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Abstract Although the boundedly rational (BR) day-to-day dynamic proposed in
Guo and Liu (Transp Res B 45(10):1606–1618, 2011) managed to model drivers’
transient behaviour under disequilibrium in response to a network change, its stabil-
ity property remains unanswered. To better understand the boundedly rational (BR)
dynamic, this paper initiates the stability analysis of the BR dynamic. As we will
show, the BR dynamic is a piecewise affine linear system consisting of multiple sub-
systems. The conventional Lyapunov theorem commonly used in the literature cannot
be applied and thus a multiple Lyapunov method is adopted. The multiple Lyapunov
method requires that the Lyapunov values decrease when trajectories evolve as time
elapses and the decreasing rate is bounded above. We can show that within each sub-
system, the Lyapunov function decreases at an exponential rate. Meanwhile, when
trajectories reach boundaries between subsystems, they can either slide or switch and
the Lyapunov value also changes across subsystems at a negative rate. Therefore, the
BR dynamic is stable. A small network example is given to illustrate this method.
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1 Introduction

The deterministic day-to-day traffic dynamic is to model drivers’ transient behaviour
under disequilibrium assuming drivers follow theWardrop’s first principle. There is a
large body of literature on deterministic dynamical systems: the proportional-switch
adjustment process (Smith 1979), the tatonnement dynamic (Friesz et al. 1994), the
projected dynamical system (Nagurney and Zhang 1997) and the link-based day-to-
day dynamic (He et al. 2010). All these dynamics are proven to stabilize at the user
equilibrium (UE) after a long enough time period.

Though the aforementioned dynamical systems can capture the system’s evolving
process towards the equilibrium, they are unable to interpret the traffic pattern change
across the I-35W Bridge in Minnesota before its collapse and after its reopening.
It was observed that under a similar demand level and the almost identical network
topology, the daily traffic across the restored bridge decreased by 20,000 vehicles on
average compared to that on the old one. The perfectly rational day-to-day dynam-
ics are incapable of capturing this phenomenon, because the dynamics before the
bridge’s collapse and after its reopening would evolve to the same user equilib-
rium solution given the same monotonically increasing link performance functions.
Thus the traffic flow across the bridge should not change. Guo and Liu (2011) pro-
posed a boundedly rational (BR) day-to-day dynamic, whose fixed point is defined as
“boundedly rational user equilibria” (BRUE). Generally the BRUE is not unique and
all equilibria forms a BRUE flow set. The BR dynamic can successfully explain the
above phenomenon, because the flow pattern driven by the BR dynamic will evolve
from one fixed point (before its collapse) towards another one (after its reopening)
within the BRUE solution set, resulting in two different equilibrium states.

As opposed to ‘rationality as optimization’, Herbert Simon proposed that
people are boundedly rational in their decision-making processes (Simon 1955).
Mahmassani and Chang (1987) first proposed that travellers are boundedly rational
in making departure time choices at a single bottleneck. A number of models also
incorporated BR to people’s travel decision-making processes (Hu and Mahmassani
1997; Mahmassani and Liu 1999; Szeto and Lo 2006; Lou et al. 2010; Guo and Liu
2011). In particular, Lou et al. (2010) and Di et al. (2013) gave the mathematical for-
mulation of boundedly rational user equilibrium on route choice and Guo and Liu
(2011) was the first one to incorporate BR into the day-to-day dynamic.

Although the BR day-to-day dynamic has the flexibility to model drivers’ transient
behaviour, its stability property remains unanswered. In reality, the transportation
network is exposed to various temporary changes, such as construction, lane closure
or even some unexpected disruption. The stability analysis addresses whether a small
perturbation to a road system resting at an equilibrium state will make the system
to stabilize to the same equilibrium or diverge to an unstable state, after a planned
change or an unexpected event occurs (Watling and Cantarella 2013). Moreover, the
stability represents the ‘attainability’ of an equilibrium. If the system is not stable,
the equilibrium is unattainable and it is impossible to propose any network design
strategies to support transportation supply design (Cantarella et al. 2010; Watling and
Cantarella 2013). In summary, the stability is a crucial feature of the dynamical sys-
tem. To better understand the characteristic of the BR dynamic, its stability property



Submission to the DTA 2012 Special Issue 539

needs to be explored. Depending on the number of equilibria a dynamical system
contains, the methodologies of the stability analysis are different.

When there exists one equilibirum, the stability of deterministic dynamics usually
can be proved by defining a distance measure as the Lyapunov function: proportional-
switch adjustment process (Smith 1979) utilized the difference between path costs;
while the tatonnement dynamic (Friesz et al. 1994), the projected dynamical system
(Nagurney and Zhang 1997) and the link-based day-to-day dynamic (Han and Du
2012; He 2010) used the distance between the current flow pattern and the equilib-
rium. The dynamical system is stable when the Lyapunov function monotonically
reduces to zero.

Watling (1999) raised the issue of the stability of the stochastic day-to-day
dynamic with multiple equilbira. Watling and Hazelton (2003) characterized the sta-
bility as ‘attractiveness’ of an equilibrium solution given a perturbation to the flow
levels, and this attractiveness was governed by certain driver behavior rules. Among
multiple user equilibria, some are ‘user-optimal’ while others are not, then the stable
ones in the sense of user-optimal should be the main focus. Cantarella et al. (2013)
proposed a nonlinear deterministic dynamic modeling two mode choices (bus v.s.
car). It contains multiple equilibria and one equilibrium is stable if its Jacobian matrix
has modulus of less than one.

The stability of the BR dynamic reveals whether flow patterns at one BRUE will
return to another BRUE given a perturbation to the network. This paper will propose
a methodology to prove the stability of the BR dynamic. The rest of the paper is orga-
nized as follows. After giving a brief description of the BR dynamic in Section 2,
we then reformulate it as a piecewise affine (PWA) linear system composed of mul-
tiple subsystems in Section 3. The stability is analyzed for the subsystems of the BR
dynamic in Section 4 and for boundaries separating subsystems in Section 5. To prove
the stability of the dynamic across boundaries separating subsystems, two trajectory
patterns: sliding and switching are studied. The stability is illustrated by an exam-
ple in Section 6. Finally, conclusions and future research directions are discussed in
Section 7.

2 Introduction to the Boundedly Rational Dynamic

The traffic network is represented by a directed graph that includes a set of consec-
utively numbered nodes, N , and a set of consecutively numbered links, L. Let W
denote the O-D pair set and w ∈ W is connected by a set of simple paths (com-
posed of a sequence of distinct nodes), Pw, through the network. The traffic demand
between each OD pair is dw. Let f w

i denote the flow on path i ∈ Pw for OD pair
w, then the path flow vector is f = {fw}w∈W = {f w

i }w∈W
i∈Pw . The feasible path flow

set is to assign the traffic demand on the feasible paths: F � {f : f � 0,
∑

i∈Pw

f w
i =

dw, ∀w ∈ W}. Denote xa as the link flow on link a, then the link flow vector is
x = {xa}a∈X . Each link a ∈ L is assigned a cost function which is a function of
the link flows, written as c(x). Let δw

a,i = 1 if link a is on path i connecting OD

pair w, and 0 if not; then � � {δw
a,i}w∈W

a∈L,i∈P , denotes the link-path incidence matrix.
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Therefore f w
i = ∑

a

δw
a,ixa , and it can be rewritten in a vector form as x = �f.

Denote Cw
i (f) as the path cost on path i for OD pair w, then the path cost vector

C(f) � {Cw
i (f)}w∈W

i∈P . So C(f) = �T c(x) under the additive path cost assumption.
In this paper, we make three assumptions:

• the link cost is separable, i.e., ci(x) = ci(xi), i = 1, · · · , n, where n is the total
number of links in the network;

• the link cost is affine linear and strictly monotone, i.e., c(x) = Hx + a, where
H = {hij (x)

}
, i, j = 1, · · · , n and H is a positive-definite diagonal matrix;

• the network contains one OD pair connecting n links in parallel. Therefore the
“link” and the “path” are the same and are interchangeable in the following.

The continuous-time boundedly rational dynamic proposed in Guo and Liu (2011)
can be written in the form of differential algebraic equation (ADE):

ẋ = β(u(t) − x(t)), (2.1a)

u = PrX br (c(x))(x). (2.1b)

where,
x � {xa}a∈L: the flow vector;
ẋ: the link flow change w.r.t. time;
u: the target link flow pattern;
β: a positive constant determining the flow changing rate, 0 < β < 1;
X br (c(x)): the acceptable link flow pattern induced by x, which will be discussed in
the following;
PrX br (c(x))(x): a projection operator, projecting x onto the set X br (c(x)).

If we discretize this dynamic with respect to time, then the discrete-time version
is a day-to-day flow adjusting process. It can be explained as (Guo and Liu 2011): on
each day, the flow pattern tends to move from the current pattern x towards the target
pattern u, based on the current day’s link cost c(x).

2.1 Formulating the Acceptable Sets

The acceptable set induced by the link cost c(x) is defined as:

Pbr (c(x)) � {i ∈ A : ci(x) � min
j∈A

cj (x) + ε}. (2.2)

After the acceptable set Pbr (c(x)) is known, we assign the demand to those
acceptable links. Then the acceptable link flow pattern, denoted by X br (c(x)), can
be mathematically expressed as:

X br (c(x)) =
{
x ∈ A : vT x = d

}
, (2.3)

where, v is a n × 1 vector with vi =
⎧
⎨

⎩

1, if ci(x) � min
j∈A

cj (x) + ε

0, o.w.
.
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Assume the acceptable set contains the first p paths, while the unacceptable set
has the rest n − p paths, i.e., the acceptable set a = {1, · · · , p} and the unacceptable
set u = {p + 1, · · · , n}. Rearrange the elements in v, such that the first p elements

are ones and the rest are zeros, we can rewrite v as: v =
(
1a

0u

)

, where 1a is a p × 1

vector with all elements equal to one, and 0u is a (n−p)×1 vector with all elements
equal to zero. No flow is assigned to n − p unacceptable paths, i.e., xu = 0(n−p)×1.

An acceptable path flow pattern x can be also divided into two parts: x =
(
xa

0u

)

.

Then Eq. 2.3 can be rewritten as:

X br (c(x)) =
{
x ∈ A : 1T

pxa = d, xu = 0(n−p)×1

}
. (2.4)

Guo and Liu (2011) pointed out that the fixed points of the BR dynamic is the
“boundedly rational user equilibria (BRUE)”, which is defined as (Di et al. 2013;
Guo and Liu 2011):

Definition 2.1 For a given ε � 0, a feasible flow vector x ∈ X is said to be a
boundedly rational user equilibrium (BRUE) path flow pattern, denoted by xBRUE , if

xi > 0 ⇒ ci(x) � min
j∈A

cj (x) + ε,∀i ∈ A, (2.5)

where ε is the indifference band, indicating the rationality level of drivers’ behavior.
In this study, we assume ε is a known parameter.

All the flow patterns satisfying Definition (2.5) constitute a set, called the BRUE
flow solution set:

X ε
BRUE � {x ∈ X : xi > 0 ⇒ ci(x) � min

j∈A
cj (x) + ε,∀i ∈ A}. (2.6)

2.2 Solving the Target Flow Projection

The BR dynamic defined in Eq. 2.1 is composed of two equations: the ordinary dif-
ferential equation (2.1a), and the relationship between x and u defined in Eq. 2.1b.
To better study this dynamic, we need to solve the target flow u first.

Equation 2.1b indicates that, u is the projection point of x onto the acceptable
link flow set X br (c(x)). Therefore u can be computed by solving the projection from
the geometrical point of view. Recall that x is composed of two parts: xa and xu.

Consequently u can be decomposed into two parts: u =
(
ua

0u

)

, and we only need

to derive the formulation for ua .
Let the point M represent the current flow xa , and the hyperplane P be the

acceptable path flow set X br (c(x)) in the form of Eq. 2.4. To find a mathematical
formulation of PrX br (c(x))(x) is equivalent to finding a projection point U : ua , of a
given point M : xa to a hyperplane P (See Fig. 1).



542 X. Di et al.

Fig. 1 Illustration of the
projection M: x a

U:uaP: 1 x =dp
T

a

By solving the following minimization program:

min |ua − xa|
s.t. 1T

pua = d,

ua � 0.

We obtain the projection u as:

ui =

⎧
⎪⎨

⎪⎩
xi +

n∑

k=p+1
xk

p
, i = 1, · · · , p,

0, i = p + 1, · · · , n.

(2.7)

When the current link flow pattern varies, it has a different target flow. So u is a
function of x.

3 Discontinuous BR Dynamic

3.1 BR Dynamic within Subsystems

Given the acceptable set a = {1, · · · , p} and the unacceptable set u = {p +
1, · · · , n}, substitute the specific form of u into Eq. 2.1a. Then the BR dynamic can
be reduced as:

ẋ =

⎧
⎪⎨

⎪⎩
β

n∑

k=p+1
xk

p
, i = 1, · · · , p

−βxi, i = p + 1, · · · , n.

(3.1)

Dynamic (3.1) tells us, if link i is unacceptable, its flow keeps decreasing. Due
to flow conservation, the total reduced flows from unacceptable links will be evenly
distributed to p acceptable ones. Mathematically speaking,

• if ci(x) > min
j∈A

cj (x) + ε: according to Definition (2.2), i is unacceptable and j

is acceptable. Then ẋi < 0, ẋj > 0. Mathematically,

ci(x) > min
j∈A

cj (x) + ε ⇒ ẋi < 0, ẋj > 0; (3.2)
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• if ci(x) < min
j∈A

cj (x) + ε: both i and j are acceptable, then ẋi = ẋj > 0.

Mathematically,

ci(x) < min
j∈A

cj (x) + ε ⇒ ẋi = ẋj > 0. (3.3)

Remark This dynamic property is only valid for the network with one OD pair
connecting parallel links.

When the acceptable set is not given, we need to enumerate all possible acceptable
sets. In a network with n links, there are 2n −1 possible acceptable sets. Because any
link can be acceptable or unacceptable and at least one link needs to be acceptable.

Dynamic (3.1) behaves differently when the current flow pattern is within a dif-
ferent region. Then the BR dynamic can be extended to a more general matrix form
from Eq. 3.1:

ẋ = Aq(x)x + bq(x), q = 1, · · · , 2n − 1, (3.4)
where,
x: the state;
Aq(x), bq(x): the coefficient matrix and vector in subsystem q;
n: the dimension of the state;
q: the qth subsystem index.

Here Aq(x) = β

[
− 1p1T

p

1T
p 1p

0T
(n−p)×p

0(n−p)×p −In−p

]

, bq(x) = β

(
d1p

1T
p 1p

0(n−p)×1

)

, where In−p is a

(n − p) × (n − p) identity matrix. The reason why A and b are dependent on the
state variable x is that, for a different flow pattern, the acceptable path set is different.
The coefficient matrix A has two blocks on the diagonal and the zero off-diagonal

matrices. Let Ap = −β
1p1T

p

1T
p 1p

=

⎡

⎢
⎢
⎣

−β
p

· · · −β
p

. . .

−β
p

· · · −β
p

⎤

⎥
⎥
⎦, An−p = −βIn−p, bp = β

d1p

1T
p 1p

,

bn−p = 0(n−p)×p. Then

A =
[

Ap 0T
(n−p)×p

0(n−p)×p An−p

]

,

b =
(

bp

bn−p

)

. (3.5)

3.2 Piecewise Affine Linear System

The hybrid system is a dynamical system involving ‘a coupling between continu-
ous dynamics and discrete events’ (Liberzon 2003). The Switched system (Liberzon
2003), as one type of the hybrid system, is the continuous-time systems with dis-
crete switching events. Switched systems can switch at certain time points or when
the system state reaches certain values, and the corresponding system is called the
time-dependent or the state-dependent switched system. When each dynamic over
the subsystem is affine linear, this dynamic is called the switched linear system



544 X. Di et al.

(Liberzon 2003) or the piecewise affine linear system (PWA). In the following, these
two terms will be interchangeable.

In a state-dependent switched system, the continuous state space is partitioned
into multiple regions, separated by switching surfaces. A subregion is called a ‘sub-
system’, where a continuous dynamic is defined. When the system trajectory hits the
switching surface, the dynamic state jumps to a different one.

For t � 0, x(0) ∈ X , a switching sequence is defined as: q(x(t)) = (qt1 , qt2, · · · ),
associated with an increasing switching time sequence T = (t1, t2, · · · ). At each
switching time, qtk = i, if x(tk) ∈ Xi . When qt = i for some t > 0, the PWA is said
to be in mode i at time t .

In summary, the BR dynamic is a collection of multiple piecewise affine systems,
with some switching rules defining how the system is switched between subsystems.
It is a state-dependent switched affine linear system.

When two flow patterns share the same acceptable link set, then they belong to the
same subsystem:

Xq =
{
x ∈ X : X br (c(x1)) = X br (c(x2)), ∀x1, x2 ∈ X

}
, q = 1, · · · , 2n − 1.

(3.6)

The discontinuous boundary between subsystem i and j (i, j = 1, · · · , 2n − 1,
i �= j ) is:

sij (x) = ci(x) − cj (x) − ε = ci(xi) − cj (xj ) − ε. (3.7)

Remark In this paper, we only focus on the boundaries between subsystems or the
ones separating one subsystem and the BRUE set. The boundaries of the feasible
flow set are not our focus.

The whole feasible link flow set (excluding the boundaries of the feasible flow set)
can be divided into multiple subsystems, boundaries between them and the equilibria
set:

X =
⊔

q

Xq

⊔

i,j

sij
⊔

XBRUE, (3.8)

where,
sij : the boundary dividing two neighbouring subsystems i and j . When trajectories
reach these boundaries, different evolving patterns are displayed, which will be dis-
cussed in Sections 5.1–5.2 and its stability will be discussed in Section 5.3;
Xq : the qth subsystem, whose stability will be discussed in Section 4.2;
XBRUE : the BRUE link flow set.

4 Stability Analysis

For the PWA system, even if each constituent subsystem is stable, it cannot guarantee
the stability of the whole dynamical system (Mignone et al. 2000). Mignone et al.
(2000) and Blondel and Tsitsiklis (1999) pointed out that, it is not even an easy task
to analyze the stability of an autonomous PWA system with two polyhedral regions,
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because it is NP-complete or undecidable. Due to these challenges, the traditional
Lyapunov method (Smith 1984) cannot be applied to the switched system directly.
Branicky (1998) proposed a multiple Lyapunov function to analyze the stability of
switched system in general. The idea is to construct one regular Lyapunov function
for each subsystem, and if Lyapunov function values decrease along the trajectory
when it switches between subsystems, the whole system is stable.

4.1 Multiple Lyapunov Method

Theorem 4.1 (Branicky 1998) Let (3.4) be a finite family of globally asymptot-
ically stable systems, and let Vq, q ∈ Q be a family of corresponding radially
unbounded Lyapunov functions. Suppose there exists a family of positive definite con-
tinuous functions Wq, q ∈ Q with the property that for every pair of switching times
(ti , tj ), i < j such that q(ti) = q(tj ) = p ∈ Q and q(ti) �= p for ti < tk < tj ,

Vq(x(ti)) − Vq(x(tj )) � −Wq(x(ti)). (4.1)

Then the switched system is globally asymptotically stable.

The above theorem holds for the system with one fixed point. For the BR dynamic,
the fixed point is a set. To facilitate the application of Theorem (4.1) to our case, we
need to show that the BRUE set is connected, so that all trajectories can only converge
to this set and the whole set can be treated as one fixed point. Before discussing its
connectedness, we will first introduce the methodologies of constructing the BRUE
set proposed by Di et al. (2013).

The BRUE solution set is the union of K + 1 subsets:

X ε
BRUE =

K⋃

k=0

X ε
k . (4.2)

where each subset X ε
k , k = 0, · · · , K is defined as:

X ε
0 � {x ∈ X : ∀ i ∈ PUE : xi, xj � 0, |ci(x) − cj (x)|� ε; (4.3)

∀ i �∈ PUE : xi = 0}.

X ε
k � {x ∈ X : ∀ i ∈ Pk−1

l : xi � 0; ∃i ∈ Pk
l \Pk−1

l : xi > 0;
∀ i, j ∈ Pk

l : |ci(x) − cj (x)|� ε;
∀ i �∈ Pk

l : xi = 0}, k = 1, · · · , K.

where,
PUE : the shortest paths under the UE;
Pk

l : the largest ε-acceptable path set for subset k, whose definition can be seen in
Di et al. (2013). According to the monotonic property proposed by Di et al. (2013),
we know that

Pk
l ⊂ Pk+1

l , k = 0, · · · , K − 1. (4.4)

where P0
l = PUE .
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A topological space X is said to be connected if it cannot be represented as the
union of two disjoint, nonempty, open sets. A topological space X is said to be
path connected if for all x1, x2 ∈ X, there exists a path τ such that τ(0) = x1
and τ(1) = x2. It can be shown that if X is path connected, it is also con-
nected (LaValle 2006). So we will show that X ε

BRUE is path-connected and therefore
connected.

Proposition 4.2 X ε
BRUE is connected given the affine linear cost functions.

Proof First of all, it can be shown that each subset is connected. Each subset
is the solution set of a system of linear inequalities |ci(x) − cj (x)|� ε,∀i, j ∈
PUE orPk

l , k = 0, · · · , K , which is a polytope, so it is connected.
Secondly, we will show that X ε

k , k = 0, · · · , K − 1 and X ε
k+1 are connected

pairwise by mathematical induction. Start with k = 0. The monotonic property in
Eq. 4.4 implies that PUE ⊂ P1

l .
Denote x0 ∈ X ε

0 , x1 ∈ X ε
1 . Let the path k ∈ P1

l \PUE . Then for x0: x0
k =

0, |ck(x0) − ci(x0)|> ε, ∀i ∈ PUE . For x1: x1
k > 0, ck(x1) − ci(x1) > ε, ∀i ∈ PUE .

With continuous path cost functions, there must exist a flow pattern x∗ ∈ X ε
0 such

that x∗
k = 0, |ck(x∗) − ci(x∗)|� ε, ∀i ∈ PUE . Then x∗ ∈ X ε

1 . Consequently
x∗ ∈ X ε

0

⋂
X ε
1 �= ∅.

As X ε
0 and X ε

1 are connected, i.e., there exist paths p0, p1 joining x0, x1 with x∗
respectively. Therefore there exists a path p = p0

⋃
p1 joining x0 and x1 through

x∗, i.e., X ε
0 and X ε

1 are path-connected and therefore connected pairwise.
Similarly, X ε

k and X ε
k+1, k = 1, · · · , K −1 are connected pairwise. In conclusion,

X ε
BRUE =⋃K

k=0 X ε
k is connected.

The BRUE set (i.e., the fixed points set of the BR dynamic) is connected, thus
the Multiple Lyapunov method can be employed. In the following, we will prove the
stability of the BR dynamic in three steps:

• show that each subsystem is globally asymptotically stable;
• construct a radially unbounded Lyapunov function;
• show that Eq. 4.1 holds.

4.2 Stability within each Subsystem

Within each subsystemXi , the dynamic remains the same, i.e.,A(x) and b(x) defined
in Eq. 3.5 are constant in each subsystem. Then the dynamic is a linear time-invariant
system (LTI). For a LTI, if its coefficient matrix is non-positive definite, then the
whole dynamic is asymptotically stable (Szidarovszky 1998).

Proposition 4.3 Given a network with one OD pair connecting multiple links in
parallel and the link function is monotone and only dependent on its own flow, the
boundedly rational dynamic within each subsystem (defined in Eq. 3.4) is globally
asymptotically stable.
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Proof A defined in Eq. 3.5 has two blocks: the block Ap has the eigenvalues of
either 0 or −β; the block An−p is an identity matrix with the same eigenvalue −β.

In summary, A has either 0 or negative eigenvalues, i.e., A 
 0. Thus the BR
dynamic is asymptotically stable within each subsystem.

4.3 Lyapunov Function

Define a Lyapunov function for subsystem q as the distance between the current flow
distribution and its acceptable flow set:

Vq(x) = 1

2
‖uq(x) − x‖2, q = 1, · · · , 2n − 1. (4.5)

Let u(x) = PrX br (c(x))(x). Guo and Liu (2011) showed that a link flow x ∈ X is a
BRUE flow if and only if x ∈ X br (c(x)). In other words, x ∈ X ε

BRUE ⇔ u(x) = x.
Therefore Vq(x) = 0 if and only if x ∈ XBRUE ; otherwise V (x) > 0, ∀x /∈ XBRUE .

Definition 4.1 (Terrell 2009) A function V : R
n → R is radially unbounded if

V (x) → ∞ as ‖x‖ → ∞.

Apparently Vq(x) defined in Eq. 4.5 is radially unbounded, because Vq(x) → ∞
as ‖x‖ → ∞.

5 Stability of the Switched System

In order to compare Lyapunov function values on both sides of the subsystems, the
detailed switching trajectory is required. When the trajectory approaches the bound-
ary, it displays different patterns. In the following, we will explore the trajectory
patterns in the neighborhood of the boundary separating adjacent subsystems. Since
the BRUE set is a special subsystem, we will also study trajectory patterns in the
neighborhood of the boundary separating the subsystem and the BRUE set.

5.1 Trajectory Patterns at Boundaries Between Subsystems

When the trajectory evolves in the neighborhood of the boundary: ci(x) − cj (x) −
ε = 0, it can approach the boundary from either side: ci(x) − cj (x) − ε > 0 or
ci(x) − cj (x) − ε < 0.

When the trajectory starts from the subsystem where ci(x) − cj (x) − ε > 0, there
are two possible trajectories in the neighbourhood of the boundary: moving towards
the boundary or moving away from it. In the following, we will show that the latter
cannot happen. Start with a flow pattern x in the neighbourhood of the boundary such
that ci(x) − cj (x) − ε > 0. The dynamic in the current subsystem and property (3.2)
tell that ẋi < 0, ẋj > 0. In other words, the flow on link i decreases, while the flow
on link j increases. Given the monotonically increasing cost functions, the cost on
link i becomes smaller, while the cost on link j is larger. Then the difference between
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two link costs ci(x) − cj (x) also becomes smaller. In other words, the trajectory
approaches the boundary instead of evolving away toward the opposite direction.

When the trajectory starts from the subsystem ci(x) − cj (x) − ε < 0, similarly,
the trajectory can move in two directions. We will show that both of these two cases
can happen and thus conditions when each case happens will be studied.

Start with a flow pattern x in the neighbourhood of the boundary such that ci(x)−
cj (x) − ε < 0. Based on the dynamic in the current subsystem and property (3.3),
within a short time interval, the flow on link i and link j increases: dxi = dxj >

0. Then flows on both link i and j increase, and consequently the costs on both
links go up. There are two possible changes of the difference between two link costs
ci(x) − cj (x).

• when dci

dxi
>

dcj

dxj
: since dxi = dxj , then dci > dcj and thus ci(x)−cj (x)−ε � 0.

In other words, the trajectory approaches the boundary and jumps to an adjacent
subsystem where ci(x) − cj (x) − ε > 0;

• when dci

dxi
� dcj

dxj
: since dxi = dxj , then dci � dcj . Thus ci(x) − cj (x) − ε < 0

and the cost difference decreases. In other words, the dynamic moves away from
the boundary and stay in the same subsystem.

In summary, there are two trajectory patterns at the boundary:

(1) when dci

dxi
>

dcj

dxj
, trajectories from both side of the boundary will evolve

towards the boundary and then slide along it. We call this pattern ’sliding’
(shown in Fig. 2a);

(2) when dci

dxi
� dcj

dxj
, the trajectory from ci(x) − cj (x) − ε > 0 will be attracted to

the boundary. Once it hits the boundary, it will follow the dynamic in the region
where ci(x) − cj (x) − ε < 0 and continue to evolve away from the boundary.
We call this pattern ’switching’ (shown in Fig. 2b).

5.2 Trajectory Patterns at Boundaries Between the Subsystem and the BRUE Set

Since BRUE set is the fixed point set, the dynamic stays static within the BRUE set,
i.e., ẋ = 0. The boundary separating the BRUE set and one subsystems is: ci(x) −
cj (x) = ε, while the subsystems adjacent to the BRUE set should be: ci(x)−cj (x)−

sij i j= - -c c ε=0
c ci j- -ε>0

c ci j- -ε<0
(a) Trajectory pattern 1: sliding

sij i j= - -c c ε=0
c ci j- -ε>0

c ci j- -ε<0
(b) Trajectory pattern 2: switching

Fig. 2 Two possible trajectory patterns at boundaries between subsystems
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ε > 0. The reason is: x /∈ XBRUE , then ∃i ∈ A such that xi > 0, ci > minj∈A cj +ε,
indicating x is in the region where ci(x) − cj (x) − ε > 0, ∃j ∈ A, j �= i.

Based on the result in Section 5.1 and the property of the BRUE set, the trajectory
which evolves from ci(x) − cj (x) − ε > 0 moves towards the boundary and then
settle down at the boundary of the BRUE set (shown in Fig. 3).

The trajectory evolving within one subsystem will reach the boundary according
to a LTI dynamic (as we mentioned in Section 4.2), so the boundary can be reached
at an exponential rate.

5.3 Lyapunov Function Across Subsystems

Within each subsystem, the Lyapunov function is continuous with respect to time and
the derivative of the Lyapunov function with respect to time is then calculated as:

V̇q (x) = �xVq(x)ẋ = (uq(x) − x)T �x (uq(x) − x)ẋ

= (uq(x) − x)T Aq(uq(x) − x) � λmax(Aq)‖uq(x) − x‖2, if x ∈ X 0
q ,

(5.1)

where λmax(Aq) is the largest eigenvalue of the matrix Aq . The last inequality is from
the Rayleigh principle. As analyzed before, λmax(Aq) = 0. Thus, V̇q(x(t)) � 0.

We need to validate that the Lyapunov functions for sliding and switching decrease
along the trajectory in both cases.

Case 1 (Sliding) The trajectory follows both dynamics in two adjacent subsystems
X1 : cp − cj − ε > 0 (i.e., link p is unacceptable) and X2 : cp − cj − ε < 0 (i.e.,
link p is acceptable).

Assume the acceptable set of X1 is a = {1, · · · , p − 1}, and that of X2 is
a = {1, · · · , p − 1, p}. Figure 4 illustrates the sliding mode between two subsys-
tems. In the vicinity of the boundary s12, both dynamics point towards the boundary.
Therefore the trajectory evolves based on the combination of two dynamics, which
behaves differently from that in a single subsystem.

The Filippov method (Filippov and Arscott 1988) is commonly used to describe
this sliding mode precisely. According to Liberzon (2003), when decomposing the
trajectory along two directions, there must exist a unique convex combination of
f1(x) and f2(x) tangent to s12 at the point x:

F(x) = {αf1(x) + (1 − α)f2(x), 0 � α � 1} .

Fig. 3 Trajectory pattern at
boundaries between subsystem
and BRUE sij i j= - -c c ε=0

c ci j- -ε>0

BRUE: c ci j- -ε<0
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Fig. 4 Filippov Method for the
sliding mode

β(u2-x)

β( -x)1u

β( -x)ueq

s12

x

X : C -C - >01 p j ε

X : C -C - <02 p j ε

Let f1(x)=β (u1 − x) , f2(x)=β (u2 − x). Then F(x)=β {[αu1+(1−α)u2] − x }
� β

(
ueq − x

)
, where ueq = αu1 + (1 − α)u2.

Then the Lyapunov function for sliding is computed as:

V (x) = 1

2
‖ueq(x) − x‖2 = 1

2
‖α(u1 − x) + (1 − α)(u2 − x)‖2

= 1

2
α2‖u1 − x‖2 + 1

2
(1 − α)2‖u2 − x‖2

+ α(1 − α)(u1 − x)T (u2 − x)

= 1

2
α2V1(x) + 1

2
(1 − α)2V2(x)

+ α(1 − α)(u1 − x)T (u2 − x). (5.2)

In subsystem 1, link p is unacceptable: u1 − x =
[

· · ·
xp+

n∑

k=p+1
xk

p−1 −xp −xp+1 · · · −xn

]T

.

In subsystem 2, link p is acceptable: u2 − x =
[

· · ·
n∑

k=p+1
xk

p
· · ·

n∑

k=p+1
xk

p
−xp+1 · · · −xn

]T

.

Then

(u1 − x)T (u2 − x) = (p − 1)

⎛

⎜
⎜
⎜
⎝

xp +
n∑

k=p+1
xk

p − 1

n∑

k=p+1
xk

p

⎞

⎟
⎟
⎟
⎠

− xp

n∑

k=p+1
xk

p
+
(
x2
p+1 + · · · + x2

n

)

= p + 1

p

n∑

k=p+1

x2
k + 1

p

n∑

k=p+1

n∑

m=p+1

xkxm.
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Therefore the derivative of the Lyapunov function with respect to time is computed
as:

V̇ (x) = 1

2
α2V̇1(x) + 1

2
(1 − α)2V̇2(x) + d

dt
(u1 − x)T (u2 − x)

� 1

2
α2λmax(A1)‖u1(x) − x‖2 + 1

2
(1 − α)2λmax(A2)‖u2(x) − x‖2

− 2α(1 − α)β(u1 − x)T (u2 − x)

� −2α(1 − α)β

⎡

⎣p + 1

p

n∑

k=p+1

x2
k + 1

p

n∑

k=p+1

n∑

m=p+1

xkxm

⎤

⎦ , (5.3)

where the first inequality is due to Eq. 5.1 and the second one is from Eq. 5.2 and
negativity of Eq. 5.1.

Let Wsliding(x(t)) � −2α(1 − α)β

[
p+1
p

n∑

k=p+1
x2
k + 1

p

n∑

k=p+1

n∑

m=p+1
xkxm

]

.

When x /∈ X ε
BRUE, ∃xk, k = p + 1, · · · , n such that xk > 0. Therefore

Wsliding(x(t)) > 0. In summary, V (x(t + �t)) − V (x(t)) � −Wsliding(x(t))�t for
a small period �t > 0. In other words, the changing rate of V along sliding is a
negative function of the current system state x and is not zero unless x ∈ X ε

BRUE .

Case 2 (Switching) The trajectory changes direction and switches from subsystems
X1 : cp(x) − cj (x) − ε > 0 at tni

to X2 : cp(x) − cj (x) − ε < 0 at tni+1 , tni
< tni+1

(See Fig. 5).
In subsystem 1, link p is unacceptable, then V1(x(tni

)) =

1
2

⎡

⎢
⎣(p − 1)2

⎛

⎜
⎝

xp+
n∑

k=p+1
xk

p−1

⎞

⎟
⎠

2

+ x2
p + · · · + x2

n

⎤

⎥
⎦.

In subsystem 2, link p is acceptable, then V2(x(tni+1)) =

1
2

⎡

⎢
⎣p2

⎛

⎜
⎝

n∑

k=p+1
xk

p

⎞

⎟
⎠

2

+ x2
p+1 + · · · + x2

n

⎤

⎥
⎦.

Fig. 5 Switching mode

s12
X : c c1 p j- -ε>0

X : c c2 p j- -ε<0

x
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The difference of these two function values is: V2(x(tni+1)) − V1(x(tni
)) =

−xp

n∑

k=p+1
xk . xp > 0 because link p is acceptable. When x /∈ X ε

BRUE, ∃xk, k =

p + 1, · · · , n such that xk > 0. Let Wswitch(x(tni+1))) � xp

n∑

k=p+1
xk . Then

W(x(tni+1))) > 0. Consequently V2(x(tni+1)) − V1(x(tni
)) � −Wswitch(x(tni+1))).

In other words, when the trajectory switches from X1 to X2, its Lyapnov function
decreases abruptly. The difference of the two Lyapunov functions is a function of the
current system state and will not be zero unless it is the BRUE.

According to the multiple Lyapunov method, we immediately have the following
conclusion:

Proposition 5.1 Given a network with one OD pair connecting multiple links in
parallel and the affine linear link function is strictly monotone and only dependent
on its own flow, the BR dynamic is asymptotically stable.

5.4 Convergence of the BR Dynamic

Proposition 5.2 Given a network with one OD pair connecting multiple links in
parallel and the affine linear link function is strictly monotone and only dependent
on its own flow, the boundedly rational dynamic is convergent in finite time.

Proof The trajectory patterns mentioned in Sections 5.1–5.2 show that trajectories
can converge to the BRUE set by either sliding along the boundary or by evolving
from one subsystem.

When sliding along the boundary to the BRUE set: the changing rate of the
Lyapunov function in the sliding mode (defined in Eq. 5.3) depends on the system
state, which is negative and bounded above, so the sliding mode can converge to the
BRUE set in finite time.

When evolving from one subsystem to the BRUE set, at the boundaries between
the subsystem and the BRUE set, V (x) > 0, V̇ (x) < 0, x ∈ ∂X , and V (x) = 0, ∀x ∈
XBRUE . The dynamic follows the LTI within the subsystem, so the BRUE set can be
reached at an exponential rate.

According to Proposition (5.1) and Proposition (5.2), we have the following
conclusion:

Corollary 1 Given a network with one OD pair connecting multiple links in parallel
and the affine linear link function is strictly monotone and only dependent on its own
flow, the boundedly rational dynamic is stable.

Remark For the continuous-time BR dynamic, if the initial dynamic starts from out-
side the BRUE set, trajectories will remain static once it reaches the boundaries of
the BRUE set. Therefore the interior of the BRUE set will never be reached.
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6 Stability Analysis on a Small Network

The one OD pair with three links example in Guo and Liu (2011) is used to illustrate
the stability analysis. A three-link network with one OD pair of demand 50, the link
cost for each link is 30+x1, 30+3x2, 30+3x3. Since the link is the path, so we will
use the link cost and link flow in the subsequent analysis. The indifference bound
ε = 10.

As a common tool in studying the stability of a dynamical system, the phase por-
trait graph is plotted in Fig. 6, depicting the link flow trajectories with arrows and
stable steady states with dots. Arrows mean the direction where the trajectory evolves
if it passes the ending point of the arrow; while dots represent that all the trajectories
stop there and reach the equilibrium state.

In Fig. 6, the horizontal line is the flow on link 1, while the vertical one is the
flow on link 2. The big triangle region encompassed by the diagonal line and the axes
are the feasible link flow set. The hexahedron in the middle is the BRUE set, and
the phase portrait becomes dots inside the BRUE set. Each blue arrow represents the
changing direction of the point located at the end of the arrow. Based on where these
blue arrows point to, we can see six distinct patterns, dividing the feasible link flow
set into six subsystems. There are two types of subsystems: the triangle one (num-
bered 1,2,3 in red) and the non-convex one (numbered 4,5,6 in red). Each subsystem
corresponds to a different acceptable path flow set. For instance, in subsystem (1),
only path 1 is acceptable; while in subsystem (4), both path 2 and 3 are acceptable.

There are six discontinuity boundaries separating these subsystems: ci(x)−cj (x)−
ε = 0, i, j = 1, 2, 3, i �= j , indicated in black color. The trajectories close to them
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Fig. 6 Phase portrait of the BR dynamic
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behave in two different ways: (1) i = 1, j = 2 or 3: the trajectories close to one side
of the discontinuity surface are likely to reach it, while those starting from the other
side will evolve to the opposite direction and directly converge to the equilibria; (2)
i = 2 or 3, j = 1 or i = 2, j = 3: the trajectories close to both sides will reach them.

Figure 7 indicates the Lyapnov function defined in the feasible link set. The color
shows the value of the Lyapnov function evaluated at each flow pattern: The darker
the color is, the higher the Lyapnov value is. The middle of the figure is the BRUE
set, which has zero Lyapnov value, so this set is the lowest region. Outside the BRUE
set, the Lyapnov function is greater than zero, so other regions have higher eleva-
tion. We can see clearly that, Lyapnov function is a piece-wise function, with each
piece defined in the partition the same as that in Fig. 6. This observation is consis-
tent with the property of the Lyapnov function that, Lyapnov function is continuous
within each subsystem, but discontinuous on boundaries. Regarding each piece, it is
lowering down towards the BRUE set.

As mentioned before, There are two trajectory patterns in the BR dynamic. To
illustrate how different trajectories evolve with time, we plot these two typical trajec-
tories in Fig. 6 in green lines. The number of each trajectory is marked on the right
side of its starting point.

Two green lines represent two trajectories starts from arbitrary initial points and
then evolves with time, according to the BR dynamic. Trajectory 1 starts close to the
sliding line c2(x) − c1(x) = ε and reaches it very quickly, then slides along it to the
BRUE. By contrast, c1(x) − c2(x) = ε is also a discontinuity surface separating two
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Fig. 8 Lyapunov function along the trajectory. a Trajectory 1. b Trajectory 2

different regions. However, when trajectory 2 touches this discontinuity surface, it
does not stay on it. Instead, its direction gets changed abruptly and then converge to
the BRUE set from the other subregion.

In Fig. 8a–b the horizontal axis is the time, and the vertical axis is the Lyapnov
function along the trajectory. The red number in the box indicates in which subsystem
this trajectory is evolving during that time period.

In Fig. 8a, ‘4/1’ means the trajectory is sliding along the boundary between sub-
system 1 and 4. The Lyapnov function is decreasing gradually, and suddenly drop to
zero when it reaches the equilibrium. In Fig. 8b, the Lyapnov function is decreasing
in each region, and has a sudden drop when the trajectory switches from subsystem
2 to 4, and another drop when the equilibrium is attained. Figure 8a–b have different
time scales, because it takes longer time for sliding dynamic to reach the equilibrium.

We can also explain why trajectory 1 and 2 have such a distinct pattern by
inspecting Fig. 7. The Lyapunov function represents the potential energy of the BR
dyanmical system, and the BRUE set has the lowest energy. The trajectory has the
tendency to move to the lower energy region.

7 Conclusion and Future Work

This paper provided a methodology of proving the stability of the boundedly ratio-
nal (BR) day-to-day dynamic proposed by Guo and Liu (2011). It first reduced the
bounded ration (BR) dynamic to a piecewise affine linear system composed of mul-
tiple subsystems and then gave rigorous proofs of the stability property of the BR
dynamic.

Due to non-uniqueness of the equilibria and the state-dependent structure of the
BR dynamic, the methodology of proving the stability is different from the con-
ventional Lyapunov Theorem used in some day-to-day literature. In this study, we
employed the multiple Lyapunov method specially proposed for the hybrid dynam-
ical system. This method requires that different Lyapunov functional forms are
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defined among subsystems. If the Lyapunov values always decrease along trajecto-
ries, then the dynamical system is stable. As this method is initially proposed for the
dynamical systems with a single fixed point while the BR dynamic has multiple equi-
libria, we first showed that the boundedly rational user equilibria set (i.e., the fixed
points of the BR dynamic) is connected and thus the trajectories of the BR dynamic
can only converge to this set.

By defining the Lyapunov function as the distance between the current flow and
its acceptable path set, we proved that this Lyapunov function decreases within each
subsystem at an exponential rate. When trajectories reach boundaries between sub-
systems, they can either slide or switch. We also showed that the Lyapunov function
drops in these two cases. In summary, the BR dynamic is stable and trajectories are
convergent in finite time.

Although this study proved the stability of the BR dynamic, it has been limited
by the underlying assumptions of linear and separable link performance functions.
Thus, the stability property of a BR dynamic with nonlinear cost functions needs
to be analyzed in the future. In addition, we should extend the stability analysis to
general networks with multiple OD pairs.
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