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Abstract In this paper, a dynamic and stochastic notion of public transport network
vulnerability is developed. While previous studies have considered only the network
topology, the granular nature of services requires a more refined model for supply and
demand interactions in order to evaluate the impacts of disruptions. We extend the
measures of betweenness centrality (often used to identify potentially important links)
and link importance to a dynamic-stochastic setting from the perspectives of both
operators and passengers. We also formalize the value of real-time information (RTI)
provision for reducing disruption impacts. The developed measures are applied in a
case study for the high-frequency public transport network of Stockholm, Sweden. The
importance ranking of the links varies depending on the RTI provision scheme. The
results suggest that betweenness centrality (passenger/vehicle flows) may not be a good
indicator of link importance. The results of the case study reveal that while service
disruptions have negative effects and RTI may have significant positive influence,
counter examples also exist due to secondary spillover effects.

Keywords Vulnerability . Public transport . Disruption . Transit assignment . Network
centrality . Critical links . Real-time information .Mitigation

1 Introduction

1.1 Vulnerability Analysis of Transport Systems

Public transport is a vital component of urban transport systems. In tackling the
challenges of increasing congestion and negative environmental impacts, shifting trips
from personal cars to public transport options is generally seen as one of the most
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important strategies. For public transport to be an attractive option for travellers, the
system needs to be efficient as well as robust. Efficiency means that travel should be
fast, convenient, affordable and comfortable under normal operating conditions.
Robustness means that the system should be able to withstand or quickly recover from
disturbances such as infrastructural and vehicular malfunctions. In order to ensure that
the system is robust, it is first necessary to analyse the system-wide impacts of potential
disruption scenarios for travellers and operators. This enables the identification of
problematic scenarios, for example expressed as a set of important network links where
disruptions would be the most severe. When the scenarios have been identified,
appropriate actions can be taken to reduce the problems and improve the robustness.

The research field concerned with the risk of severe transport network disruptions
for the society is commonly called vulnerability analysis (Berdica 2002). Until now,
most work in transport network vulnerability analysis has focused on degradations of
the physical infrastructure and major incidents, in particular for the road network and
personal vehicle travel (Scott et al. 2006; Jenelius and Mattsson 2012; Taylor and
Susilawati 2012). Both theoretical analysis and numerical applications have increased
the understanding of how supply and demand together determine vulnerability, through
the redundancy of the network and the travel patterns of the users.

Much less is known about the vulnerability of public transport networks (PTN),
where services are superimposed on roads and railways. Some studies have looked at
how degradations of physical infrastructure links in a particular modal network affect
connectivity and distances between stations (Angeloudis and Fisk 2006; Criado et al.
2007). PTN configuration plays a key role in determining the impacts of prospective
service disruptions. Graph theory provides alternative measures of link importance that
were applied on PTN worldwide (von Ferber et al. 2009, 2012). These studies
considered the number of immediate connections (node degree) and the betweenness
centrality measure which corresponds to the share of shortest paths between nodes
which go via a certain node. They concluded that network vulnerability in terms of the
size of the largest connected subset is more sensitive to betweenness centrality than to
node degree. The same conclusion was reached when vulnerability was defined in
terms of the speed in which the system becomes fragmented (Colak et al. 2010).
Notwithstanding, PTN varied with respect to the impact of various attack scenarios
(von Ferber et al. 2012). It was suggested that robustness of metro systems corresponds
to the number of cyclic paths available in the network (Derrible and Kennedy 2010).
While some general conclusions can be drawn, such analyses cannot capture many
features of PTN that we believe are essential in order to describe their vulnerability
properly.

The analysis of PTN vulnerability considers disruptions that imply a substantial
reduction in the capacity of system components and hence their incapability to fulfil the
purpose of the system. Disruptions of PTN need not be caused by degradations of the
underlying physical infrastructure, but can also arise from degradations of the services,
for example crew strike or limited infrastructure capacity (stops or tracks).

PTN are characterized by greater complexity than road networks due to the impor-
tance of transfers, multi-modality, transport hubs and the intermediate walking links.
These network characteristics suggest that PTN are made up of links that belong to
distinguished sets. The connectivity of the PTN is lower than that of road networks in
both the spatial and the temporal domains: PTN are less dense than road networks, and
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the level of service varies non-continuously according to the time tables within the day
and between days of the week. Together, these factors imply that PTN are more
dependent on few critical network elements and hence possibly more vulnerable. At
the same time, the multimodality of PTN can potentially allow alternative modes to
provide redundant capacity.

1.2 The Dynamic Approach Towards Public Transport Vulnerability

The aim of this paper is to develop a dynamic and stochastic notion of PTN vulner-
ability. The granular nature of public transport services requires a more refined model
for emulating system supply. Supply dynamics imply that the travel costs associated
with alternative paths are time-dependent, which influences adaptive passengers’ path
decisions. The spatial distribution of network vulnerability may therefore vary over
time due to variations in service capacity and reliability. Hence, the dynamics of both
public transport supply and demand are modelled as well as their interactions in order
to evaluate the impacts of disruptions. None of the evaluations carried out in previous
studies have taken into consideration these underlying system dynamics.

A dynamic notion of public transport service disruption takes into account its
accumulated effect on system performance. A service disruption implies that public
transport vehicles can neither progress along nor enter a disrupted network element. The
disruption has a certain duration after which the system is expected to gradually recover
back to normal conditions. These conditions could be defined in terms of the flow of
supply (vehicles) or demand (passengers). Compared with the case of road networks,
service disruption in the PTN has wider direct implications. While service disruption is
associated with the immediate effect on the disrupted network element, the dynamic
nature of public transport supply results in escalating impacts on service availability and
capacity further downstream. Depending on its duration, it may also impact service
availability upstream and even on other lines due to its impact on vehicle scheduling.

The impacts of service disruptions depend on local crowding levels as well as on
how the demand reacts to changes in supply. Although previous studies have not stated
their behavioural assumptions, they all share the assumption that all passengers have
perfect knowledge of system conditions and that they always choose the shortest path
available. These assumptions are relaxed here by adopting a more realistic behavioural
representation. A probabilistic path choice process is used in order to model passenger
decisions. The evaluation of alternative paths depends on passenger’s preferences and
perceptions. The latter is determined by prior knowledge and traveller’s access of real-
time information (RTI) on system conditions.

In this study, a dynamic public transport operations and assignment model,
BusMezzo, is used as the evaluation tool. The model represents the interactions
between traffic dynamics, public transport operations and traveller decisions. The
different sources of public transport operations uncertainty including traffic conditions,
vehicle capacities, dwell times, vehicle schedules and service disruptions are modelled
explicitly. A dynamic path choice model considers each traveller as an adaptive
decision maker. Travellers’ progress in the public transport system consists of succes-
sive decisions based on anticipated downstream attributes. Factors such as timetables,
transfers and walking distances are used for the predictions of passenger loads under
various scenarios.
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Advanced public transport systems (APTS) have the potential to improve
system robustness. This includes real-time control and management strategies.
The public transport system may also become more robust by informing
passengers on downstream conditions. Previous studies demonstrated the effects
of RTI on passenger decisions under service disruption scenarios. However, the
analysis also highlighted that as passengers are more informed, passenger loads
are subject to more fluctuation and therefore may counteract system robustness
(Cats et al. 2011a).

The remainder of the paper is organized as follows. The proposed methodology for
public transport vulnerability analysis is described in Section 2. Section 3 describes a
case study for the high frequency PTN of Stockholm, Sweden. Section 4 presents the
application results followed by a discussion of the benefits of vulnerability analysis in
planning, operations and management and concludes the paper.

2 Methodology

2.1 Public Transport Network Definition

The physical PTN is defined by a directed graph G(S,E), where the node set S
represents stops and rail stations (all called stops here for simplicity), and the link set
E⊆V×V represents direct connections between stops. The number of stops and links are
denoted |S| and |E|, respectively.

Each link e∈E may be operated by one or several public transport lines. A line l is
defined by a sequence of stops l=(sl,1,sl,2,…,sl,|l|), where ol=sl,1 is the origin terminal
and dl=sl,|l| is the destination terminal. The set of all origin–destination (OD) terminals
is denoted ST⊆S; the set of lines between origin terminal o∈ST and destination terminal
d∈ST is denoted Lod and the set of all lines is denoted L. We let e∈l mean that link e is
in line l, i.e., that e=(sl,i,sl,i+1) for some i.

Each link e is associated with a riding time, which is the time from the departure
from the upstream stop to the arrival at the subsequent downstream stop. The riding
time may vary systematically between different lines and also between different trips
and between days depending on the current traffic conditions. The riding time from
stop s to the next stop on line l at time-of-day t is denoted RTsl(t). If day-to-day
variability in traffic conditions is considered, RTsl(t) may be considered a stochastic
variable. Similarly, each stop is associated with a dwell time, which is the time required
for a vehicle to stop for boarding and alighting. Like the riding times, the dwell times
may vary between lines, trips and days, depending on the current number of passen-
gers, vehicle type, etc. The dwell time at stop s for line l at time t is denoted DTsl(t) and
may be considered stochastic.

Each line l is operated with a set of vehicle trips according to a schedule. The
departure time of trip k of line l from the origin terminal is in general a function of a
scheduled departure time and the arrival time of the previous trip, which may be
stochastic due to the stochastic riding and dwell times. The set of vehicle trips covering
some part of line l during a certain time interval (t,t+τ) is denoted Kl(t,τ). The number
of trips during the time interval, |Kl(t,τ)|, may be stochastic since it is an outcome of
underlying stochastic variables.
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Travel demand is connected to the network through a subset of origin–destination
(OD) nodes, Sod⊆S. The set of travellers from origin o∈SOD to downstream destination
d∈SOD during time interval (t,t+τ) is denoted Nod(t,τ); the set of travellers between all
OD pairs is denoted N(t,τ). Passengers departure rates are assumed to be inelastic, that
is, not affected by changes in travel times etc. However, the number of travellers during
the time interval may be stochastic to represent day-to-day variations.

Similarly to the vehicle lines, the physical path of a traveller is defined by a sequence
of stops from the origin to the destination, that is, j=(sj,1,sj,2,…,sj,|j|), where oj=sj,1 is
the origin stop and dj=sj,|j| is the destination stop. The set of all physical traveller paths
between origin o and destination d is denoted Jod. In general, which physical path a
given traveller chooses a given day and time-of-day will depend on the properties of the
different public transport lines and on the conditions that day, according to the
preferences of the individual. Considering the dynamics and the stochasticity of the
system, the probability that traveller n uses physical path j is denoted pn(j). In
Section 2.3 a dynamic public transport route choice model is presented that is used
in this paper to calculate pn(j).

2.2 Network Centrality

The ability of a transport network to withstand degradations has clear connections to
the structure of the network. It has long been recognized that central links, in the sense
that many paths between pairs of nodes must cross those links, are often also critical
with respect to degradations. This kind of network centrality is commonly referred to as
betweenness centrality (Freeman et al. 1991; Crucitti et al. 2007). For a link e, the
betweenness centrality is the fraction of shortest paths, where path length is measured
as the number of intermediate nodes, between all pairs of nodes in the network that
contain the link; if there are multiple shortest paths between a pair of nodes, the fraction
of those paths that contain e is calculated.

If f s1;s2 eð Þ denotes the fraction of shortest paths between stop s1 and stop s2 that
contain link e, the traditional betweenness centrality of link e in the PTN is

BC eð Þ ¼ 1

Sj j Sj j−1ð Þ
X

s 1∈S
X

s2∈Sns1 f s1;s2 eð Þ ð1Þ

This simple network measure has a number of limitations which may reduce its
relevance for identifying central links in real-world PTN. First, it assumes that all node
pairs are equally important for the centrality of a link. Second, the only relevant paths
between a pair of links are the shortest paths in terms of the number of intermediate
nodes; this implicitly defines the path choice model for the network. In the following
the betweenness centrality measure is developed for PTN by taking into account some
of the features highlighted in Section 1:

& Dynamic system—the demand and supply between nodes may change with time
& Probabilistic path choice—not all passengers choose the same path between two

nodes
& Stochastic system—there is inherent variability in demand and supply between

days
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Furthermore, different centrality measures may be relevant depending on the per-
spective fromwhich the system is viewed. In particular, one may focus on the operations
of the vehicle fleet, or on the passengers. Hence, we extend the traditional betweenness
centrality measure with focus on vehicles and passengers, respectively. In each case, we
show that the extended betweenness measure corresponds to a measure of flow across
the link. Since the path choices of the passengers may be influenced by real-time
information, the betweenness centrality measures will in general depend on the RTI
provision scheme. We keep this dependence implicit in the formulas here for simplicity.

2.2.1 Centrality for Vehicles

From an operator’s perspective, a network link should be considered central if a large
number of lines and vehicle trips traverse the link. Therefore, it is relevant to weight
each pair of stops with the number of lines and, for each line, the number of vehicle
trips, between the stops. To avoid double-counting the same trip passing several stops
along the path, only the origin terminal ol and destination terminal dl of each line l
should be considered in the aggregation.

The fact that the line schedules may vary by time-of-day and day-of-week means
that the betweenness centrality of a link may vary depending on which time interval (t,
t+τ) is considered. Hence, the betweenness centrality measure becomes dynamic.
Furthermore, stochastic riding, dwell and departure times mean that the number of
vehicles on line l entering a link e during the time interval, |Kle(t,τ)|, and the total
number of vehicles along line l, |Kl(t,τ)|, are stochastic. To obtain a deterministic
betweenness centrality measure we consider the expected number of departures during
the time interval, E[|Kl(t,τ)|] and E[|Kl(t,τ)|], respectively. The betweenness centrality
measure from the operator’s perspective is

OBC e
���t; τ

� �
¼

X
o∈ST

X
d∈ST

X
l∈Lod

E Kle t; τð Þj j½ �X
o∈ST

X
d∈ST

X
l∈Lod

E Kl t; τð Þj j½ � ð2Þ

The summation across origin and destination terminals can be avoided by simply
aggregating the measure across all public transport lines L. An equivalent formulation
is thus

OBC e
���t; τ

� �
¼

X
l∈L

E Kle t; τð Þj j½ �X
l∈L

E Kl t; τð Þj j½ � ð3Þ

Note that the numerator is simply the total number of vehicle trips entering link e
during the time interval, while the denominator is the total number of vehicle trips in
the system during the same period. By dividing both the numerator and the denomi-
nator by the interval duration τ, the measure can be expressed in terms of vehicle flows
instead of number of vehicles.

2.2.2 Centrality for Passengers

When focus is on the travellers, a network link may be considered central if a large
number of passengers traverse the link. It is therefore relevant to weight each pair of
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stops with the number of travellers between the stops. To avoid double-counting the
same traveller passing several stops along the path, only the origin and destination of
each traveller should be considered in the aggregation.

Since travel demand levels and line schedules may vary with time, the
passenger betweenness centrality measure, like the operator betweenness cen-
trality measure, is dynamic. Day-to-day variations in demand and supply further
imply that the number of passengers from o to d entering a link e during the
time interval, |Node(t,τ)|, and the total number of passengers travelling between
o and d, |Nod(t,τ)|, are stochastic. The stochasticity arises in part from the fact
that variations in traffic conditions (in-vehicle time, waiting times, etc.) influ-
ence the path choice probabilities pn(j) for a given individual. The betweenness
centrality measure from the travellers’ perspective is

PBC e
���t; τ

� �
¼

X
o∈SOD

X
d∈SOD

E Node t; τð Þj j½ �X
o∈SOD

X
d∈SOD

E Nod t; τð Þj j½ � ð4Þ

Note that the numerator is simply the expected total number of travellers entering
link e during the time interval, while the denominator is the expected total number of
travellers in the system during the same period. By dividing both the numerator and the
denominator by the interval duration τ, the measure can be expressed in terms of
traveller flows instead of number of passengers.

2.3 Disruption Scenarios and Impacts

To evaluate any kind of change to a system, a general approach is to describe both the
new state and the baseline, reference state in terms of scenarios, and to evaluate the
difference in some system performance measures between the two states. The scenario
definitions must include all relevant dimensions of the system that are different between
the new state and the old state, but does not need to include any dimensions that are
unchanged. The characterization of a scenario therefore differs depending on the focus
of the analysis. In our case, we are interested in the impacts of network disruptions,
which means that the scenarios should contain a representation of such events.
Furthermore, some appropriate performance measures with which to evaluate the
scenarios need to be defined (Jenelius and Mattsson 2014).

Previous vulnerability studies of PTN have considered the system as static and
deterministic (Angeloudis and Fisk 2006; Berche et al. 2009; Derrible and Kennedy
2010). Also, very simple measures of network performance have been used. In
particular, the scenarios considered have been complete removals of nodes or links
from the network, and the performance of the system has been evaluated as the number
of interconnected nodes in the largest network component, and the mean distance (in
terms of number of intermediate links along the shortest path) between all node pairs in
the network. Hence, the performance of other links is independent of the disruption,
and only node pairs with the disrupted link in their shortest paths are affected by the
disruption. The implication that the remaining network functions as normal, even the
disconnected parts of disrupted lines, is highly unrealistic as a model for unplanned
network disruptions.
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In Section 2.1 the analysis of link centrality is adapted to account for dynamic and
stochastic demand and supply and probabilistic path choice. Here the analysis of
disruptions is adapted in the same direction. Like the centrality measures, different
impact measures can be defined depending on the perspective of the analysis.

2.3.1 Impacts for Vehicles

From a private operator’s perspective, disruption impacts are intuitively linked to the
costs associated with the disruption. The causes and sizes of the costs may depend on
the operator’s fleet management, contractual obligations etc. One important component
may be the total travel time of the vehicles, since that affects fuel and labour costs and
potentially on-time arrival performance penalties. Given that riding times and dwell
times are stochastic, the operator’s cost in a scenario is also stochastic. We assume here
that the total operating cost OC(σ|t,τ) in scenario σ during some time interval (t,t+τ)
can be expressed as the sum of the operating cost of each vehicle trip during the
interval. To have a deterministic value for the evaluation we consider the expected
operating cost, that is,

OC σ
���t; τ

� �
¼ E ∑l∈L∑ k∈Kl t;τð ÞOCk σð Þ� � ð5Þ

where OCk(σ) is the operating cost associated with vehicle trip k in scenario σ.
In a dynamic setting, an important aspect of a disruption is the recovery time, that is,

the time from the beginning of the disruption at tD until the system has recovered to
operating normally again at some time tD+τR. The recovery time τR will be different for
different scenarios and is determined by the dynamic interactions of supply and
demand. Before the disruption and after the recovery, the expected operating cost is
by definition the same in the disruption scenario and in the baseline scenario. To
evaluate the impacts of a disruption scenario σ, it is therefore sufficient to compare
the operating cost with that in the baseline scenario σ0 during the recovery time. For
simplicity, we write the operating cost during the recovery time as OC(σ). The impact
of disruption scenario σ from the operator’s perspective is then

ΔOC σð Þ ¼ OC σð Þ−OC σ0ð Þ ð6Þ

2.3.2 Impacts for Passengers

From the perspective of the travellers, evaluating the impacts of network
disruptions involves comparing and summing the various aspects of the impacts
for different travellers. The impacts must therefore be expressed in units such
that interpersonal comparisons and summations are meaningful. For many
reasons, not least in cost-benefit analyses of robustness-improving investments,
it is desirable to express the disruption impacts in economic terms. This allows
prevention, repair and restoration costs to be added and compared to other
impacts such as late arrivals (Jenelius and Mattsson 2014).

With these aims, it is reasonable to express the impacts for passengers in terms of
changes in welfare, essentially the total utility of the passengers expressed in monetary
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terms. With Wn(σ) denoting the welfare of passenger n in scenario σ, the total welfare
during time interval (t,t+τ) in scenario σ is

W σ
���t; τ

� �
¼ E ∑o∈Sod∑d∈Sod∑n∈Nod t;τð ÞWn σð Þ

h i
ð7Þ

Again for simplicity, we write the total welfare for all passengers during the recovery
time as W(σ). The impact of disruptions scenario σ from the passengers’ perspective is
thus the total change in welfare from the baseline scenario during the recovery time,
i.e.,

ΔW σð Þ ¼ W σð Þ−W σ0ð Þ ð8Þ
In the case study of this paper, welfare is evaluated as a generalized cost function

which is a linear combination of four factors: in-vehicle time, waiting time, walking
time and number of transfers.

2.3.3 Element Importance and the Value of Real-Time Information

In this paper we are primarily interested in two dimensions of the disruption scenarios:
the network element that is disrupted, i.e., the set of disrupted links and nodes, and the
type of RTI provided to the passengers (different information provision schemes are
described in more detail in Section 3). Other factors such as the start time and duration
of the disruption are held fixed in all scenarios. A disruption scenario σ involving
network element δ and RTI scheme r can then be summarized as the pair σ=(δ,r). Let
δ=0 denote a scenario with no disruption and r=0 a scenario with no RTI.

Following Nicholson and Du (1994) and Jenelius et al. (2006), the impor-
tance of a network element is defined as the impact of a disruption of the
element. Many other terms have been used in different fields for the same
concept, including “criticality” (Taylor and Susilawati 2012), “vitality” (Ratliff
et al. 1975; Ball et al. 1989), “vulnerability” (Murray-Tuite and Mahmassani
2004), “significance” (Sohn 2006), “delta centrality” and “information central-
ity” (Latora and Marchiori 2007). The main purpose behind the importance
measure is to compare and rank different elements. This allows, for example,
the identification of locations in the transport system where disruptions would
be particularly severe. Disruptions of such elements represent worst-case sce-
narios and the elements can also be considered potential targets for antagonistic
attacks on the system.

Identifying important elements means that targeted measures can be taken to reduce
the risk (i.e., the probability and/or consequences) of disruptions in those locations.
More generally, the importance of each element combined with the probability of the
element being disrupted is useful when allocating resources to reduce the overall
vulnerability of the society.

In the present framework, the importance of an element is evaluated conditional on a
certain RTI provision scheme. Given scheme r, the importance of network element δ is
then, from the operator’s perspective,

OI δ
���r

� �
¼ OC δ; rð Þ−OC 0; rð Þ∀r;∀δ≠0 ð9Þ
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and from the passengers’ perspective,

PI δ
���r

� �
¼ W δ; rð Þ−W 0; rð Þ∀r;∀δ≠0 ð10Þ

One of the possible ways to reduce the impacts of network disruptions is to provide RTI
to the passengers. This provides information about the expected arrival times of different
lines, and may be provided at various levels of completeness. RTI can allow passengers to
choose alternative paths to their destinations, avoiding the lines that are negatively affected
by the disruption. For a given disruption scenario δ, the value of RTI scheme r is

VRTI r
���δ

� �
¼ W δ; rð Þ−W δ; 0ð Þ∀r≠0;∀δ ð11Þ

2.4 Public Transport System Model

A dynamic public transport operations and an agent-based assignment model called
BusMezzo (Cats 2013) was used in this study for representing public transport supply
and demand and their interactions. The dynamic public transport model is suitable for
evaluating the centrality measures and disruption impacts defined above. An imple-
mentation of the model is used in the case study described in Section 3.

2.4.1 Supply

The supply of the public transport system consists of network configuration and service
availability with their respective attributes. The supply is represented in terms of
individual vehicle runs, where each run has a corresponding timetable that is used for
control (e.g. dispatching, holding at time points) and the calculation of measures of
performance (e.g. on-time performance). In addition, public transport vehicles follow a
schedule that consists of a sequence of trips. The chain of trips that a vehicle undertakes
is modelled explicitly in order to capture the dependency between successive trips
through the propagation of delays from trip to trip.

The departure time of trip k of line l from the origin terminal is calculated as the
scheduled exit time, or the time the vehicle is available to depart after it completed its
previous trip and some stochastic recovery time, if that occurs later. Vehicle trip travel
times then consist of two parts: riding times between departure time from stop s and
arrival time at stop s+1, denoted RTsl

k , and dwell times at stops, denoted DTsl
k . The exit

time from stop s is thus

ETk
sl ¼ ∑ s−1

s0¼s1
RTk

s0l þ ∑ s0¼s1

s
DTk

s0l ð12Þ
Dwell times depend on the number of passengers boarding and alighting and are

also stochastic. Riding times are composed of running times on links and delays at
intersections. In this paper the effects of background traffic are modelled implicitly by
representing link travel times as random variables with distributions that are derived
from empirical travel times of public transport vehicles. Delays at intersections are
determined by individual stochastic queue servers that generate service times following
pre-defined distributions. The framework and details of the supply representation in
BusMezzo are described in Toledo et al. (2010).
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2.4.2 Demand

In this study, travel demand is represented as a time-dependent OD matrix. Travellers
are assigned with pre-defined origins and destinations in the network which may
correspond to any location that is accessible to or from a public transport stop.
Hence, travellers are typically able to choose different access stops and reach their
destination through using different egress stops. Each passenger is assigned with a
departure time based on a random Poisson process.

Each traveller undertakes successive path choice decisions that are triggered by the
evolving public transport system conditions. The evaluation of alternative actions depends
on travellers’ preferences and expectations. The latter are determined by prior knowledge,
experience (e.g. elapsed waiting time) and the availability of RTI. It is assumed that in the
context of high-frequency urban public transport systems, travellers have a prior knowl-
edge of network topology, timetable travel times and planned headways. The information
that is available to a traveller when making a certain decision is determined by the
dissemination means and their locations, and by individual characteristics.

A path alternative a∈Aod is a member of the path set for origin o to a destination d
and is defined by an ordered set of stops (Sa⊆S), lines (La⊆L) and connection links
(Ca⊆C). Connection links are access, egress and transfer links that can be traversed by
various non-public transport travel modes (e.g. walking, cycling, park-and-ride). S, L
and C are the sets of all the stops, lines and connection links in the network,
respectively.

A graph representation of the path consists of nodes that correspond to stops and
origin and destination locations, while links are either segments of public transport lines
or connection links. Note that each element in the path alternative is a set. This definition
makes it possible to group several public transport lines that provide an equivalent
connection between a pair of public transport stops or several public transport stops
which are connected by the same public transport lines. Hence, alternatives that imply
that passengers are indifferent towards them are defined as a single path.

The dynamic path choice model includes three decision models: connection,
boarding and alighting. A connection decision takes place when the traveller chooses
at which public transport stop to initiate the trip, and also each time the traveller alights
from a public transport vehicle. A boarding decision is made for each arriving public
transport vehicle when the traveller waits at a stop. Once on-board a vehicle, a traveller
makes an alighting decision immediately upon boarding and may reconsider this
decision in light of new information.

Making a decision corresponds to restricting the initial path set to a subset of paths
that are still feasible for the remaining trip. Let us consider the general decision case
where individual decision maker n is at certain location o with path set Aod. The
individual has to choose an action g from the set of alternative actions G. The path
set associated with action g is denoted Ag⊂Aod. The utility of passenger n associated
with path a∈Ag is denoted va,n. The utility attached to action g is then given by the
logsum over the path set Ag,

vg;n ¼ ln∑a∈Ageva;n ð13Þ

In the context of the proposed path choice model, the logsum term expresses the
utility of an action as a function of the utilities of the associated path alternatives.
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Hence, it reflects the joint utility for a bundle of alternatives. Note that since Aod is
divided into mutually exclusive and collectively exhaustive subsets for the respective
actions, each alternative path in Aod is taken into consideration exactly once in the
choice probability.

All traveller decisions are represented with multinomial logit models. Hence, the
probability to choose action g is

pn gð Þ ¼ evg;n

∑g∈Ge
vg;n

ð14Þ

The independence of irrelevant alternatives (IIA) property of the multinomial logit
model implies that the model does account for correlation between alternatives in the
choice-set. This modelling drawback is counteracted by (a) the nested choice-tree
structure bundles path alternatives (Ag) based on the respective action alternatives; (b)
the path-set generation model consolidates paths that have common lines or stops, as
described above. These features reduce the potential bias induced by network overlap-
ping in the choice model.

The probability that individual n follows a certain physical network path alternative
j, pn(j), can be formulated as the joint conditional probability of intermediate decisions
g1,g2,…,gm that lead to the composition of this specific path,

pn jð Þ ¼ pn g1ð Þ⋅pn g2jg1ð Þ⋅pn g3jg1; g2ð Þ⋅…⋅pn gmjg1;…; gm−1ð Þ ð15Þ

2.4.3 Supply and Demand Interaction

Supply and demand of public transport systems exercise a dynamic and mutual
interaction. The effects of demand on supply are primarily manifested through the
dwell time, which increases with the number of boarding, alighting and on-board
passengers. The flow-dependent dwell time function trigger a positive feedback loop
in supply variations causing service reliability degradation known as bunching (Cats
et al. 2011b).

Modelling individual passengers that undertake successive decisions enables the
analysis of the interaction of passenger decisions and public transport performance.
Passengers’ path choices are triggered and influenced by how the public transport
system evolves. Traveller’s ability to carry out a decision is also subject to vehicle
capacity constraints. Passengers experience denied boarding in the case of overcrowded
conditions. RTI is generated based on the instantaneous supply conditions.

3 Application

3.1 Network Description

The model was applied to the Stockholm inner-city rapid public transport system. The
system consists of the seven Metro lines (10–11, 13–14, 17–19), four high-demand
trunk bus lines (1–4) and one light rail train (LRT) line (22). The complete network of
these lines was coded in BusMezzo with the real-world timetables, vehicle schedules
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and walking distances between platforms and stops. The network is shown in Fig. 1
where nodes correspond to stops and links to line segments.

During the morning peak period (6:00–9:00) there are approximately 700 service
trips carried out by over 200 vehicles. The scheduled headways are 5 min for each
metro line, between 4 and 6 min for each trunk bus line and 6–8 min for the LRT. This
implies an hourly capacity of 9,600, 1,200 and 1,600 passengers per line-segment,
respectively. Given the peak-period headway of the rapid transport network, all trav-
ellers are assumed to departure randomly and have prior knowledge of planned
headways and in-vehicle times according to the time table. The three different public
transport modes have distinguished vehicle types, operating speeds, travel time vari-
ability, dwell time functions and are operated with different holding control strategies.
These operational attributes yield different reliability and capacity levels depending on
service design and right-of-way.

To allow a warm-up period for the public transport supply, passenger demand was
simulated only for the peak hour (7:00–8:00). Approximately 125,000 passenger trips
are initiated during this hour. The passenger demand was extracted from data collected
at entrance barriers at Metro stations, passenger counts at transfer locations and LRT
stations (SL 2009) and automatic passenger counts on trunk buses. The passenger stop-
to-stop OD matrix was obtained by applying an iterative proportional fitting method for
the trip distribution procedure.

Fig. 1 Stockholm’s inner city rapid public transport network as displayed by BusMezzo
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A rule-based choice set generation algorithm was used as a pre-process step to the
simulation runs. BusMezzo generates path alternatives by executing a recursive search
method and applying a series of logical, behavioral and dominancy rules (Cats et al.
2011a). It resulted in 99,270 alternative paths for the entire network. This master set
was used in the construction of action-dependent choice sets throughout the simulation.
The parameters of the choice set generation model and the dynamic path choice model
were estimated based on a stated-preferences survey on public transport route choice
decisions (Cats 2011). The utility associated with path a∈Ag is defined as

va;n ¼ βwait
a twaita;n tð Þ þ βivt

a tivta;n tð Þ þ βwalk
a twalka;n þ βtrans

a transa ð16Þ

where ta,n
wait(t) and ta,n

ivt (t) are the time-dependent anticipated waiting time and in-vehicle
time, respectively. ta,n

walk is the expected walking time and transa is the number of
transfers involved with the path alternative. βa

ivt=−0.04,βawait=−0.07,βawalk=−
0.07 and βa

trans=−0.334 are the corresponding coefficients. This reflects a ratio of
1.75 between in-vehicle and waiting or walking times and a transfer penalty equivalent
to approximately eight in–vehicle minutes. The anticipated values depend on travellers’
prior knowledge and the level of information that is available to them when making the
decision.

The average values assigned to the coefficients were derived from the stated–
preferences survey. Each individual is assigned with coefficients sampled from a
normal distribution to account for the heterogeneity of preferences in the population.
The trip fare is fixed for the entire network and hence does not affect passenger path
decisions.

3.2 Applying the Betweenness Centrality Measures to the Stockholm Network

The case study considered the case of normal operations and disruptions on selected
links. The passenger betweenness centrality (PBC) measure (Eq. 4) was used for
identifying the candidate important links. The base case scenario of normal operations
and the existing information conditions (RTI provision is available at all rapid public
transport stops) for the Stockholm network was simulated to allow the calculation of
the PBC measure across the network. Table 1 presents the five network segments with
the highest ranking which were selected for further analysis. Segments were defined as
a sequence of consecutive links with similar PBC values while assuring that there is no
other link that has a higher PBC value that is not included in the five selected segments.
The average passenger load during the rush hour is equivalent to the numerator of the
PBC measure for t =7:00 AM and τ equal to one hour.

All five segments are in the core of the network where there are rapid public
transport alternatives. Furthermore, all of them are metro segments. Figure 2 illustrates
the network core and allows identifying the five segments as well as the availability of
the number and complexity of alternative paths. Main transfer locations are highlighted.
The two busiest segments are the two metro lines that enter the inner city from the
south. This reflects the distribution patterns of population and employment in the
Stockholm area.

Table 1 also includes the average number of vehicles entering the segment during
the rush hour, which corresponds to the nominator of the operator’s betweenness
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centrality (OBC) measure (Eq. 3). Note that the OBC ranking differs from the PBC
ranking as supply is not perfectly adjusted to passenger flows. Hence, the selected
disruption scenarios do not reflect the candidate important links for the public transport
rolling stock.

Figure 3 presents the relationship between relative values of PBC and OBC for all
network links which exercise a correlation of rPBC,OBC=0.24. Displayed values corre-
spond to percentage-wise deviation from the respective average value. A large number
of links have relatively low PBC with average or slightly below average OBC values
(bottom-left quadrant) which corresponds to bus links. The mismatch between these
two variables is partially attributed to varying vehicle capacities. Moreover, links with
high OBC values have a large range of PBC as passenger loads vary considerably along
the line, in particular towards line edges. Furthermore, the conventional betweenness
centrality (BC) measure (Eq. 1) based solely on network topology is also shown in
Table 1 for each segment. This measure has low correlations with the dynamic
betweenness centrality measures (rBC,PBC=0.18, rBC,OBC=0.005).

3.3 Scenarios Design

3.3.1 Disruption Scenarios

The case study considers a short-horizon and unplanned disruption. For each of the
above five segments, a disruption that takes place between 7:15 and 7:45 was

1

4

4

4

1

1

4

3

3

2

2

Gullmarsplan

Liljeholmen

Hornstull Slussen

Centralen

Hötorget

Fridhemsplan

Alvik

Fig. 2 Schematic representation of the network core and stations of interest (The three metro corridors: Green
(17–19), Blue (13–14) and Red lines (10–11), the orbital LRT (22) in brown and the 4 trunk bus lines in black
with their line numbers marked)
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simulated. The disruption of a certain segment could be a result of an unpredicted
incident—either a random technical problem (e.g., signal failure, vehicle breakdown)
or human-caused closure (e.g., accident, suspicious item). Previous studies often
assumed that the remaining sections continue to function regularly as two independent
routes (e.g. von Ferber et al. 2012). In contrast, since the disruption is short-horizon and
unplanned, it is assumed here that the system operators cannot employ any special
measures to mitigate the impacts of the disruption such as providing a replacement
service or operating the remaining disconnected parts of the line as independent lines.
Note that segment closure on a certain line does not imply disruptions on other lines
since each metro line has a distinguished infrastructure (tracks and platforms) and fleet.

The disruption scenarios were modelled in BusMezzo by specifying the incident
start time, duration and the effected links. The simulation model then prevents vehicles
from traversing to the disrupted link as long as the disruption is in effect. This implies
that upstream public transport vehicles progress until they queue upstream of the link
closure. On-board passengers are unable to alight while passengers waiting at down-
stream stops (including stops along the disrupted segment) can reconsider and revise
their travel decision (e.g., walk to a nearby stop). In addition to the passengers directly
affected by the disrupted segment, spillover secondary effects are caused by supply
interactions (e.g. upstream and downstream stops, vehicle scheduling) and passenger
rerouting (e.g., delays, denied boarding due to capacity constraints).

3.3.2 Real-Time Information Provision

The provision of RTI could mitigate the impacts of disruptions by allowing passengers
to make more informed decisions and choose alternative paths. The case study con-
siders passenger information systems with RTI regarding the next vehicle arrival time at
various levels of coverage and comprehensiveness. The simulation of traffic dynamics
and public transport operations in BusMezzo emulates public transport performance

Fig. 3 Relative values of PBC versus OBC (passenger and operator betweenness centrality, respectively) for
all network links
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and the production of automated data collection (ADC) methods, such as automatic
vehicle location (AVL) and automatic passenger counts (APC). This data can be
processed in order to generate predictions on future public transport conditions that
will be disseminated to travellers.

The prediction scheme used by BusMezzo is designed to replicate the method that is
commonly used by public transport agencies for generating real-time arrival informa-
tion. In the case of service disruption, it is assumed that the RTI generator can
approximate its anticipated duration. The provisioned RTI concerning stops along the
disrupted segment as well as further downstream enables passengers to update their
waiting time expectations and adapt their travel choices. In contrast, the simulated RTI
does not help passengers upstream of the disruption segment to avoid a service heading
towards the disruption segment, since it does not refer to in-vehicle time. The following
RTI provision scenarios were simulated:

& No-RTI: Passengers have no access to RTI, all travel decisions rely on prior
knowledge

& Stop-RTI: RTI is available at stops and rail stations regarding all public transport
services departing from the a specific rail platform or bus stop

& Cluster-RTI : RTI is available at stops and rail stations regarding all public transport
services departing from all platforms and bus stops within a single station/hub or a
walking distance of up to 500 m

& Network-RTI: RTI is available regarding all public transport services in the network
to all individuals through personal mobile devices

The availability of RTI influences the anticipated attributes of alternative paths and
ultimately passenger flows. In order to examine the full mitigation potential of RTI
dissemination, it is assumed that passengers perceive RTI as credible and therefore
incorporate it into their decisions. The availability of RTI is not equivalent to perfect
knowledge because of the prevailing service uncertainty. The impact of RTI is mani-
fested through the assignment of the values provided by the RTI (e.g. waiting time or
in-vehicle time) in the path utility function (Eq. 16). Note however that the compre-
hensiveness of the RTI provision determines which path segments are effected. For
example, consider a traveller that does not have a personal mobile device with access to
RTI. Hence, the walking decision from the origin to the first public transport stop is
based on the traveller’s prior knowledge. If the traveller arrives at a stop with real-time
arrival information on the local stop, then the traveller’s boarding decision relies on the
RTI waiting times while the remaining travel attributes are based on prior knowledge.
In case there is no RTI on-board, the alighting decision relies entirely on prior
knowledge. When the traveller alights at a certain stop, a connection decision takes
place. If the transfer stop is equipped with RTI display that covers also nearby stops
then the immediate waiting time component in this decision is based on RTI.

The experimental design consists of six network operational conditions: normal
operations (D0) and disrupted segments corresponding to their PBC ranking (D1–D5),
and four levels of RTI provision: No-RTI, Stop-RTI, Cluster-RTI and Network-RTI.
The combinations of operational conditions and RTI provision defined 24 scenarios.
For each scenario, ten simulation runs were conducted for a three hours period with a
uniform passenger demand during the peak hour. This number of replications yielded a
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maximum allowable error of less than 5 % for the average passenger travel time based
on the method proposed by Dowling et al. (2004). The execution time for a single run
was less than 1 min on a standard PC.

4 Results

4.1 Passengers’ Travel Times

Table 2 presents the average passenger travel time under each combination of opera-
tional and information provision conditions. Under normal operational conditions, the
average travel time in the case study network is 24 min which consists of waiting times,
in-vehicle times and walking times at transfer locations. As expected, service disrup-
tions result in considerably longer travel times. Longer travel times can be caused by
either primary or secondary disruption impacts. An increase of 1 % induces 500
additional passenger hours during the rush hour only. Moreover, upon disruption,
passengers tend to deviate to alternative paths which involve higher complexity. This
is especially pronounced in the case of scenario D1 (disruption of the Green line at
Gullmarsplan-Hötorget) as it forces a large number of passengers that travel from the
south to the city center to take either the orbital trunk bus or the orbital LRT from
Gullmarsplan and then change to a radial line (see Fig. 2).

The individual-based representation of passengers demand enables the disaggregate
analysis of travel times. The impact of disruptions on travel times were further
investigated by constructing the distribution of unweighted total travel time for each
of the operational scenarios with no-RTI (Fig. 4). It is evident that travel times vary
significantly among travellers. The variation depends on the origin–destination pair,
service availability and reliability, and path choice decisions. Service disruption results
in a larger share of the passengers experiencing long or very long travel times compared
with the non-disrupted scenario (D0). The share of trips that take between 40 min and
60 min increases from 12 % in D0 to 16 % in D1, and from 2 to 5 % for trips longer
than 60 min, respectively. In the context of this case study, 1 % of all trips correspond to
1,250 travelers.

In addition to the increase in average travel time (Table 2), the standard deviation of
travel times increases by 2–19 % under disrupted operations. Furthermore, a small
group of travellers may benefit from service disruptions as reflected by the left bending
of the travel time distribution. A positive secondary disruption impact may occur on a
service element that operates independently of the disrupted segment and the latter is a
common upstream trip stage for a considerable share of its demand. In such cases,
remaining passengers will benefit from fewer delays, higher service reliability and less
crowding.

4.2 Effects on Total Welfare and Crowding

The increase in travel time and number of transfers yields a decrease in the overall
welfare value (Eq. 16) under all disruption scenarios. Figure 5 presents the change in
total welfare, where the scenario of normal operations with the corresponding RTI
provision conditions used as the reference value. The welfare reduction is in the range
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of 1–14 %. D1 results in the most dramatic welfare loss, while D2 yields less severe
consequences than the corresponding betweenness centrality would suggest. It should
be noted that the impact varies substantially for different origin–destination pairs.

Table 2 also provides information about the welfare change due to RTI provision,
which was calculated by comparing the welfare to the value obtained under the same
disruption scenario when no RTI is available. The availability of RTI is used by
passengers for making travel decisions that yield higher utility. For the non-disrupted
network (D0) the provision of RTI leads to a reduction of 2 % in the total un-weighted
passenger travel times and an equivalent increase in passenger welfare. Interestingly,

Fig. 4 Unweighted total travel time distribution for the non-disrupted (D0) and all disruption scenarions (D1–
D5); all scenarios are with no-RTI

Fig. 5 Comparison of the relative impact of disruption scenarios on total passengers welfare
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the number of boardings per trip tends to decrease with greater availability of RTI
provision. In the undisrupted case (D0), this decrease is obtained already when RTI is
provided at the stop level, suggesting that uninformed travellers make more unneces-
sary transfers instead of waiting longer for a direct service.

As illustrated in Fig. 6, the impact on RTI provision on passenger welfare varies
considerably for different disruption scenarios from a worsening of 2.5 % to an
improvement of 4 %. The general trend is that more comprehensive RTI provision
results in higher passenger welfare. However, the exact impact depends on network
dynamics and the topology of Stockholm’s PTN as it determines the opportunities of
gaining from more informed downstream connection decisions. The marginal gain
from extending RTI provision thus varies from extremely positive (D3, D4) to harmful
(D2) while sometimes being negligible beyond a certain level (D0).

The negative impact of RTI provision in the case of D2 was further analyzed by
investigating the path choice changes across the network and the corresponding trip
loads. The negative disruption impact in the case of D2 is amplified by the provision of
RTI as a consequence of network structure and capacity constraints. The provision of
RTI leads more passengers to travel with the orbital LRT (Line 22) and trunk line 4 in
order to avoid the disrupted segment. While these passengers gain on average, their
rerouting generates negative effects for passengers travelling to or from the stops along
both directions of the over-saturated lines. The latter passengers experience increased
travel times due to delays and denied boarding as the LRT and bus line cannot
accommodate the entire demand shift from the metro line, which has a significantly
higher capacity. This negative secondary impact is most pronounced in the case where
RTI is available at the cluster-level because all passengers can use RTI concerning
alternative stops within a walking distance. Network-RTI enables passengers that are
subject to negative secondary effects to choose paths, which reduces the extent of the
spillover effect.

The last column in Table 2 presents the share of the disruption impact that is
mitigated by the RTI provision, where a ratio of +1 indicates that RTI provision relieves

Fig. 6 Comparison of the relative impact of real-time information provision scenarios on total passengers
welfare
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the entire welfare reduction caused by the service disruption. The mitigation effect of
RTI provision varies considerably across disruption and RTI provision scenario com-
binations. RTI relieves more than 50 % of the disruption impact for D3, D4 and D5
when high levels of RTI comprehensiveness are available, while having a lower
magnitude of mitigation for D1. In contrast, RTI provision has a degrading effect in
the case of D2. The property that RTI may have negative effects on system performance
is not unique to public transport systems; similar phenomena have been observed in
simulations of private vehicular traffic (e.g., Mahmassani and Jayakrishnan 1991).

The vulnerability analysis consists of aggregate system measures which arise from
the detailed dynamic representation of system supply and demand. In order to illustrate
the importance of system dynamics, let us consider the temporal variations in passenger
load for trunk line 1 (see Fig. 2). Each line in Fig. 7 corresponds to a rush-hour vehicle
trip for the case of no disruption (D0) and disruption on the southbound direction of the
Blue line (D4) with the highest level of information provision (RTI-Network). It is
evident that even for the case of normal operations there are substantial temporal
variations as a result of system dynamics and the interaction between inherent sources
of supply and demand variability. This temporal variation is distorted significantly in
the case of a disruption on the southbound direction of the blue line (D4). The Green
line is the primary alternative for passengers coming with the Blue Line and heading
towards the city center with trunk line 1 being a secondary alternative (see Fig. 2). The
vehicle capacity constraint is reached for a couple of the trips that arrive at the affected
stop, Fridhemsplan, during the disruption (7:15–7:45) and the load is relieved at
Hötorget which lies within the city center. As the system recovers from the disruption,
passenger loads gradually resemble previous patterns and levels (lighter lines corre-
spond to later trips). This suggests that it is important to capture how the system
evolves over time when analyzing the impacts of disruptions on redundant capacity and
mitigation strategies.

4.3 Importance Hierarchy

The betweenness centrality measures defined in Section 2 were used in order to identify
candidate important network segments. In particular, the five disruption scenarios were
defined based on scanning the network for the segments with the highest PBC measure.
The results of the simulation model enable us to investigate how well segment
betweenness centrality measures correspond to the impact of the corresponding seg-
ment closure on the total passenger welfare. This analysis allows us to shed some light
on the relation between centrality and importance and to what extent can the former be
used as a heuristic for identifying the latter.

Both PBC and OBC indicate that the Green line segment from Gullmarsplan to
Hötorget is the most central link. Moreover, the corresponding disruption scenario (D1)
resulted with the most severe degradation of passenger welfare, PI(δ|r), under all RTI
conditions. This segment/scenario is therefore used as the benchmark value in Fig. 8
which presents the centrality and importance indices when normalized against the
respective D1 values. In line with the PBC index, D1 is clearly the most harmful
disruption. In contrast, D2 was ranked second in terms of PBC but results in less
significant impacts than segments that were ranked lower. In fact, it ranked lowest
among the five disruption scenarios in the case where no RTI is available. Hence, link
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centrality does not necessarily imply link importance as measured by its impact on total
travel welfare. Furthermore, betweenness centrality measure from the operator’s per-
spective does not provide a more consistent indicator of segment importance. While
OBC better explain the more severe implications of D3 over D2, it also associates the
same high centrality with D5 which exercises significantly lower importance.

Fig. 7 Passenger loads at key stops along trunk line 1 eastbound during the rush hour for D0, Network-RTI
(above) and D4, Network-RTI (below) scenarios. Each line corresponds to a rush-hour vehicle-trip
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The identification of important links depends on passengers’ information. This is
clearly visible in Fig. 8. For example, the system is more vulnerable to D3 than to D4 if
RTI is provided at the local stop level, while this is reversed if passengers have access
also to RTI regarding nearby stops. This suggests that our assumptions about passenger
knowledge may have strong implications on which links are to be considered critical
for system performance.

5 Conclusions

The performance of PTN is determined by the interaction between supply and demand
dynamics. This interaction is manifested in the propagation of supply deterioration and
passenger path choice strategies in the case of service disruptions. Hence, the vulner-
ability analysis of PTN has to consider system dynamics. In this paper, a dynamic and
stochastic notion of network vulnerability was presented. This involves time-dependent
service availability and passenger demand, the inherent stochastic processes in the
public transport system and the accumulated effect of service disruptions. Moreover,
the impacts of service disruptions depend on how the demand reacts to changes in

Fig. 8 Relationship between centrality measures and the impact of disruption scenarios on passenger welfare
(all values are normalized against D1 values)
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supply. Hence, the underlying assumptions on passengers’ knowledge and path choice
strategies have great implications on the vulnerability analysis. A probabilistic and
adaptive path choice model was integrated into the proposed methodology. The
measure of betweenness centrality used in network theory to identify central links
was generalized to PTN and defined in terms of rolling stock and passenger flows.
Measures of disruption impacts and the importance of network elements were also
defined, taking into account the stochastic and dynamic nature of PTN. Moreover, the
proposed methodology facilitates the assessment of the value of RTI for mitigating the
impacts of service disruptions.

The dynamic approach for network vulnerability analysis was applied to the rapid
public transport system in Stockholm, Sweden. Since a complete simulation-based
analysis of disruptions on every link in the network would be highly time-consuming,
candidate important links were identified based on the different centrality measures
obtained from the performance under normal operational conditions. The results of the
vulnerability analysis suggest that link centrality does not necessarily imply link
importance as measured by its impact on total welfare. In addition, link importance
depends on the level of information that is available to passengers as the value of RTI
provision varies for different disruption scenarios.

In one of the studied scenarios, RTI is found to worsen the impact of the disruption.
This suggests that it may be beneficial to customize the nature and extent of informa-
tion provision to the characteristics of the location (e.g. capacity on alternative lines)
and the disruptive event. How to design effective information provision schemes under
significant disturbances is an interesting topic for further research.

The limited correlation between centrality and importance among the top candidate
links suggests that using centrality as an indicator for importance may not be a robust
way of identifying the most important links. While avoiding a full-range vulnerability
analysis, it may be possible to use simulation optimization techniques to identify
important links with as few simulation runs as possible (e.g., Carson and Maria
1997). This is an important area for future work. In addition to the impacts of
disruptions, more research is also needed in order to understand and model the
probability of disruptions occurring with different spatial and temporal extents in the
PTN.

Avulnerability analysis provides the background and starting point for an evaluation
of various measures to reduce vulnerability, if needed. The next step is thus to analyse
how to best manage the vulnerability with emergency preparedness, infrastructural
reinforcements and expansions, operations and maintenance procedures etc. That is,
given the society’s current state of vulnerability to disruptions in the public transport
system, what actions should be taken? By evaluating the impacts of disruptions in
economic terms as the costs of operators and welfare losses of passengers, the effects of
actions to increase robustness can be compared to their costs. This provides a way to
integrate vulnerability management in the larger planning process, for example by
specifying a certain minimum acceptable level of robustness, or in a cost-benefit
analysis framework.

In the planning stage, the identification of critical links can provide guidelines for
infrastructure investment decisions, including the design of transfer facilities. Critical
links may be prioritized in the allocation of resources for maintenance and upgrades of
technical equipment. Avulnerability analysis can also guide the alignment and standard
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of a new public transport line, and support the building/operation of new public
transport infrastructure/lines that among other benefits provide some redundancy to
the existing lines. Robust PTN design, i.e., how to design a PTN from scratch or in the
long run with capacity to handle degradation, is an interesting topic for further research.

During the operations and real-time stages, different actions can be taken to reduce
the vulnerability depending on the type of identified hazard or threat. As illustrated in
the paper, RTI can help mitigating the impacts of disruptions, not only by its dissem-
ination to passengers but also by enabling more proactive fleet management strategies.
The public transport simulation model facilitates the evaluation of alternative RTI
generation and dissemination schemes. Timetable and vehicle scheduling design which
considers risk distribution may reduce the probability of disruption, while better
management and restoration strategies, for example by increasing the resources for
stand-by maintenance preparedness, may reduce its impact.

The dynamic approach for network vulnerability allows investigating how the
system restores under a longer time period. This will require the definition of measures
to identify recovery patterns to pre-disruption performance. Future studies may con-
sider different kinds of disruptions such as node closure and random network failures. It
is also interesting to further analyse the spatial and demographic distribution of the
impacts of service disruption for example by constructing accessibility measures.
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