
proposes an alternative to solving Eq. (14b) with non-negative path flows, if it
is feasible. (Tobin and Friesz 1988)
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Minimize
X
p∈P

hp

s: t:
Δ0GΔ −j Λ0

Λ 0j
� �

h

U

� �
¼ −Δ0L

T

� �

h ¼ h1;⋯; hp;⋯; h Pj j

 �

≥0; and U ≥0

ð16Þ

where hp is the flow of path p, and P is the set of whole paths. Similarly, we
replace Eq. (4) with generalized inverse formulation as

δh
−δU

� �
¼ Δ0GΔ

Λ
Λ0

0

����
� �− −Δ0GΔr

−e

� �
hr þ I−

Δ0GΔ −j Λ0

Λ 0j
� �− Δ0GΔ −Λ0j

Λ 0j
� �� 	

k;ð17Þ

where k is an arbitrary real vector. Because of the uniqueness of equilibrium path cost,
the computation of δU in (17) is expected to be independent of vector k. Then as
Δ0GΔ
Λ

Λ0
0

��h i−
−Δ0GΔr

−e

h i
is calculated, the sign of δU in (17) can be determined concurrently

with an assumed positive hr.It would be more helpful to seek conditions under which the
sign of δU in (17) can be disclosed prior to a lengthy computation with
Δ0GΔ
Λ

Λ0
0

��h i−
−Δ0GΔr

−e

h i
. Before doing so, we have realized that the analysis thus far goes

not beyond adding only one new route to a network. However, it is highly possible that
more than one path might be generated after placing additional links on a transportation
network. We now proceed to search out circumstances of determining the sign of δU in
(17) under the case of multiple new routes generated after some geometric changes of a
network. Let us consider a set of new paths PR generated after the addition of an arc set
AR and the number of paths ofPR is indicated as |PR|. The path flow vector of the path set
PR is denoted as hR and assumed positive. The set ofO/D pairs for PR is expressed asWR

and the number of O/D pairs of WR is denoted as |WR|. The set of new paths PR can be
partitioned into |WR| disjoint sets denoted as DwR for all wR∈WR. The number of
elements in each DwR is expressed as DwRj j. Let ΔR and eR be the link-path incidence
matrix (not including AR) and the O/D pair-path incidence matrix for PR respectively.
Then, the Eq. (4) is redeveloped as

Δ0GΔ
Λ

Λ0

0

����
� �

δh
−δU

� �
¼ −Δ0GΔR

−eR

� �
hR: ð18Þ

The upper part of (18) after some algebraic manipulations is indicated as

Λ0δU ¼ Δ0GΔδhþΔ0GΔRhR: ð19aÞ

The left-hand-side of (19a) represents the change of equilibrium cost, and the right-
hand-side of (19a) decomposes the change of equilibrium cost into two terms. The first
term shows the change of cost of the original paths due to the change of path flows after
the addition of new links. The second term describes the change of cost of the original
paths resulting from the new generated path flows . The lower part of (18) exhibits flow
conservations as
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eRhR ¼ −Λδh: ð19bÞ
The solution of (19b) is non-unique and can be transferred to a reduced form with

row rank |WR|. Then, according to Theorem 3.3 again, the solution of hR in (19b) can be
presented as

hR ¼ −e−RΛδhþ I−e−ReR

 �

kR; ð19cÞ
where kR is an arbitrary |PR| ×1 real vector. If all nonzero entries in each row of eR are
placed at successive columns, as the example shown in Fig. 1, then the result of (I−eR−eR)
is a staircase matrix (Fourer 1984) such that all nonzero elements lie on |WR| square
diagonal blocks Bi, i=1,2,⋯, |WR|, as shown in Fig. 2. That means if |WR|O/D pairs are
additionally connected by a newly generated path set PR then the number of diagonal
blocks will also be |WR|. The order of each diagonal block Biwill be DwRj j ifwR is the ith
O/D pair of the set WR.

In particular, each row sum of Bi is zero.
1 Then, it is helpful to let (I−eR−eR)kR zero in

(19c) by just selecting a vector kR of which elements are the same. Now, (19c) can be
reduced to

hR ¼ −e−RΛδh ð19dÞ
without loss of generality. By (19d), and hence then (19c) is rewritten as

Λ0δU ¼ Δ0GΔδh−Δ0GΔRe
−
RΛδh ð20Þ

It can be examined from (20) that each element in vector Δ ′GΔδh−Δ ′GΔReR
−Λδh

is equal to one corresponding element in vector Λ ′δU. Furthermore, the elements in
vector Δ ′GΔδh−Δ ′GΔReR

−Λδh have a unique value if they belong to the same O/D
pair. After further treatments of (20) and collecting terms together for each O/D pair we
have

δh0Λ0δU ¼ δh0 Δ0GΔ−Δ0GΔRe
−
RΛ

� 

δh ¼

X
w∈W

δUw

X
i∈w

δhi
� �

ð21Þ

If supposing that matrixM=Δ ′GΔ−Δ ′GΔReR
−Λ is positive semi-definite, it follows

that δh ′Mδh=δh ′[Δ ′GΔ−Δ ′GΔReR
−Λ]δh≥0. Applying this to (21), we have

Fig. 1 An illustrating example of the O/D pair-path incidence matrix for PR

1 An example is given for consulting in the appendix.
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X
w∈W

δUw

X
i∈w

δhi
� �

≥0: ð22Þ

Because the value of ∑i∈wδhi is negative for O/D pairs belonging toWR and zero for
O/D pairs not belonging toWR, it is impossible for δUw>0, ∀w∈WR if assuming matrix
M is positive semi-definite. It is sufficient to say that there exists at least one O/D pair
wNB∈WR such that δUwNB < 0 paradox doesn0t existð Þ to prevent breaking the positive
semi-definiteness of matrix M. Finally, we conclude these results with the following
theorem and corollaries.

Theorem 3. 4 Under the assumed strict monotone and affine cost function, and where each
path flow is positive before and after the addition of routes, it follows that for matrix

M ¼ Δ0GΔ−Δ0GΔRe
−
RΛ ð23Þ

that is positive semi-definite, there exists at least one O/D pair wNB∈WR such that
δUwNB < 0: paradox doesn0t existð Þ

Proof: The proof follows immediately based on the analysis just mentioned.

Corollary 3.1 With the same assumptions of Theorem 3.4, it follows that for matrix
M=Δ ′GΔ−Δ ′GΔReR

−Λ that is negative semi-definite, there exists at least one O/D
pair wB∈WR such that δUwB > 0: paradox does existð Þ

Proof: If supposing that matrixM=Δ ′GΔ−Δ ′GΔReR
−Λ is negative semi-definite, it

follows that δh ′Mδh=δh ′[Δ ′GΔ−Δ ′GΔReR
−Λ]δh≤0. Applying this to (21) again, we

have∑w∈W(δUw∑i∈wδhi)≤0. Because the value of∑i∈wδhi is negative forO/D pairs w∈
WR and zero for O/D pairs w∉WR, it is impossible that δUw<0, ∀w∈WR if assuming
matrixM is negative semi-definite. It is equivalent to say that there exists at least one O/
D pair wB∈WR such that δUwB > 0 to prevent breaking the negative semi-definiteness
of matrix M.

Corollary 3.2 If the change of network geometry results in only one new route joining
an O/D pair wNB(wB), then δUwNB < 0 δUwB > 0ð Þ provided that matrix M is positive
(negative) semi-definite.

Proof: As the case for only one new route being produced, there would exist only
one term in (21). Then, we have δUwNB < 0 δUwB > 0ð Þ immediately by following
Theorem 3.4 (Corollary 3.1).

Fig. 2 An illustrating example of a staircase matrix (I−eR−eR)
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Corollary 3.3 If the change of network geometry results in only one new route joining
an O/D pair wNB, and the new route contains none of the original links of the network
then δUwNB < 0.

Proof: Since the new route includes none of the old links of the network, it reveals
ΔR to be a zero matrix in (23). Thus, we have the consequent facts that the testing
matrix M reduces to Δ ′GΔ which is positive semi-definite. Then δUwNB < 0 for O/D
pair wNB immediate follows Corollary 3.2.

The results of Corollary 3.2 (the part for positive semi-definite testing matrix) and
Corollary 3.3 are similar to Theorem 4.1 and Corollary 4.1 proposed by Dafermos and
Nagurney (1984a) but with a different form of testing matrix which makes it successful in
solving the classical Braess paradox problem involving non-unique path flow solutions. The
proofs of the proposed corollaries are based on the main results of Theorem 3.4, which is an
extension of existing theories towards networks where multiple routes are arbitrarily
generated after link additions. Corollary 3.1 delivers essential information that provides an
alarm to anticipate the paradox taking place. It agrees with suggestions, made by existing
studies, that in order to prevent situations from becoming worse, evaluations should be
performed on a network before policy-makings.

Consider the case of nonlinear cost function c(f), and let f , f be the equilibrium link
flow before and after the addition of links. By applying the mean value theorem, for the
cost function of link i, we have

ci f
� �

−ci f

 � ¼ X

j∈A

Z
0

1∂ci fð Þ
∂ f j

dt

" #
f j− f j

� �
ð24Þ

where f j is the jth element in f and

f ¼ f þ t f − f
� �

:

We re-express (24) in matrix and vector form as

c f
� �

− c f

 � ¼ G f − f

� �
ð25Þ

where

G ¼
Z

0

1 ∂c
∂ f

dt
and

f ¼ f þ t f − f
� �

:

The integral of matrix ∂c
∂ f in (25) is to be understood component-wise. Equation (25)

is the same as the nonlinear case suggested in Dafermos and Nagurney (1984a). The
matrix G is now dependent on the change of flows such that the linearity of (4)
disappears. In contrast to the case of affine cost function, the matrix G is no longer
known in advance. However, (19a) can still be re-written as

Λ 0 δ U ¼ Δ 0 c f
� �

− c f

 �� �

¼ Δ 0 G f − f
� �

¼ Δ0G ΔδhþΔRhRð Þ ¼ Δ0GΔδhþΔ0GΔRhR:

The Classical Braess Paradox Problem - A Generalized Inverse Method 615



And, the re-derivations of Theorem 3.4 and Corollaries 3.1, 3.2, and 3.3 under this
nonlinear case can still be applied immediately. These results can be interpreted as a
new version of qualitative analysis of traffic equilibria sensitivity.

4 Numerical Examples

In this section, two numerical examples are presented to demonstrate the effectiveness
of the proposed methods. Consider the first example network illustrated in Fig. 3. It
consists of four links {L1, L2, L3, L4} and three O/D pairs {(O1-D), (O2-D), (O3-D)}
with demands 6, 1, 1, respectively. The O/D pair (O1-D) is connected by two paths
{P1=(L1,L4),P2=(L3,L2)}, and the O/D pair (O2-D) by path P3=(L4), and the O/D pair
(O3-D) by path P4=(L2).

The four link cost functions are c1(f1)=50+f1, c2(f2)=50+f2, c3(f3)=10f3, and c4(f4)=
10f4 respectively. Before adding link L5 from node O3 to O2, the equilibrium solution
can be solved with Eq. (15). After some treatments of matrix manipulations, we have

h

U

� �
¼

0:045 −0:045 0 0 0:5 −0:454 0:045
−0:045 0:045 0 0 0:5 0:454 −0:045

0 0 0 0 0 1 0
0 0 0 0 0 0 1

−:05 −:05 0 0 5:5 5 0:5
0:454 −0:454 −1 0 5 5:454 0:454
0:045 0:045 0 −1 0:5 0:454 0:954

2
666666664

3
777777775

−50
−50
0

−50
6
1
1

2
666666664

3
777777775

þ I−Ið Þk

¼

2:5909
3:4909

1
1

88:5
35:909
54:409

2
666666664

3
777777775
: ð26Þ

O1

O2

O3

D

L1

L3

L4

L2

Fig. 3 The first example network before adding link 5
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The equilibrium path flow is unique and can be solved easily. If link 5 (L5) is added
into the network shown as Fig. 4, and the cost function of L5 is c5(f5)=10+f5. Two
paths are generated: P5=(L3,L5,L4) connecting the O/D pair (O1-D) and P6=(L5,L4)
the O/D pair (O3-D).

By utilizing Eq. (15) again, the equilibrium solution after the network expanding
from building L5 is presented as

h

U

� �
¼

0:08 −0:08 0 0:08 −0:08 0:85 −0:07 0:01
−0:02 0:02 0 0:02 −0:02 0:46 0:44 0:21
0 0 0 0 0 0 1 0

0:02 −0:02 0 0:06 −0:06 0:38 0:4 0:71
−0:06 0:06 0 −0:1 0:1 −0:31 −0:37 −0:21
−0:02 0:02 0 −0:06 0:06 −0:38 −0:4 0:29
−0:85 −0:15 0 −0:69 0:69 2:38 1:54 0:85
0:07 −0:07 −1 −0:77 0:77 1:54 1:61 0:84
0:01 0:01 0 −0:92 −0:08 0:85 0:84 0:82

2
6666666666664

3
7777777777775

−50
−50
0

−50
−10
6
1
1

2
66666666664

3
77777777775

þ

0 0 0 0 0 0 0 0 0
0 0:25 0 −0:25 −0:25 0:25 0 0 0
0 0 0 0 0 0 0 0 0
0 −0:25 0 0:25 0:25 −0:25 0 0 0
0 −0:25 0 0:25 0:25 −0:25 0 0 0
0 0:25 0 −0:25 −0:25 0:25 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775
k

¼

1:937
2:643
1

1:112
1:419
−0:112
94:384
42:447
53:755

2
6666666666664

3
7777777777775
þ

0 0 0 0 0 0 0 0 0
0 0:25 0 −0:25 −0:25 0:25 0 0 0
0 0 0 0 0 0 0 0 0
0 −0:25 0 0:25 0:25 −0:25 0 0 0
0 −0:25 0 0:25 0:25 −0:25 0 0 0
0 0:25 0 −0:25 −0:25 0:25 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

2
6666666666664

3
7777777777775
k:

ð27aÞ

The path flow solutions found in (27a) are not unique. It depends on vector k. We
select a vector kwith its elements randomly generated between zero and one. But let the
fourth element and the fifth element of vector k be both negative to remove the negative
value h6 in (27a) as indicated in boldface. Then, we have an equilibrium solution as

h

U

� �
¼

1:937
2:643
1

1:112
1:419
−0:112
94:384
42:447
53:755

2
6666666666664

3
7777777777775
þ

0
0:317
0

−0:317
−0:317
0:317
0
0
0

2
6666666666664

3
7777777777775
¼

1:937
2:960
1

0:794
1:102
0:205
94:384
42:447
53:755

2
6666666666664

3
7777777777775
: ð27bÞ
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It is also found that the equilibrium cost is independent to vector k. In particular, the
reduced form of the system has row rank=8 which reveals singularity. Paradoxical
symptoms occur on the O/D pairs (O1-D) and (O2-D) after the addition of link 5. The
equilibrium costs of these two O/D pairs are both increased at levels of 5.884 and 6.538
respectively. However, the equilibrium cost of the third O/D pair (O3-D) is lower than
that before adding link 5 at a level of 0.653. The detecting of the paradox can be made
by employing Eq. (17) as

δh
−δU

� �
¼ Δ0GΔ

Λ
Λ0

0

����
� �− −Δ0GR

−eR

� �
hR

¼

0:045 −0:045 0 0 0:5 −0:454 0:045
−0:045 0:045 0 0 0:5 0:454 −0:045

0 0 0 0 0 1 0
0 0 0 0 0 0 1

0:05 0:05 0 0 −5:5 −5 −0:5
−0:454 0:454 1 0 −5 −5:454 −0:454
0:045 −0:045 0 1 −0:5 −0:454 −0:954

2
666666664

3
777777775

−10 −10
−10 0
−10 −10
0 0
−1 0
0 0
0 −1

2
666666664

3
777777775

h5
h6

� �

¼

−0:5 −0:5
−0:5 0:5
0 0
0 −1

−4:5 −4:5
−5 −5
0:5 0:5

2
666666664

3
777777775

h5
h6

� �

ð28Þ
Because of the assumption that sboth h5 and h6 are positive, the sign of δU can be

determined directly from (28) without the previous computations of (26) and (27). The
sign of δUO1−D is positive since −δUO1−D ¼ −4:5 h5 þ h6ð Þ ≤0. By similar treatments,
the sign of δUO2−D and δUO3−D are positive and negative respectively. Finally, the
second example network is designed to know the usefulness of the testing matrix M in
Eq. (23) numerically. This example has the same topology of the example illustrated in
Fig. 3, but only one O/D pair (O1-D) remained with demand 6. The four link cost

O1

O2

O3

D

L1

L3

L4

L2

L5

Fig. 4 The first example network after adding link 5
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functions are replacedwith c1(f1)=50+f1, c2(f2)=50+f2, c3(f3)=f3, c4(f4)=f4, respectively.
The addition of L5 remains unchanged. Following the testing matrixM in (23), we have

M ¼ Δ0GΔ−Δ0GΔRe
−
RΛ ¼ 1 −1

−1 1

� �
: ð29Þ

Then, it can be further derived that

x1 x2½ � 1 −1
−1 1

� �
x1
x2

� �
¼ x21−2x1x2 þ x22 ¼ x1−x2ð Þ2≥0: ð30Þ

Equation (30) shows positive semi-definiteness of the testing matrixM. Meanwhile,
the equilibrium O/D pair costs before and after the addition of link 5 are 56 and 28
respectively, which coincides with the result by utilizing the testing matrix M.

5 Conclusions

A generalized inverse approach is proposed to detect Braess’ paradox without the
assumption of a unique equilibrium path flow solution for the classical Braess paradox
problem indicated in this study. Based on this idea, two computing methods are
suggested to calculate the equilibrium solution and to determine the sign of the change
of equilibrium cost. In addition, when network geometry is changed in a way that
multiple routes are newly supplied, we prove that there exists at least one O/D pair
connected by new routes such that Braess’ paradox does not occur if the corresponding
test matrix is positive semi-definite. In particular, Corollary 3.1 supplies information
that can predict the paradox taking place. It agrees with suggestions, made by existing
studies, that in order to prevent situations from becoming worse, evaluations should be
performed on a network before policy-makings. The derivation of the test matrix M is
intuitively established by the equilibrium formulation of the classical Braess paradox
problem. It states that the change of equilibrium cost for the used paths is composed of
two parts. One made by the flow changes of the used paths after link additions. The
other one is from the increased flows of the new routes. Finally, we find that the
conservation between flow changes of the used paths and increased flows of the new
routes gives non-unique solutions. However the change of equilibrium cost is unique
and can be determined by any one of the non-unique-path flow solutions which is
successfully expressed as a generalized inverse formulation in this study.
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Appendix

This appendix gives an example to describe that the result of (I−eR−eR) is a
staircase matrix such that all nonzero elements lie on |WR| square diagonal
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blocks Bi, i=1,2,⋯, |WR|. In particular, each row sum of Bi is zero. Now, let us
consider an O/D pair-path incidence matrix for a set of newly added paths PR,
denoted as eR, being reduced to

eR ¼ 1 1 1 0 0
0 0 0 1 1

� �
: ða1Þ

For this instance, the number of paths in the set PR is five. The set of O/D pairs WR

possesses two O/D pairs accordingly, namely |WR|=2. The set PR is partitioned into two
disjoint sets denoted as Dw1

and Dw2
. And, we have Dw1

j j ¼ 3 and Dw2
j j ¼ 2,

subsequently. By using Theorem 3.2 to compute eR
−, we apply

e−R ¼ e0
R eRe

0
R


 �−1
: ða2Þ

First, calculate the result of eRe
0
R as

eRe
0
R ¼ 1 1 1 0 0

0 0 0 1 1

� � 1 0
1 0
1 0
0 1
0 1

2
66664

3
77775 ¼ 3 0

0 2

� �
: ða3Þ

The two diagonal elements are actually the values of Dw1
j j and Dw2

j j respectively.
Then, we have the inverse

eRe
0
R


 �−1 ¼
1

3
0

0
1

2

2
64

3
75: ða4Þ

It follows that

e−R ¼ e0
R eRe

0
R


 �−1 ¼
1 0
1 0
1 0
0 1
0 1

2
66664

3
77775

1

3
0

0
1

2

2
64

3
75 ¼

1

3
0

1

3
0

1

3
0

0
1

2

0
1

2

2
6666666666664

3
7777777777775
: ða5Þ
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Finally, the result of (I−eR−eR) is as

I−e−ReR ¼ I−

1

3
0

1

3
0

1

3
0

0
1

2

0
1

2

2
6666666666664

3
7777777777775

1 1 1 0 0
0 0 0 1 1

� �
¼ I−

1

3

1

3

1

3
0 0

1

3

1

3

1

3
0 0

1

3

1

3

1

3
0 0

0 0 0
1

2

1

2

0 0 0
1

2

1

2

2
6666666666664

3
7777777777775

¼

2

3

−1
3

� 	
−1
3

� 	
0 0

−1
3

� 	
2

3

−1
3

� 	
0 0

−1
3

� 	
−1
3

� 	
2

3
0 0

0 0 0
1

2

−1
2

� 	

0 0 0
−1
2

� 	
1

2

2
6666666666666664

3
7777777777777775

: ða6Þ

Equation (a6) shows that each row sum of the diagonal blocks, i.e., B1 and B2, is
equal to zero without loss of generality. It shows that the structure of eR, encapsulating
the disjoint sets of PR with respect to the O/D pairs, produces the advantageous results
of (I−eR−eR) that we demonstrated in this appendix.
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