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Abstract The lack of sufficient public fueling stations for Alternative Fuel Vehicles
(AFVs) has greatly hindered their adoption. In this paper, we describe a novel
Alternative Fueling Station (AFS) location model by considering the behaviors of
AFV users who are willing to deviate slightly from their most preferred routes to
ensure that their AFVs with limited travel ranges can be refueled en route to their
destinations. The model considers multiple deviation paths between each of the origin–
destination (O-D) pairs. It relaxes the commonly adopted assumption that travelers only
take a shortest path between any O-D pairs. The model provides the most cost-effective
deployment strategy of siting AFSs that are needed on the network to satisfy AFV
demand between all O-D pairs. We examine the model on two test networks, the Sioux
Falls network and a 25-node network, and draw insights into the numerical tradeoffs
between station deployment, vehicle ranges, and route deviations. The results show that
deviation paths can greatly reduce the cost of establishing AFSs on networks without
compromising user convenience much. In addition, an Belbow point^ rule is used to
identify the most cost-effective AFV travel range in terms of the total cost of building
AFSs.

Keywords Alternative fueling location . Deviation path . Set-covering problem .

Optimization

1 Introduction

The lack of sufficient public fueling stations for Alternative Fuel Vehicles (AFVs),
particularly electric vehicles, compressed natural gas powered vehicles, and fuel-cell
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vehicles, has greatly hindered the adoption of AFVs as mass-market modes of personal
transportation. Specifically, the limited vehicle travel ranges on AFVs and scarcity of
fueling stations give rise to a very valid concern, from motorists’ perspectives, on
successfully completing their trips. This so-called Brange anxiety^ in addition to their
relatively high costs of ownership and maintenance even with substantial government
tax subsidies, is perhaps the greatest hindrance preventing greater market penetration of
AFVs. An effective system of public fueling stations on transportation networks is
crucial to facilitate successful mass adoption of AFVs.

The fundamental question on where to locate the fueling stations is related to the
well-studied facility location problems (Daskin 1995), that include the covering, center,
and median problems, in which a central planner allocates supplies or services to satisfy
demands on a spatial network. It is one of the research areas of spatial economics
(Ducruet and Beauguitte 2013) and there are extensive applications in alternative
fueling station (AFS) locations (Adler et al. 2014; Frade et al. 2011; Frick et al.
2007; He et al. 2013; Ip et al. 2010; Nicholas et al. 2004; Stephens-Romero et al.
2010; Wen et al. 2013). Demands in these studies were treated as being located at
specified nodes on the network and drivers would have to make specific trips to the
facilities to obtain services.

For facilities such as fueling stations, however, it may be more realistic to model the
demands as flows on the network, which are served Bon the way .̂ This consideration
leads to the development of flow-based models. First developed by Berman et al.
(1992) and Hodgson (1990), the Flow-Capturing Location Model (FCLM) is a max-
imum coverage model that entails facility locations to serve passing flows, which are
considered as captured if a facility is located on the flow paths. Applications of the
FCLM include locations of billboards for passing motorists (Hodgson and Berman
1997) and inspection stations for intercepting dangerous vehicles (Hodgson et al.
1996). The FCLM sets the foundation for a subsequent Flow-Refueling Location
Model (FRLM), which is developed by Kuby and Lim (2005) to explicitly address
the critical issue of limited vehicle range. The FRLM extends the FCLM to incorporate
the effects of limited vehicle ranges and to allow for undertaking of long-distance trips
via possible multi-stop refueling. The FRLM is a maximum coverage model, which
maximizes the flows served on the network given a predefined total number of stations.
The model has been used to site hydrogen refueling stations in the state of Florida
(Kuby et al. 2009; Lim and Kuby 2010). Distinct from the maximum flow coverage
models, there is another series of flow-based models that aim to satisfy all travel
demands by using the least number of AFSs through strategic locations on networks
(Wang 2007, 2008; Wang and Lin 2009), which are called flow-based set-covering
models. These two distinct types of flow-based models have been reformulated as a
flexible refueling station location problem (MirHassani and Ebrazi 2013). The recent
efforts on the development of flow-based facility location problems have already been
elucidated in a comprehensive review (Zeng et al., 2010).

The sparse distribution of AFSs on networks means that AFV users may be willing
to take a slightly longer path (i.e., a deviation path) to ensure that they can refuel their
vehicles en route, particularly on long-distance trips. This alternate routing consider-
ation is particularly realistic as drivers can now use mobile map applications (e.g.,
Google Map®) to navigate. Berman et al. (1995) is among the first to relax the
assumption that all flows are on the shortest path between O-D pairs. Kim and Kuby
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(2012) recently formulate a Deviation-Flow Refueling Location Model (DFRLM) to
extend the FRLM, in which facilities are located so as to maximize the total flows
refueled via at most one path (including deviation paths) for each O-D pair that
contributes most to the objective.

In this study, we develop a novel, AFS location model, called the Multipath
Refueling Location Model (MPRLM), in which AFV users can utilize multiple devia-
tion paths between all O-D pairs on the network. An O-D pair is considered as covered
if there is at least one path, either a shortest path or a path with a reasonable deviation,
available between the O-D pair through which drivers can complete a trip with single/
multiple refueling stops. The model minimizes the total cost of locating AFSs while
satisfying travel demands between all O-D pairs, subject to limited vehicle travel
ranges. The MPRLM provides integrated decisions on strategic refueling station
locations and the feasible routes between O-D pairs under a single framework. Note
that all AFSs in this study are assumed as uncapacitated and the effects of traffic flows
and congestions are not explicitly addressed in this model. These assumptions are more
defensible in the early AFV adoption phase. When AFVs are massively adopted,
explicit AFS capacity design will be necessary.

By incorporating deviation paths into a flow-based set-covering model, our MPRL
M considers multiple deviation paths available between an O-D pair. It is believed that
this relaxed assumption offers a greater flexibility in siting stations on networks than
the existing studies. We summarize the major differences between the proposed model
and the existing flow-based models in Table 1.

We implement the MPRLM on two test networks – the Sioux Falls road network
(LeBlanc et al. 1975) and a 25-node network (Simchi-Levi and Berman 1988). These
have been widely used as representations of real networks for numerical experiments in
the transportation network design (the Sioux Falls network) and facility location
problems (the 25-node network). We use these test networks to draw insights into the
interplay between locations, deviations, and vehicle ranges. The model can be applied
towards different problems by customizing it to meet the specific technological require-
ments, e.g., electric vehicle charging stations, battery swapping stations, compressed
natural gas stations, hydrogen refueling stations. The most cost-effective vehicle travel
range is also identified as an Belbow point^, at which the marginal reduction in the total
cost of building AFSs drops. This work will enhance the efforts of private industry to
increase its service coverage in a strategic manner and help government agencies plan
subsidies to generate public interest in buying AFVs before the market matures.

The remainder of the paper is organized as follows. We will present the concept,
assumptions, and formulation of the multipath station location model in section 2, with
in-depth discussions on modeling and algorithms in generating multiple paths. In
section 3, we will present the numerical results of the model on the two test networks
and the results of sensitivity analyses. We will conclude the study and outline the
possible future work in section 4.

2 Multipath Refueling Location Model (MPRLM)

In this MPRLM, AFSs may not be located exactly on a pre-planned path (e.g., a
shortest distance or shortest travel time path), but they can still serve drivers if they are
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fairly close within a reasonable deviation limit. It is believed that drivers would accept a
moderate deviation for refueling en route. The model integrates the considerations of
multiple paths and the limited vehicle ranges into the decision making process for AFS
locations, aiming to provide a least-cost solution while satisfying trips between all O-D
pairs with reasonable deviations.

The critical model inputs are deviation paths between O-D pairs and vehicle travel
ranges. Without available empirical data as to what extent travelers would deviate for
refueling from their pre-planned paths (normally the paths with which the travelers are
most familiar), we assume a set of deviation tolerances in terms of distance, mainly
because the vehicle range is directly related to the distance traveled. Note that travelers’
deviation choices can also be dominated by other factors, such as travel time, travel
cost, and network topology. However, there has been no well-defined relationship
between deviation acceptance and different factors and most studies still rely on some
explorative methods as pointed out by Kim and Kuby (2012). In this study, we assume
that one of the shortest paths is treated as the pre-planned path between an O-D pair,
and that deviation paths are either other shortest paths (if any) or paths that are slightly
longer than the pre-planned path. Deviation paths are exogenously generated by
algorithms described in section 2.3 and dependent on the selected deviation tolerances.
These deviation paths will then be the model inputs. Note that the model is not
designed to satisfy all deviation paths. Instead, as long as there is at least one path
between an O-D pair that can be completed via single or multi-stop refueling, this pair
is considered as covered. The AFV’s vehicle travel range is another important model
input that restricts the maximum distance traveled by a vehicle before refueling.

2.1 A Sample Network

We use a 7-node network (Fig. 1) to demonstrate the concept of the multipath refueling
location problem. Assume that nodes A and E are origins, nodes C and G are
destinations, and nodes B, D, and F are intermediate nodes. There are four O-D pairs,
i.e., A-C, A-G, E-C, and E-G. The numbers on the links are link lengths and vehicle
range is assumed to be 15.

If only shortest paths are allowed between O-D pairs, three stations in total are
needed at nodes B, D, and F, in which nodes B and F will respectively serve the O-D
pairs A-C and E-G and node D will serve both the pairs A-G and E-C. If a 20 %
deviation from a shortest path is acceptable, drivers going from node A to C can accept
the path A→D→C. Similarly, the path E→D→G is now acceptable for trips from
node E to G. Because of this relaxation, only node D is needed, which covers all O-D
pairs. Paths between the O-D pairs of A-G and E-C remain unchanged. However, a

Fig. 1 A 7-node sample network
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drop in the deviation to 10 % eliminates the deviation path available for both pairs A-C
and E-G, resulting in a solution that is identical to that of considering the shortest paths.

The above example illustrates how deviations can help reduce the total number of
stations needed. The AFS locations are results of vehicle range and choices of deviation
tolerances. A higher deviation from the increased flexibility in path choice would
reduce the number of stations needed on the network while increasing the total distance
traveled. This trade-off will be explicitly discussed in section 3.

2.2 Model Formulation

Let (N, A) be a transportation network where N and A are the sets of nodes and links in
the network respectively, withÑ the set of candidate locations for AFSs, Ñ⊆N. Denote a
link by a∈A or the pair of its starting and ending nodes, i.e., a=(i,j)∈A. Let R⊆N, index
r, be a set of origin nodes, and S⊆N, index s, be a set of destination nodes. With K
deviation paths, where K is a predefined maximum number of deviation paths, we
denote byPrs,k a sequence of nodes on the kth path from nodes r to s,where k =1, 2,…, K.

We make the following assumptions: (1) candidate locations for AFSs are
predetermined; (2) vehicles are homogenous and fully fueled at origins; (3) AFSs are
uncapacitated; (4) energy (e.g., fuel or electricity) consumed and refueled is unified in terms
of travel distance; (5) all drivers are fully informed about AFS locations on the network; and
(6) vehicle range (e.g., in miles) is predetermined and homogenous for all AFVs.

A mixed integer linear programming (MILP) model is formulated. The complete
model (P) is provided in (1)–(10):

Minimize

Z ¼
X

i∈eN

wiX i ð1Þ

Subject to:

Brs;k
i þ lrs;ki ≤M 1−Y rs;k

� �þ β∀r∈R; s∈S; i∈Prs;k ; k ¼ 1; 2…;K ð2Þ

Brs;k
i þ lrs;ki −di j−Brs;k

j ≤M 1−Y rs;k
� �

;∀r∈R; s∈S; i; j∈Prs;k ; i; jð Þ∈A; k ¼ 1; 2…;K ð3Þ

− Brs;k
i þ lrs;ki −di j−Brs;k

j

� �
≤M 1−Y rs;k

� �
;∀r∈R; s∈S; i; j∈Prs;k ; i; jð Þ∈A; k ¼ 1; 2…;K ð4Þ

X

r∈N

X

s∈S

X

k

lrs;ki δrs;ki ≤MX i∀i∈eN ð5Þ

X

k

Y rs;k ≥1∀r∈R; s∈S ð6Þ

Brs;k
i ¼ β∀r∈R; s∈S; i∈R; k ¼ 1; 2;…;K ð7Þ

X i ¼ 0; 1f g∀i∈eN ð8Þ
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Y rs;k ¼ 0; 1f g∀r∈R; s∈S; k ¼ 1; 2;…;K ð9Þ

Brs;k
i ≥0; lrs;ki ≥0∀r; s; i∈Prs;k ð10Þ

where:

Indices

i: index of candidate AFS sites, i∈Ñ⊆N
r: an origin node in the network, r∈R⊂N
s: a destination node in the network, s∈S⊂N
k: index of the paths for an O-D pair, k=1, 2, …, K
a: index of arc set A, a=(i,j)∈A.

Parameters

wi: weight on each candidate site, such as the installing and operating
cost of an AFS, i∈Ñ

β: onboard fuel capacity (unified in travel distance), i.e., vehicle range
M
�
: a sufficiently large number

Prs,k: a sequence of nodes on the kth path between r-s; where k =1,2…K
dij: distance between node i and j
δi
rs,k: =1 if node i is in the set of nodes Prs,k, 0 otherwise, this is

an outcome of multipath algorithm (described in section 3.3).

Variables

Xi: =1 if an AFS is located at node i 0 otherwise
Yrs,k: =1 if the kth path between r and s can be completed (taken), 0 otherwise
Bi
rs,k: remaining onboard energy at node i on the kth path of O-D pair r-s

li
rs,k: amount of energy refueled at node i on the kth path of O-D pair r-s.

The objective is to minimize the total cost of locating AFSs on the network. When
wi=1, ∀i∈Ñ, it minimizes the total number of stations, which is essentially a flow-
based set-covering problem with path deviations. Constraint set (2) assures that the total
onboard fuel will not exceed the AFV fuel capacity (Bi

rs,k+li
rs,k≤β) on those paths k that

are taken by the vehicle (i.e., Yrs,k=1); otherwise no restriction is applied (i.e., Yrs,k=0),
simply because no traveler will use that route. Constraints (3) and (4) work simulta-
neously to ensure that the energy consumption conservation Bi

rs,k+li
rs,k−dij−Bjrs,k=0

holds for all links on the kth path if the path is taken (Yrs,k=1) by any AFV. Otherwise,

when Yrs,k=0, the inequality becomes Brs;k
i þ lrs;ki −di j−Brs;k

j ≤M , i.e., no restraining
effects. Constraint set (5) is a logic constraint, stating that refueling is only available at
node i if AFSs are available. Constraint set (6) states that there is at least one path,
either a shortest or deviation path, available between an O-D pair. Constraint set (7)
follows the assumption that all AFVs are fully refueled at origins (i.e., i∈R).
Constraints (8)–(10) are binary and nonnegativity constraints.

Note that the proposed MPRLM generalizes the assumption of the shortest paths
between O-D pairs in the refueling location models, which is equivalent to the case of
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K=1 in this model. It is also distinct from the DFRLM (Kim and Kuby 2012) in that
multiple deviation paths are considered in constraint (6). Moreover, the model provides
the routing choices indicated by Yrs,k.

Remark 1: The constraints (2)–(5) in the model (P) involving sufficiently large
number M may raise computational concerns. Mixed-integer programming
solvers (such as CPLEX) proceed by optimizing continuous relaxations of the
constraints, but for very big M values a relaxation will yield very tiny values of the
binary variable (i.e., Yrs,k in this model) that do not provide useful information
about the effects of the variables on the left-hand side of an inequality. Generally,
the presence of one group of coefficients that are larger by many orders of
magnitude than any of the others is known to have potentially bad numerical
effects of the all aspects of the solution process.

We now make a proposition to convert problem (P) to an equivalent optimiza-
tion problem (P1) that will yield the same optimal value of the objective function
by replacing the inequality (2) with a more restrictive set of constraints (11) and
(12),

Brs;k
i þ lrs;ki ≤β;∀r∈R; s∈S; i∈Prs;k ; k ¼ 1; 2…;K ð11Þ

lrs;ki ≤βY rs;k∀r∈R; s∈S; i∈Prs;k ; k ¼ 1; 2…;K ð12Þ

Constraint set (11) assures that the total onboard energy will not exceed the
capacity on all possible paths between an O-D pair. Constraint set (12) is a logic
constraint, stating that the energy fueled li

rs,k has to be within the capacity for those
paths taken (i.e., Yrs,k=1); otherwise it is zero (Yrs,k=0). With substitution of
constraint sets (11) and (12) with constraint set (2), we define a new model (P1)
as: Minimize (1), subject to: (3)–(12).

The model (P1) can significantly improve the solution efficiency, compared to
the model (P) for two major reasons. First, it eliminates the big number M in
constraint set (2). As discussed in Remark 1, the big M results in computational
and numerical problems. Secondly, it improves the solution efficiency. In con-
straint set (12) if Yrs,k=0, then li

rs,k=0 and Bi
rs,k≤β, which reduces the number of

variables and constraints from the model (P) and essentially eliminates the big M
in constraints (3) and (4) as well. We show the numerical comparisons between
these two models in section 3.1. Constraint set (5) is a standard logic constraint and
a similar transformation is not easy to derive. For numerical implementations, a
least sufficiently large value is selected. For example, it is possible to set the value
equal to the total number of paths ×β for the uncapacitated location model or to the
AFS capacity for a capacitated model.

Proposition 1: Problem (P1) yields the same optimal value of the objective function
as in Problem (P).
Proof: Let Z* and Z1* respectively denote the optimal objective values of prob-
lems (P) and (P1). Since the constraint set in problem (P1) are more restrictive,
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then Z*≤Z1*. On the other hand, suppose X* and Y* are solutions of problem (P).
It is then clear that for the kth path between O-D pair r and s such that Y*rs,k=1,
constraint 2 is equivalent to constraints (11) and (12). For the kth path between O-D
pair r and s such that Y*rs,k=0, because Bi

rs,k and li
rs,k are practically not bounded by

constraints (2)–(4) due to a fairly large numberM, we can always find Bi
rs,k and li

rs,k

for any node i∈Prs,k such that both constraints (11) and (12) are satisfied, and the
adoption of the new constraints does not change the feasibility of X* and Y*.
Therefore, X* and Y* are still feasible so that Z*

1 ≤Z*. Overall, Z*=Z1*, and X*
and Y* is also an optimal solution for the problem (P1).

Remark 2: Problem P1 can be solved much more efficiently than the original
problem (P). In the case where the weights w equal one for all locations, the model
leads to the minimum number of AFS locations needed for the network. In another
case when the weights w represent installing and operation costs of AFS and the
values may be differentiated with different locations, the model results in the
minimum total cost and the resulting total number of stations will be at least as
many as the minimum number of stations of the problem when w=1. However, in
either case, the station locations may not be unique, nor are the paths traversed
between O-D pairs. We discuss more numerical experiments in section 3.1.

2.3 Notes on the Algorithms Generating Multiple Paths

The multiple paths between an O-D pair reflect drivers’ tolerance in deviation from the
shortest path and the deviation paths could be the 2nd, 3rd,…, kth shortest paths. There
are two types of K-shortest path problems: one allows loops between node pairs in a
network and the other does not allow any loops, which is also called the K shortest
loopless paths. The first type is easier to implement with existing algorithms such as the
N-path method (Hoffman and Pavley 1959). The second type is more challenging due
to the additional loopless constraint that no repeated nodes are allowed on a path. First
addressed by Yen’s algorithm (Yen 1971), 1 it has been further developed in other
studies (Martins and Pascoal 2003; Qian and Zhang 2013). In this study, we adopt the
loopless Yen’s algorithm for two reasons. First, because a transportation network is a
network without links that are negative in travel time or distance, looped trips do not
help reduce travel cost. Second, for flow-based facility location problems including the
refueling station location problem in this paper, specific looped trips to stations are
avoided because the goods or services are modeled to be obtained Bon the way .̂

1 The Yen’s algorithm can be broken down into two parts: determining the first shortest path and determining
all other (K-1)-shortest paths. Let set A hold K shortest paths, whereas set B temporarily hold shortest paths
through iterations. To determine A1, a shortest path from the source (origin) to the sink (destination) node, any
efficient shortest path algorithm can be used. To find the Ak, where k ranges from 2 to K, the algorithm
assumes that all paths from A1 to AK-1 have previously been found. At the Kth iteration, there are two
processes: firstly finding all the deviations Ai

K, where i ranges from 1 to the second last node (say the (N-1)st

node) on the AK-1 (as the last node is the sink node itself), and Secondly choosing a shortest path between i and
the sink node that has never chosen before, and adding it to set B, which is a set temporarily holding shortest
paths. By the end of the iteration, set B contains |N−1| shortest paths and the Kth shortest path is the path in set
B with lowest cost. This path is then removed from B and inserted into A, that is, Ak. We refer interested
readers to (Yen 1971) for details.
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However, because this algorithm only specifies the number of alternative paths
between an O-D pair, the deviations from a shortest path can be too large to be realistic
in some cases. We develop the K-shortest path with deviation cap algorithm by
imposing a cap that restrains the alternative path within a predefined deviation limit,
e.g., 10 %, 20 %, and 50 %. The algorithm can be described as follows:

For each O-D pair (r, s):

Step 1 Find the shortest path using any efficient shortest path algorithm, such as
Dijkstra’s algorithm (Dijkstra 1959) for (r, s) (the length denoted as Lrs,1);
set k =1.

Step 2 Compare the length of the kth path (denoted as Lrs,k) with (1+p)Lrs,1, where P
is a predefined deviation cap. If Lrs,k≥(1+p)Lrs,1, then stop; otherwise,
set k=k+1, and go to step 3;

Step 3 Find the kth shortest path using Yen’s algorithm; Go to step 2.

Note that if the parameter K in the algorithm is sufficiently large, the algorithm will
find all deviation paths within the predefined deviation cap. Depending on the network
structure, the number of deviation paths between an O-D pair may vary. In some cases
(especially large-scale networks), we may need to use a finite K and deviation cap
jointly to restrict the number of deviation paths between O-D pairs.

3 Numerical Implementation and Analysis of Results

To validate the model and demonstrate its applicability, we implement the
model on the two well-known test networks: the Sioux-Falls roadway network
and the 25-node network shown in Fig. 2. The numbers in the circles represent
the node indices. The numbers on the links denote the test distances in miles or
kilometers.

These two networks have different topological structures. In particular, the
Sioux-Falls network is a closed-loop network, in which every node is inter-
connected with at least two other nodes, while in the 25-node network node
#25 is only connected to #24, which is a Btail^ that makes the network less
flexible in station deployment. In the numerical study, we assume that all nodes
are candidate sites for AFSs, i.e., Ñ=N and we treat every candidate site
equally costly, i.e., wi=1,∀ i∈Ñ. Every node on the network is an origin and
a destination, i.e., R=S=N.

Solving the model (P1) involves two major steps: (1) preparing the multi-
path sets for all O-D pairs as model inputs by using the K-shortest path
algorithm and the K-shortest path with deviation cap algorithm, which are
both implemented in MATLAB; and (2) programming the model in AMPL
(Fourer et al. 2003) and solving it by using a commercial solver CPLEX 12.4.
All numerical experiments described run on a DELL desktop with 8 GB RAM
and Intel Core i5-2500@3.30GHz processor under Windows 7 environment.
Depending on the deviation tolerance, the number of decision variables Yrs,k

and number of constraints may be expanding exponentially. Thus, solving time
may vary dramatically.
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3.1 The Sioux Falls Network

The vehicle range is set to be 100 the length of the longest link on the network. We
consider three different deviation scenarios – the shortest path (K=1), 3-shortest paths
(K=3), and 20 % deviation cap to illustrate how different deviations affect the station
siting strategies. Optimal AFS locations are represented by solid nodes in Fig. 3.

Results indicate that deviations help reduce the number of stations required. In
particular, the minimum numbers of stations needed following the solutions of shortest
path (K=1), K=3 and 20 % deviation cap are respectively 12, 7, and 11. The paths
traversed between O-D pairs can be identified by revealing the decision variables Yrs,k,
which are determined simultaneously with the station location decisions. For example,
in the K=1 solution, path #1→2→6, highlighted in Fig. 3a, is traversed between nodes
#1 and #6 and AFVs on that path have to stop at node #2 for refueling. When K=3, two
additional paths #1→3→4→5→6 and #1→3→12→11→4→5→6 become
acceptable, which are the second and third shortest paths between that O-D pair.
These two deviation paths shown in Fig. 3b help eliminate AFSs at node #2. In
particular, the path #1→3→4→5→6 is completed via refueling at node #5 and the
path #1→3→12→11→4→5→6 is completed via multi-stop refueling at nodes #12,
11, and 5. The solution of the 20 % deviation cap shows a similar location pattern as the
solution of K=1. This is because only very few paths other than the shortest are within
a 20 % deviation cap. For example, there is no deviation path within 20 % cap between
the O-D pair #1 to #6 and thus only the shortest path is taken. The results in Fig. 3 also
imply that new station siting plans with deviations are not simple processes of
removing stations from the K=1 solution, which instead require re-optimizations of
the entire network.

We provide the number of paths served by different stations (i.e., the number of
paths passing through a particular station) under three deviations in Table 2 to
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Fig. 2 Two test networks
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demonstrate the variability of the Bworkload^ of each station (measured by the number
of paths served). We note that even for the same location (e.g., the station at node #5),
the number of paths served varies with deviation scenarios. Note also that the total
number of paths served can be higher or lower than the 552 O-D pairs, i.e., the total
number of O-D pairs on the Sioux Falls network. This is due to duplicating counts of a
path that goes through multiple stations, (more than 552) or multiple O-D pairs served
by the same paths (less than 552). From this table, it is clear that the nodes #5, #8, #11,
and #15 are critical locations as they are used in all three deviation scenarios.

As noted in Remark 2, the model yields the minimum number of stations but non-
unique locations for a given vehicle range and a deviation. Fig. 4b demonstrates

Table 2 Number of paths served
by different AFS locations

Stations (node ID) Number of paths served by a refueling station

K=1 K=3 20 % deviation cap

#2 16 – 12

#3 58 – 63

#5 69 100 59

#8 90 93 84

#10 – – 78

#11 54 45 68

#12 50 55 –

#13 – – 42

#15 67 88 70

#16 91 – 91

#18 – 83 –

#20 38 – 47

#21 – 63 –

#23 13 – –

#24 52 – 54

Total 612 527 668

(a) shortest path (K=1) (b) 3-shortest paths (K=3) (c) 20% deviation cap 

Fig. 3 Locations of AFSs on the Sioux Falls network with vehicle range of 100 under three deviation
scenarios
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another location solution for the same minimum 12 stations when K=1 with a vehicle
range of 100. This non-uniqueness in location solutions also helps explain why AFS
locations can alter when node weight w is differentiated. For example, if the weight of
node #3 is set high at 10 (e.g., a high initial installation cost of an AFS in reality) while
the weights of other nodes remain, a new location solution is found as shown in Fig. 3c.
The total number of stations increases to 13 and the node #3 is not selected due to the
high cost. It implies that the node #3 can be replaced with other combinations of nodes
on the network.

We further analyze the coupled effects of deviations and vehicle ranges on the
number of AFSs sited. In particular, we test five different deviation caps at 0 %, 10 %,
15 %, 20 %, and 50 % coupled with seven different vehicle ranges between 100 and
250 with a 25 interval, totaling 35 tests. The results, shown in Fig. 5, indicate that the
minimum number of stations needed declines with longer vehicle ranges, which in turn
makes deviations less appealing. For example, when the vehicle range is up to 225,
only one station is needed and no user needs to deviate their routing. It drops to zero

(a) location pattern in original

solution (duplicated from  

(b) an alternative location

pattern  

(c) location pattern with the

weight of node #3 as 10.  

Fig. 4 Multiple location solutions for K=1 and vehicle range of 100

Fig. 5 Effects of deviation caps and vehicle ranges on the minimum numbers of AFSs needed on the Sioux
Falls network
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when the vehicle range reaches 250. We also analyze the effects of the K values in the
same way and the results plotted in Fig. 6 show similar conclusions.

Empirical vehicle ranges can be lower than the theoretical (or anticipated) values,
due to a number of prevailing factors, such as traffic conditions, weather, and the
variability in users’ anxiety to refuel. We conduct an analysis to understand the impacts
of variations in vehicle ranges caused by these factors on the minimum number of
stations needed. In particular, we assume a vehicle range of 200 and two levels of
deductions, 25 % and 50 %, with resulting vehicle ranges of 150 and 100. The results
plotted in Fig. 7 show that the numbers of stations increases significantly from one
station to as many as 12 stations with the deductions, varied by deviations. We note that
a larger deviation (e.g., K=3) helps reduce the sensitivity in siting strategies than a
lower deviation (e.g., shortest path). In particular, following K=3 deviation, there are
five more stations needed when vehicle range is reduced by 50 % while it requires 10
more stations if the shortest paths are considered.

We conduct numerical experiments for comparing the computational performances
by models (P) and (P1) under different deviation scenarios, the results of which are
reported in Table 3. All these numerical experiments are solved by CPLEX to opti-
mality (i.e., 0 % gap). Here, all the solutions are in terms of number of stations and all
computation times are in CPU s. From the results, higher deviations result in longer
computing times due to the increased number of variables and constraints. Under all
three deviations, both models (P) and (P1) result in identical optimal objective values
(i.e., the same minimum number of stations) while model (P1) significantly reduces
computing times than model (P) under all deviation scenarios.

3.2 A 25-Node Network

We implement the model on a 25-node network by using the same three deviation
scenarios. The optimal locations are represented by the solid nodes in Fig. 8. With
vehicle range of 10, the minimum of numbers of stations are 10, 8, and 9 for deviation
scenarios K=1, K=3 and 20 % deviation cap, respectively. Compared to the Sioux Falls
network, the 25-node network shows lower variations in the station siting strategies,

Fig. 6 Effects of K and vehicle ranges on the minimum numbers of AFSs needed on the Sioux Falls network
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mainly because the link lengths are less varied and the Btail^ of the network (i.e., the
nodes #22, 23, 24, and 25) requires stations to be located at nodes #14 and #24
regardless.

We take the O-D pair #1–#10 as an example to highlight the differences in the used
paths under different deviation scenarios. The K=1 solution is illustrated in Fig. 8a. In
the K=3 solution, this O-D pair is covered via the third shortest path with multi-stop
refueling at nodes #4 and #8 as shown in Fig. 8b. With the 20 % deviation cap, both the
shortest path #1→2→3→9→10 and the fourth shortest path #1→5→7→8→10 is
used to cover the O-D pair as shown in Fig. 8c.

The effects of deviations coupled with vehicle ranges on the station deploy-
ment on the 25-node network are also analyzed with the results plotted in Figs. 9
and 10. Similar observations are made as for the Sioux Falls network.
Particularly, an identical number of stations is used when vehicle range is 10
when deviation caps are relatively low (i.e., 10 %, 15 %, and 20 %). A further
investigation reveals that only the shortest paths are used in these deviation scenarios.
We also identify that the Belbow point^ 2 of vehicle range is 20, implying that a vehicle
range of 20 may be the most cost effective in terms of the total cost of building stations.
The marginal savings in the total cost (in this case, equivalent to the total number of
stations) reduces when the vehicle range is higher than 20.

We conduct a similar analysis on the effects of deducted vehicle ranges on the 25-
node network, with the results shown in Fig. 11. These results are based on the vehicle
range of 40 and three levels of deductions, i.e., 25 %, 50 %, and 75 %, with respectively
resulting vehicle ranges of 30, 20, and 10. Similar to what we have observed for the
Sioux Falls network, the deductions in vehicle range require more stations. There is,
however, less variability among different deviation scenarios (K=1, K=3, and 20 %

2 At this point, the marginal gain drops (Ketchen and Shook 1996), which in the study refers to the marginal
number of stations needed.

Fig. 7 Effects of the vehicle range deduction on the minimum numbers of AFSs needed on the Sioux Falls
network
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(a) shortest path (K=1) (b) 3-shortest paths (K=3)
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(c) 20% deviation cap

Fig. 8 Locations of AFSs on the 25-node network with a vehicle range of 10 under three deviation scenarios

Table 3 Comparisons of computational performances of models (P) and (P1)

Models K=1 K=3 20 % deviation

Solution Time (s) Solution Time (s) Solution Time (s)

P 12 0.2 7 476 11 7

P1 12 0.1 7 132 11 3
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deviations), due to the lower variability in both the link lengths and the topological
structure.

3.3 Sensitivity Analysis on user Inconvenience due to Deviations

In general, a reduced number of AFSs deployed on the network increase the average
travel distance. We further explore the tradeoffs between the cost of locating
stations (in terms of number of stations) and user convenience (in terms of travel
distance) with deviations. Our results would provide managerial insights to planners.

As noted in Remark 2, the model (P) sets the objective as to minimize the number of
stations, which may not yield unique station locations. For each deviation scenario, the
resulting average deviation, defined as the average additional travel distance for the
entire network due to deviations, may not be unique. In this analysis, we reformulate
the problem to minimize the total deviation in the objective function (13), given the
number of stations (i.e., the resulting minimum number of stations from the model (P))
in constraint (14). The new model is denoted as model (P-dev). The average deviation
equals the total deviation (i.e., objective value) divided by the total number of paths
(including all deviation paths) ∑

rs;k
Y rs;k , which is unique with respect to the given

number of stations.
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Fig. 9 Effects of the deviation caps and vehicle range on the minimum numbers of AFSs needed on 25-node
network
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Fig. 10 Effects of K and the vehicle ranges on the minimum numbers of AFSs needed on 25-node network
(note: K=4 and K=5 lines are completely overlapped)
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Minimize

X

rs;k

crs;k−crs;1

crs;1
Y rs;k ð13Þ

Subject to:
X

i

X i ¼ T ð14Þ

Including (3)–(12)
Where

crs,k: a parameter, the length of the kth shortest path connecting r and s
T: a parameter, the minimum number of stations resulted from model (P)

All other notations are the same as in the model (P).
The results are summarized in Table 4, in which zeroes indicate either no deviation

(i.e., K=1) or deviation paths with an identical minimum distance ( in deviation cap
scenarios of 10 %, 15 %, and 20 %). The resulting station locations are displayed in the
column with heading BStation location #^. In general, a relaxed deviation scenario (e.g.,
higher K or deviation cap) helps reduce the number of stations with only a slight
increase in the average deviation. This finding is most interesting to planners, as it
implies that a high level of service to AFV users can be maintained with a low cost
through smart planning. For example, for deviation scenarios from K=1 to K=5, on the
Sioux Falls network, half of the 12 stations have been saved but this 50 % reduction
only increases the average travel distance by about 3.3 %. Similarly, on the 25-node
network, 30 % (= (10–7) / 10) reduction in the number of stations only causes the
average travel distance increased by about 2 %.

We also notice that for some cases when the same number of stations is sited on the
network, a higher deviation helps reduce the average deviation on the network. For
example, on the 25-node network, the average deviation with K=3 drops slightly by
about 0.1 % (=1.42 %–1.3 %) from K=2. This can be explained as following. First, the
model (P-dev) minimizes the total deviation on the network, given the total number of

0

2

4

6

8

10

12

0 -25% -50% -75%

N
um

be
r o

f s
ta

tio
ns

Deductions from the theroetical vehicle range

shortest path

20% deviation

K=3

Fig. 11 Effects of the vehicle range deduction on the minimum numbers of AFSs needed on the 25-node
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AFSs . When the total number of AFSs is identical, the average deviation in a higher
deviation scenario should be at least as good as the one in a lower deviation scenario.
Second, a higher deviation permits the selection of more deviated paths for some O-D
pairs while let other O-D pairs be traversed via shortest paths. The average deviation for
the entire network is a result of the trade-offs. As seen from Tables 5 and 6, which
report the numbers of shortest and deviation paths used on both networks under
different deviation scenarios, the number of shortest paths increases by 5 (=483–478)
from K=3 to K=2 and the number of deviation paths drops by 5 (=122–117). As a
result, the overall average deviation is reduced. Similar explanations apply to the
comparisons between K=5 and K=4.

Tables 5 and 6 also indicate that AFS locations are primarily determined based on
the use of the shortest paths, which implies that a small number of deviation paths can
substantially reduce the number of AFSs needed.

Table 5 Numbers of paths used in the Sioux Falls network under different deviation scenarios

Deviation scenarios Total number of used
paths ð∑

rs;k
Y rs;kÞ

Total number of used
shortest paths ð∑

rs
Y rs;1Þ

Total number of used deviation
paths ð∑

rs;k
Y rs;k−∑

rs
Y rs;1Þ

K=1 552 552 0

K=2 552 524 28

K=3 552 478 74

K=4 554 479 75

K=5 553 432 121

10 % 553 535 18

15 % 552 540 12

20 % 552 530 22

50 % 552 470 82

Table 6 Numbers of paths used in the 25-node network under different deviation scenarios

Deviation
scenarios

Total used paths
ð∑
rs;k

Y rs;kÞ
Total used shortest paths
ð∑
rs
Y rs;1Þ

Total used deviation paths
ð∑
rs;k

Y rs;k −∑
rs
Y rs;1Þ

K=1 600 600 0

K=2 600 478 122

K=3 600 483 117

K=4 600 465 135

K=5 600 479 121

10 % 601 535 66

15 % 600 536 64

20 % 602 537 65

50 % 600 414 186
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4 Conclusions and Discussions

We develop the multipath refueling station location model (MPRLM) to seek the most
cost-effective AFS location strategies on the networks, considering limited vehicle
ranges and allowing for multiple deviation paths between O-D pairs. The MPRLM
minimizes the total cost of establishing new refueling stations on transportation net-
works while satisfying demand among all O-D pairs. Our model integrates deviation
paths into a flow-based set-covering problem.

We implement the model on two well-known test networks - the Sioux Falls and 25-
node networks. The results indicate that the decisions on AFS locations and paths
traversed between O-D pairs are interdependent and thus should be determined simul-
taneously. The use of deviation paths can substantially reduce the total cost of estab-
lishing AFSs or the minimum number of stations with a reasonable compromise of
users’ convenience. From the sensitivity analysis, we understand that AFS are primarily
located based on the use of shortest paths while the use of a small number of deviation
paths has substantially reduced the system cost. An Belbow point^ rule is also used to
identify the most cost effective vehicle range in terms of total cost of building AFSs.

There are two immediate extensions to this study. First, an application of this model
to a real-world case study of developing electric vehicle charging corridor in the state of
South Carolina is undertaken. In addition to the challenges in data collection and
processing, the intractable nature of a large scale model requires developing heuristic
solutions. Secondly, to make the model more general and realistic, station capacity
design should be an integrated decision set involving modeling traffic flows and the
inevitable congestions on the roadways or at stations. A bi-level modeling framework is
recommended, in which the strategic system planning decisions are made on the upper
level while traffic assignment is incorporated on the lower level. However, the com-
plementarity constraints associated with the user equilibrium conditions in traffic
assignment will make the model a Mathematical Problem with Complementarity
Constraints (MPCC), which is notoriously difficult to solve. Thus, algorithmic
development will be another major effort in the future research.
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