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Abstract This paper seeks to enhance network survivability under a disaster and
reduce the expected post-disaster response time for transportation networks through
pre-disaster investment decisions. The planning focuses on determining the links of the
network to strengthen through investment under two types of uncertainties: the disaster
characteristics, and the surviving network under each disaster. A bi-level stochastic
optimization model is proposed for this problem, in which link investment decisions are
made at the upper level to enhance the network survivability subject to a budget
constraint such that the expected post-disaster response time is minimized at the lower
level. A two-stage heuristic algorithm is proposed to obtain effective solutions effi-
ciently. The numerical experiments indicate that the proposed heuristic algorithm
converges to a fixed point representing a feasible solution, within an acceptable
tolerance level, of the bi-level stochastic optimization model which is an effective
solution under disasters of moderate severity. Parametric and sensitivity analyses
reinforce the need for a holistic approach that integrates multiple relevant consider-
ations to determine the link investment decisions.

Keywords Pre-disaster investment decisions . Network survivability . Post-disaster
response times . Bi-level stochastic optimization

1 Introduction

Disasters, either natural or man-made, can cripple the functionality of the lifeline
infrastructure systems such as transportation networks, power systems, water networks,
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and communication networks, causing severe human and economic loss, and disrupting
the day-to-day activities of human beings (Baum et al. 1983). Previous research
(Hwang et al. 2000; Abdel-Rahim et al. 2007; Kiremidjian et al. 2002; Peeta et al.
2010) has illustrated that the survivability of infrastructure networks under disasters can
be enhanced by strengthening their components structurally. However, this process
usually entails significant monetary costs. Typically, the more severe random disasters
are less likely to occur, and the improvement of all vulnerable links and infrastructure
components to the degree of withstanding disasters of extreme severity would entail
unacceptable expenditures. This implies the need to allocate the limited resources to
holistically achieve some disaster-related operational goals, leading to the pre-disaster
investment planning problem addressed in this paper.

Two aspects are usually considered in the context of the pre-disaster investment
planning problem, the pre-disaster planning and the post-disaster response (Towfighi
1991). The pre-disaster planning stage involves strategic decision-making for risk
assessment and management, infrastructure improvement to reduce vulnerability to
disasters, enhancement of system resilience, and developing emergency response plans.
Thereby, long-term cost-effectiveness and investment benefit maximization are key
goals which shape the strategic decisions at this stage. The post-disaster stage involves
tactical and operational decision-making (Hsu and Peeta 2013; Yao et al. 2009) in the
short- and medium-terms in order to provide critical recovery and reconstruction
services (Matisziw et al. 2010; Sumalee and Kurauchi 2006) to ensure human and
property safety, and to provide communication and transportation channels to the
affected population. Hence, minimizing response times to the affected areas and the
effective deployment of required resources represent major goals in the post-disaster
stage (Holguín-Veras et al. 2012). While the two stages focus on different aspects of
disaster management, they are interdependent as the expected post-disaster system
performance is a key factor for strategic decision-making at the pre-disaster planning
stage. Correspondingly, the investment decisions in the pre-disaster stage can be
leveraged for effective response in the post-disaster execution stage. Investment deci-
sions that do not incorporate this interdependence may not lead to the expected levels
of post-disaster response performance. Hence, this study proposes a pre-disaster in-
vestment planning framework in which these two stages are integrated seamlessly.

From a transportation network functionality perspective, an important issue for pre-
disaster investment planning is the need to adequately capture the randomness associ-
ated with link failures arising from the disaster impact. However, the disaster impact
itself is dependent on the randomness in disaster characteristics. Hence, two sources of
stochasticity need to be considered; the uncertainty related to disasters that reflects the
likelihood of different disasters, and the likelihood of link failures under a certain
disaster. The link failure is linked to the investment decision in the sense that monetary
investments in the link structural or functional components can be used to enhance link
survivability. In this context, this study models the individual link investment decision
as a continuous variable between zero and one. That is, a link can be partly invested in,
and correspondingly, it can proportionally impact the link failure probability distribu-
tion. While the consideration of the interactions among link investment decisions,
disaster randomness, and link failure distributions can ensure more realism in address-
ing the pre-disaster investment planning problem, they also significantly increase the
problem complexity of the proposed study.
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While disasters can lead to link failures and investment can enhance their surviv-
ability, the key goal of the pre-disaster investment planning problem is to identify the
subset of network links to invest in under the budget limitation. That is, strengthening
links to increase their survivability under disasters entails some upgradation costs,
implying the need to identify which links to invest in. In this context, we holistically
consider three factors including the importance of a link to network connectivity, the
role of a link in the context of network traffic flow, and the marginal survivability
increase for a link under a certain level of investment, to identify the links to potentially
invest in. The study develops a bi-level stochastic optimization model to identify the
pre-disaster link investment decisions by integrating the three factors associated with
link characteristics and the post-disaster network performance related to response times
(the time taken by a disaster response team to reach an affected area).

The remainder of the paper is organized as follows. The next section reviews the
literature. This is followed by some mathematical preliminaries that describe the
problem. Then, a bi-level stochastic optimization model is proposed for the pre-
disaster investment planning problem. Next, the solution algorithm is discussed.
Numerical experiments are then discussed, followed by some concluding comments.

2 Literature Review

The pre-disaster investment planning problem seeks to allocate a limited pre-disaster
investment budget to strengthen links so that the network performance under a disaster
is enhanced. In the literature, a possible related area is survivable network design which
has been extensively studied (Grotschel et al. 1995; Soni et al. 1999; Kerivin and
Mahjoub 2005) in computer networks. However, unlike computer networks, transpor-
tation networks do not usually have hierarchical structures, and therefore the associated
methodologies are not particularly relevant.

Survivable network design has also been studied in the operations research domain
to identify key links to connect origin–destination (O-D) pairs for specific application
contexts. Ball et al. (1989) and Malik et al. (1989) propose algorithms to determine the
k-most vital arcs whose removal from a network results in the greatest increase in the
shortest distance between two specified nodes. Chen et al. (2007) present network-
based accessibility measures for assessing vulnerability of degradable transportation
networks. They can be used to identifying critical components in realistic road net-
works and to design reliable and robust networks. The study factors the consequence of
link failures in terms of travel time or generalized cost increase, as well as the
behavioral responses of users due to link failure. Matisziw and Murray (2009) develop
a constraint structure which identifies infrastructure vital to system flow without
enumerating all origin–destination paths. These studies mostly consider deterministic
link failures and static surviving network topologies and do not factor stochastic link
failures and the corresponding uncertainty in the surviving network topologies under
disasters. Murray-Tuite and Mahmassani (2004) develop a bi-level formulation to
identify vulnerable transportation links in the context of network disruption. They
propose a vulnerability index that factors the availability of alternate paths, excess
capacity, and travel time to determine the critical links, but model link failures
deterministically. Latora and Marchiori (2005) and Nagurney and Qiang (2007) also
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propose methods to identify the critical components in a congested network and a
general infrastructure network, respectively, considering deterministic component re-
moval. Abdel-Rahim et al. (2007) use a macroscopic simulation model to investigate
the effects of electric power outages on the operation of a transportation network under
intelligent transportation systems. Based on that, a multilayer graph-based method is
proposed to assess the importance of different components in critical infrastructure
networks. The simulation model factors various operational aspects, but does not
explicitly account for the randomness of link failures under disasters. Ukkusuri and
Yushimito (2009) propose a heuristic procedure to assess the criticality of highway
transportation infrastructure in a transportation network. Travel time capturing the
congestion effects is used to evaluate the impact of removing individual links or nodes.
In summary, the aforementioned literature does not factor the stochasticity associated
with link failures arising from the randomness in disaster characteristics, which is a key
real-world aspect and represents a primary focus of our study. Further, it does not
account for the interactions between individual link failures and investment planning.
This capability is especially important to aid investment decision-making to strengthen
infrastructure to enhance survivability and performance under disasters, which is the
key application objective of this paper.

Several studies (Moghtaderi-Zadeh and Der Kiureghian 1983; Small 2000; Sohn
2006; Bana e Costa et al. 2008; Liu et al. 2009; Fan and Liu (2010); Peeta et al. 2010;
Porter and Ramer 2012) have sought to identify a subset of vital/critical links in
transportation networks by considering upgrade costs and post-disaster network per-
formance. The proposed study differs from them in two key aspects. First, most of these
studies identify critical links using only local factors specific to a link rather than the
holistic consideration of the importance of a link to the overall system. For example,
Moghtaderi-Zadeh and Der Kiureghian (1983) determine the failure of an individual
link based on a distance threshold to an earthquake, and then identify critical links to
maximize system reliability. Similarly, Werner et al. (1997) and Small (2000) prioritize
the links in a transportation network based on link-specific factors such as the physical
condition and the cost to upgrade the link to withstand disasters of specific intensities.
Second, most of these studies are addressed in the context of a specific disaster scenario
rather than for multiple disasters, precluding the ability to fully capture the dependence
of link failures on the variability of the disaster characteristics. For example, Sohn
(2006) evaluates the significance of an individual link for a transportation network in
the context of flooding. Bana e Costa et al. (2008) and Liu et al. (2009) develop
quantitative models to prioritize bridges and tunnels for seismic retrofitting. Fan and
Liu (2010) propose a two-stage stochastic program to choose the best set of network
components to protect in a pre-disaster context. While the study is not disaster-specific,
the dependence of link failures on the variability of the disaster characteristics is not
considered.

More recently, Peeta et al. (2010) propose a related study that formulates a two-stage
stochastic model for the pre-disaster investment planning problem to reduce the post-
disaster response time under a disaster. Our work extends Peeta et al. (2010) in three
key aspects; they add analytical complexity while more holistically factoring real-world
considerations from the perspective of decision-makers. First, this study explicitly
models the randomness due to the disaster characteristics. By contrast, Peeta et al.
(2010) consider only a single disaster scenario. A key consequence of the explicit
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consideration of the stochasticity of disaster characteristics in addition to that of link
failures is that the problem complexity is significantly enhanced beyond that of Peeta
et al. (2010). Second, Peeta et al. (2010) assume that the link investment decisions are
0-1 integers rather than the [0,1] continuous variables as proposed in this study.
Modeling the investment decisions as continuous variables provides decision-makers
the flexibility to partly invest in a link rather than making a limiting discrete decision on
whether to invest in it or not. Hence, it provides decision-makers more solution options
in practice. Third, this study holistically evaluates the importance of a link in terms of
three factors: connectivity, link usage in terms of flow, and survivability improvement
relative to the upgradation cost. Peeta et al. (2010) consider only connectivity. The three
factors further serve to bridge the optimization models at the two levels in the proposed
bi-level optimization model, thereby enabling the investment decision and surviving
network estimation to be considered in an integrated manner rather than in separate
stages as in Peeta et al. (2010). In addition, due to the different in the modeling
approach used, this study proposes a two-stage heuristic algorithm to obtain the feasible
investment solution based on our bi-level optimization model while Peeta et al. (2010)
use a first order approximation based solution procedure to solve their two-stage
stochastic model.

In summary, the proposed study is different from the aforementioned literature
primarily in the following aspects: (i) two levels of stochasticity (link failures and
disaster characteristics) are explicitly considered in the modeling process to link pre-
disaster planning to post-disaster response, (ii) the investment decisions are modeled as
continuous variables between zero and one, and (iii) multiple factors (such as connec-
tivity, traffic flow, and marginal survivability improvement) are considered to charac-
terize the importance of a link holistically at the network level. Thereby, this study
provides more flexibility from the perspective of decision-makers, addresses some key
gaps related to realism and adequacy in the current literature in this problem context,
and entails greater problem complexity.

3 Mathematical Model

This section discusses the proposed mathematical approach to address the pre-disaster
investment problem. The mathematical formation is presented, followed by a discus-
sion of the three factors that characterize the importance/significance of a link in the
investment decision context: the importance of a link to network connectivity, the role
of a link in the context of network traffic flow, and the marginal survivability improve-
ment for a link under a certain level of investment. Then, a bi-level stochastic
optimization model is developed to address the problem.

3.1 Mathematical Formulation

This study considers a transportation network potentially affected by a natural or man-
made disaster in a geographical region containing some population. The network is
represented by a directed network G(N,E) with node set N and link set E. Each node is
assumed to cover some population in its vicinity in terms of access. A directed link in
the network between nodes i and j is denoted by [i,j]. The free-flow travel time on link
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[i,j] is assumed known and denoted by tij. The disaster response plan typically seeks to
reduce the post-disaster response time (on the transportation network) for the response
resources located in large urban areas to reach large population centers. The study
considers the relative importance of O-D pairs based on the populations of the
associated nodes and the corresponding need for response resources (medicine, food,
clothing, machinery, etc.). It assumes that the decision-maker can determine this by
assigning weights to O-D pairs by factoring population size, level of service related to
response, and the available resources. Thereby, each O-D pair k is weighted using a
positively-valued weight αk to reflect its level of importance. This identifies a set
of O-D pairs whose response time is a key focus in the planning phase. To verify
post-disaster connectivity, one unit of flow must be transported over the (surviving)
network from origin O(k) to destination D(k). If the post-disaster status of the network is
such that one of the O-D pairs cannot be connected, then a large penalty cost is incurred
to reflect the critical deterioration in the response performance for an important com-
ponent of the disaster response plan. In addition, it is noted that the focus of the planning
problem is to ensure that emergency response personnel and equipment can reach from
the various origins to their destinations in the least possible travel time immediately after
the disaster. Hence, the planning problem context assumes that the links are not
congested (especially under disasters such as earthquakes), and that the response
operations ensure that these resources can travel at the link free-flow travel times on
the corresponding paths.

Each link of the network is subject to multiple disaster scenarios, represented by the
random variable ω. The possible set is denoted by Ω={ωd}d=1

|Ω| . Each disaster scenario
ωd occurs with a probability denoted by Γ (ωd). Under a certain disaster, an individual
link can fail independently and correspondingly its capacity will reduce from one to
zero; otherwise the link is assumed to survive with full capacity. Typical examples are
bridges under earthquakes, which usually either survive with full functionality or fail.
The link survivability, reflected by the link survival probability under a certain disaster,
can be improved by upgrading it during the pre-disaster stage. The investment decision
for each link is defined as a continuous decision variable between zero and one. It
represents the link investment rate rather than a specific monetary value. Namely, yij=1
indicates that the link is fully upgraded; yij∈(0,1) means the link is partially upgraded,
and yij=0 implies that the link is not upgraded. The investment strategy for the network
is represented by a vector y={yij}

|E|,yij∈[0,1]. Accordingly, the disaster dependent link
failure probability θij is calculated by a linear interpolation method. That is, θij(ωd)=
pij(ωd)–yij(pij(ωd)−qij(ωd)), where qij(ωd) is the link failure probability under disaster
ωd if it is fully upgraded, and pij(ωd) is the link failure probability under disasterωd if
it is not upgraded. Link survivability is the complement of the link failure probability.
Hence, the probability of link failure depends on the disaster randomness and the
investment strategy. It should be noted here that the link failure probability boundaries
pij(ωd) and qij(ωd) can be calibrated using historical data, or through risk and material
mechanistic analyses, as illustrated by structural engineers (Small 2000; Loh et al.
2003; Ramirez et al. 2005). Thereby, while disasters can occur randomly, the effect of a
specific disaster type on a specific infrastructure type can be estimated through risk
analysis since the features of disasters and infrastructure can be characterized. Thereby,
without loss of generality, other calibrated interpolation methods can be used here
instead of the linear interpolation method based on the data availability.
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The full upgradation cost for link [i,j] is denoted by cij. Then, B=∑[i,j]cij is the
budget needed to fully upgrade the entire network, and b=rB is the limited budget
indicating that only the fraction r of the full network upgradation budget, r∈[0,1], is
available.

The post-disaster state of a link [i,j] is denoted by a random variable ξij, which takes
the value 1 if link [i, j] survives the disaster, and 0, otherwise. A vector of the random
variables ξij over all links in E, denoted by ξ={ξij}[i, j]∈E, indicates a “surviving
network”. The set of all surviving networks is denoted by Ξ={ξ s}s=1

|Ξ| . The
conditional probability P(ξ s|y,ωd) is used to denote the likelihood that the post-
disaster network scenario ξ s is realized given the investment decision strategy y and
the disaster scenario ωd. It can be computed as:

P ξ sjy;ωdð Þ ¼ ∏
∀ i; j½ �∈E

ξ sij

n
1−pij ωdð Þ þ yij pij ωdð Þ−qij ωdð Þ

� �h i

þ 1−ξ sij
� �

pij ωdð Þ−yij pij ωdð Þ−qij ωdð Þ
� �h io ð1Þ

Associated with the surviving network, this study defines the binary decision
variable xij

k(ξ s|(y,ωd)), which is equal to 1 if there is one unit of flow of the
commodity k (that is, the O-D pair k) on link [i,j] given the realization of ξ s

resulting from the investment strategy y and the disaster ωd, and 0, otherwise. The
flow in the whole network is denoted by x. The network performance is captured by the
expected travel time for the initial emergency response after a disaster. Mathematically,
the expected disaster response time over the surviving networks under all possible
disasters is given below:

F xð Þ ¼
X

d∈Ω
Γ ωdð Þ

X
s∈Ξ

f x ξsj y;ωdð Þð Þð ÞP ξsjy;ωdð Þ ð2Þ

where f (x(ξ s|(y,ωd))) is the sum, over all O-D pairs, of the shortest response time for
each O-D pair in the surviving network (ξ s|y,ωd). Mathematically, it can be computed
by Eq. (3), where a large penalty cost M is used to denote the response time for an O-D
pair if it is not connected due to link failure in the surviving network (ξ s|y,ωd).
Considering that the number of surviving networks will increase exponentially with
the size of the network, this study approximates the value of F(x) using Monte Carlo
simulation in the proposed solution algorithm.

f x ξ sj y;ωdð Þð Þð Þ ¼ minx
X

k∈K
αk

X
i; j½ �∈Etijx

k
ij ξ

s y;ωdð Þjð Þ
h i

; if x ξ s y;ωdð Þjð Þ≠∅
M ; otherwise

(
:

ð3Þ
As stated earlier, in the planning problem context, the first responders move towards

the disaster-affected areas with prioritized right of way, consistent with the assumption
that the links are not congested, and that travel occurs based on the link free-flow travel
times on the corresponding paths. From a planning perspective for the first responders,
a potential highly congested link is treated as a link failure which may interrupt the
connection between the corresponding O-D pairs.

Based on the above assumptions and definitions, a bi-level stochastic optimization
model is proposed in the next section for the pre-disaster investment planning problem.
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3.2 Link Significance

The prioritization of links for receiving investment to strengthen them for post-disaster
survivability is based on holistically considering three factors that are important to
response time reduction.

3.2.1 Link Significance to Network Connectivity

This section develops the mathematical formulation to evaluate the significance
of individual links to network connectivity. The links whose removal/failure has
a higher impact on the network connectivity are weighted more. Equation (4)
incorporates the contribution of a link to the network connectivity in two
aspects. The first component in Eq. (4) measures the significance of a link to
the network connectivity in terms of network flow reduction if it fails under a
disaster. As shown in Eq. (5), it is represented by the expected traffic flow
reduction of the network maximum flow over all disaster scenarios, across all
O-D pairs due to the failure of link [i,j]. Note that the traffic flow reduction
(Δf ij

max) is weighted by the link survivability under each disaster and the
relative importance of each O-D pair. The second component of Eq. (4) ad-
dresses the significance of a link to the network connectivity when this link
fails along with other links in a disaster, which implies the dependence between
links, and is a more typical situation in disasters. The study recognizes that it is
difficult to identify the importance of each failed link set to the network
connectivity, given the intractable number of such combinations under various
surviving networks. To circumvent this difficulty, the approach emphasizes the
set of failed links which disconnect the O-D pair in a surviving network, but
belong to the link set which composes the shortest path to connect this O-D
pair in the original network topology G (that is, when no link fails). This is
illustrated in Eq. (6). This implies the perspective that these links are the most
significant set of links for the O-D pair as their survival can result in the “best”
shortest response time for that O-D pair. Correspondingly, if the surviving
network disconnects an O-D pair, we uniformly increase the weights of the
failed links belonging to this set by one unit as part of our solution algorithm.
The increased weights of the links improve their likelihood to be invested in
the pre-disaster plan so that their survivability is improved. The denominators
in Eqs. (5) and (6) are to enable normalization for ensuring that Wij

c is
dimensionless.

It is important to note here that the first component in Eq. (4) is a
deterministic value, mainly factoring the link significance to the network con-
nectivity in terms of link capacity. However, the second component is a
dynamic value depending on the topologies of the original network and the
surviving networks under disasters. As defined by Eqs. (6) and (7), the second
component can be zero when the surviving network connects all O-D pairs. As
there is no a priori data to indicate whether one of these two components is
more important to sustain network connectivity under disasters, we weigh them
equally in the mathematical model and provide the sensitivity analyses for the
weights of these two factors in Section 6.2.5.
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Wc
ij ¼ Wc1

ij þWc2
ij ð4Þ

Wc1
ij ¼ Eω

X
k∈K

αk 1−yijqij ωð Þ
� �

Δ f max
ij

h i.X
i; j½ �∈EW

c1
ij ð5Þ

Wc2
ij ¼ Eω

X
k∈K

αk

X
s∈Ξ

wk
sij

h i.X
i; j½ �∈EW

c2
ij ð6Þ

wk
sij ¼

1;∀ i; j½ �in theshortestpathof commodityk inG; ξ s
ij ¼ 0;andξ sdisconnectsO‐D kð Þ

0; otherwise:

�

ð7Þ

3.2.2 Link Significance to Network Traffic Flow

Next, the link significance to the network traffic flow is explored. As stated earlier, as
the response planning context does not factor traffic congestion, we develop a proxy for
Wf, as illustrated in Eq. (8):

W f
ij ¼ Eω

X
s

X
k
αkxij ξ

sð Þ��ω; yh ih i.X
ij½ �∈EW

f
ij ð8Þ

where [∑kαkxij(ξ)|ω,y] represents the O-D weighted frequency that the link [i, j]
is part of the shortest path for various O-D pairs in the surviving network ξ s.
The proxy, Wij

f, reflects the expected number of times that link [i, j] is used in
the shortest path for the various O-D pairs under all possible network realiza-
tions and disasters. The denominator in Eq. (8) is to enable normalization for
ensuring that Wij

f is dimensionless.
There are two special cases in which we do not count the link significance

represented by Eq. (8) to network traffic flow due to no flow on the surviving links:
(i) when all links fail in a disaster, and (ii) when the surviving network cannot connect
an O-D pair. The significance of the failed links in these two cases is evaluated from the
connectivity perspective discussed heretofore.

3.2.3 Marginal Link Survivability Improvement

Finally, the significance of a link based on the marginal survival probability
improvement through investment is considered; it is reflected through Wij

p. It
implies that links whose upgradation cost is low relative to the survivability
improvement under disasters can represent attractive candidates from an invest-
ment strategy perspective given the limited budget. As stated earlier, the holistic
approach used to identify the links to invest in considers this aspect as a factor
along with network connectivity significance and traffic flow usage. For a given
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investment decision y, the normalized marginal link survivability improvement
Wij

p is:

Wp
ij ¼ Eω yij pij ωð Þ−qij ωð Þ

� �h i.X
ij½ �∈EW

P
ij ð9Þ

3.3 Bi-Level Stochastic Optimization Model

In order to determine the pre-disaster investment plan, a bi-level discrete stochastic
model is developed to holistically address the pre-disaster investment planning
problem based on the various link significance factors. The upper level of the
bi-level model seeks an investment strategy to upgrade links in the pre-disaster
stage such that the network survivability is enhanced. It is subject to the constraint
on investment budget, and is impacted by the flow x which results in the expected
shortest response time over the surviving network set in the lower level. Therefore,
the solution to the model is a link investment strategy in the pre-disaster stage so
that the expected response time in the surviving network under multiple disaster
scenarios is minimized. Mathematically, the bi-level stochastic optimization model
P is represented as:

P Max
X

i; j½ �∈E W f
ij xij
� �þWc

ij yij; ξ
s

� �
þWp

ij yij

� �� �
yij ð10Þ

s:t:
X

i; j½ �∈Ecijyij≤b ð11Þ

0≤yij≤1 i; j½ �∈E ð12Þ

x∈argminx F xð Þ ¼
X

ωd∈Ω
Γ ωdð Þ

X
ξ s∈Ξ

f x ξ sj y;ωdð Þð Þð ÞP ξ sj y;ωdð Þð Þ
h in o

ð13Þ

s:t: xkij ξ
sj y;ωdð Þð Þ ¼ 0or1 ∀ i; j½ �∈E; ∀k ∈K; ∀ξ s ∈Ξ;ωd ∈Ω ð14Þ

xkij ξ
sj y;ωdð Þð Þ≤ξ sij

��� y;ωdð Þ ∀ i; j½ �∈E; ∀k ∈K; ∀ξ s ∈Ξ;ωd ∈Ω ð15Þ

X
j∈N

xkij ξ
sj y;ωdð Þð Þ−

X
j∈N

xkji ξ
sj y;ωdð Þð Þ ¼

1; if i ¼ O kð Þ
−1; if i ¼ D kð Þ
0; otherwise

8<
:

∀ i∈N ; ∀k∈K ; ∀ξ s∈Ξ ; ωd ∈Ω

ð16Þ

In model P, Eq. (10) is the objective function in the upper level, which
maximizes the benefits to network survivability (related to response time
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performance) in terms of the three factors discussed in the previous section,
through link investments. Namely, a link with higher contribution to response
time reduction in the surviving networks may obtain more investment so that
the value of the objective function can be maximized. While Eq. (10) weighs
the three factors equally, Section 6.2.3 performs sensitivity analyses to explore
the relative significance of each factor to the solution method. Equation (11)
represents the budget constraint. Equation (12) defines the continuous decision
variables, and Eq. (13) constrains the flow of the surviving network in the
lower level such that it results in the expected shortest response time of the
surviving networks under the given investment strategy. The expected shortest
response time F(x) is measured by the expected shortest travel time across all
O-D pairs under all possible disaster scenarios. Equations (1) and (3) provide
the expressions to compute the key components P(ξs|(y,ωd)) and f(x(ξs|(y,ωd)))
in F(x), respectively. Equation (14) represents the binary 0-1 variable that
indicates the existence of response flow on the individual links. Equation (15)
further guarantees that the feasible flow only appears on the surviving links.
Equation (16) illustrates the node flow conservation based on one unit of flow
being transported for each O-D pair. As discussed earlier, the shortest paths are
based on link free-flow travel times.

The two levels are holistically linked by the strategic investment vector y
which represents the decision variables in the upper level, and the flow vector
x which represents the decision variables in the lower level. This illustrates that
the optimal link investment plan in the upper level is based on the link
importance to response time reduction, which is dependent on the flow x
resulting from the lower level. Correspondingly, the optimal network perfor-
mance at the lower level is evaluated under the given surviving networks which
depend on the investment strategy y in the upper level. Hence, these depen-
dencies involving x and y demonstrate that the interactions between the pre-
disaster investment planning and the post-disaster network performance occur in
both directions.

4 Solution Algorithm

This study proposes a heuristic algorithm to solve the bi-level optimization
model provided above. A bi-level optimization model is intrinsically difficult to
solve (Farvaresh and Sepehri 2013); even the linear-to-linear bi-level problem is
NP-hard (Jeroslow 1985). Considering the inherent complexity of the problem,
this study seeks “good” feasible solutions within a reasonable computational
time by using an iterative procedure combined with Monte Carlo simulation
(Shapiro 2001). More specifically, based on the structural characteristics of the
bi-level model P, the proposed heuristic algorithm decomposes model P into
two separate models addressed in two stages: a linear program P1 for the pre-
disaster investment decision problem, and a shortest path problem P2 for the
post-disaster network performance problem. The Monte Carlo simulation is
embedded into the second stage to sample the possible surviving networks
under multiple disasters. A fixed point, representing the feasible solution of
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model P, is searched for iteratively by solving models P1 and P2 in the two
stages. The proposed algorithm is labeled the Two-Stage Heuristic Algorithm
(TSHA) hereafter. Models P1 and P2 are as follows:

P1 Max F y 0
� �

¼
X

i; j½ �∈E W f
ij xjyv−1� �þWc

ij yv−1ij ; ξsjyv−1
� �

þWp
ij y

v−1� �� �
y
ij
0

s:t:
X

i; j½ �∈Ecij
y
ij
0
≤b

y
ij
0
≥0 ∀ i; j½ �∈E

y
ij
0
≤1 ∀ i; j½ �∈E

P2 Min F xð Þ ¼
X

ωd∈Ω
Γ ωdð Þ

X
ξs∈Ξ

f x ξ sj yv;ωdð Þð Þð ÞP ξ sj yv;ωdð Þð Þ
h i

s:t: xkij ξ
sj yv;ωdð Þð Þ≤ξ sij

��� yv;ωdð Þ ∀ i; j½ � ∈N ;∀k∈K;∀ξ s∈Ξ;ωd ∈Ω

xkij ξ s
��� yv;ωdð Þ

� 	
¼ 0 or 1 ∀ i; j½ � ∈N ; ∀k ∈K ; ∀ ξ s ∈Ξ ; ωd ∈Ω

X
j∈N

xkij ξ
sj yv;ωdð Þð Þ−

X
j∈N

xkji ξ
sj yv;ωdð Þð Þ ¼

1; if i ¼ O kð Þ
−1; if i ¼ D kð Þ
0; otherwise

8<
:

∀i∈N ;∀k∈K;∀ξ s∈Ξ;ωd∈Ω

The solution search process of the TSHA is as follows. First, the TSHA solves
model P1 and obtains the optimal investment decision y′ given that W f, W p, and W c

are determined based on the investment decisions and flows from the previous iteration
v −1 (where v is the notation for iteration). Then, the investment decision yv at the
current iteration is obtained by combining y′ with yv−1 using the Method of Successive

Averages (MSA); that is, yv ¼ 1
v
y 0 þ v−1ð Þ

v yv−1 . Since the feasible region of model P1
is a convex set, the investment strategy resulting from MSAwill retain feasibility. The
numerical experiments in the next section demonstrate that the MSA procedure retains
the good qualities of the solutions obtained in previous iterations and also boosts the
convergence of the proposed algorithm.

Next, given investment decision yv, the TSHA solves model P2 to determine the
flow pattern which results in the expected shortest response time between O-D pairs in
the surviving networks (sampled by Monte Carlo Simulation) under various disasters.
The flow x obtained in the second stage is used in the next iteration to update W f,W p,
and W c. This two-stage iterative process is repeated until a fixed point (x∗, y∗) is
obtained that is consistent with the convergence criterion used. The two stages of the
proposed algorithm are linked by the investment strategy y in the first stage and the
flow vector x in the second stage. The iterative process is consistent with the proposed
approach to systematically consider the pre-disaster investment strategy and the post-
disaster network performance in both directions.

Note that y∗ represents a feasible investment solution of the proposed bi-level
stochastic optimization model, which results in the network performance F(x∗),
though (x∗, y∗) together may not represent a feasible solution for model P as x∗ and
y∗ are obtained at different levels of the iterative TSHA. However, based on the
convergence criterion, (x∗, y∗) can be viewed as a feasible solution for P within an
acceptable tolerance level (in our experiments, the difference between the solutions in
five successive iterations is within a pre-specified threshold Δ). As the primary study
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focus is to find an effective investment plan y, the TSHA can solve the proposed pre-
disaster investment planning problem to provide a “good” solution in a computationally
efficient manner.

5 Numerical Experiments

5.1 Experimental Setup

This section applies the proposed bi-level stochastic optimization model P and
the solution algorithm TSHA to the Sioux Falls city network (shown in Fig. 1)
which includes 24 nodes and 76 links. The case study demonstrates the
practical applicability of the proposed approach, and also illustrates the effi-
ciency of the proposed algorithm.

Due to the lack of field data, the following input data are generated for the
experiments: (i) the O-D pairs: (14, 7), (12, 18), (4, 8), (9, 7) and (14, 20); (ii) cij: full
link upgrade cost; accordingly, the full upgradation budget B=∑cij; (iii) tij: free flow
link travel time in minutes; and (iv) cpij: link traffic flow capacity, which is estimated
using service volumes of multilane highways for LOS C (Exhibit 12-5 in Highway
Capacity Manual, 2000). Further, we also randomly generate the following necessary
parameters for each experiment: (i) αk: the weight for O-D pair k; k=5; (ii) Γ(ωd): the
occurrence probabilities of ten different disaster scenarios; (iii) pij(ωd): the probability
of link failure in a disaster if it is not upgraded; and (iv) qij(ωd): the probability of link
[i, j] failure in a disaster if it is fully upgraded.

The surviving networks are sampled using Monte Carlo simulation as follows. First,
the surviving links are sampled. A random value λij is generated to represent the
randomness of the link failure; link [i, j] fails if λij≤θij (link failure probability θij

1

8

4 5 63

2

15 19

17

18

7

12 11 10 16

9

20

23 22

14

13 24 21

3

1

2

6

8

9

11

5

 15

12
2313

21

16 19

17

20
18 54

55

50

48

29
51 49 52

58

24

27

32

33

36

7 35

4034

41

44

57

45

72

70

46 67

69 65

25

28 43

53

59 61

56 60

66 62

68
63

7673

30

7142

647539

74

37 38

26

4 14

22 47

10 31

Fig. 1 Sioux Falls city network

An Optimization Model to Reduce Expected Post-Disaster Response Timer 283



defined in Section 3.1), otherwise it survives. Second, the surviving network pool is
sampled. Under a disaster, a surviving network consists of all the surviving links. For
the given link survivable probabilities under a disaster, a thousand surviving networks
are randomly generated. They are used as the sample pool to evaluate the post-disaster
performance (response time between O-D pairs). The experimental results illustrate that
a sample of a thousand surviving networks is a sufficient sample size for the network
used in this case study.

5.2 Experiments and Results

The experiments investigate the characteristics of the proposed bi-level stochastic
optimization model and its solution algorithm.

5.2.1 Convergence and Computation Performance

The convergence of the TSHA solution algorithm is analyzed using a relatively tight
convergence criterion, that |yv−yv −1|2≤Δ for five consecutive iterations; that is, the
search procedure will not terminate until the difference between the investment
solutions in two successive iterations is less than Δ for five consecutive iterations.
The Δ values used in the experiments are: 0.5, 0.2, 0.05, 0.01, 0.005, and 0.001. In
addition, for each Δ, we test the convergence of the algorithm under different budget
plans, r=0.1, 0.2, 0.3, 0.4, 0. 5 and 0.8.

The results are illustrated in Fig. 2, with Fig. 2 and b illustrating the convergence
trajectories of the algorithm under different budget plans for Δ=0.5 and Δ=0.01,
respectively. Figure 2c illustrates the relationship between F(x), the expected shortest
response time of the surviving networks across O-D pairs over all tested disasters, and
the convergent criterion Δ under the different budget plans. Both Fig. 2a (Δ=0.5) and
b (Δ=0.01) indicate that the proposed algorithm efficiently converges to a fixed point
under various budget plans r. Further, the algorithm needs more iterations to converge
under a tighter convergence criterion (Fig. 2a (Δ=0.5) needs less number of iterations
to converge than Fig. 2b (Δ=0.01)), but results in a better solution; that is, a smaller
value of F(x) (the converged F(x) values in Fig. 2b (Δ=0.01) are less than the
corresponding F(x) values in Fig. 2a (Δ=0.5)). However, Fig. 2c indicates that the
improvement of F(x) is very limited afterΔ is less than 0.01 under each budget plan. It
indicates that the performance of the algorithm trends to a plateau at this point.
Therefore, Δ=0.01 is adopted in the subsequent experiments for the convergence
criterion. Further, the results indicate that a very tight convergence condition is not
necessary, and that the decision-maker may apply this insight to avoid a focused pursuit
of a high convergence condition and save computation cost.

Equally important, we observe that larger investment budgets (a larger r) enlarge the
feasible solution space. Correspondingly, more iterations are required to converge, as
seen in Fig. 2a and b. Further, a higher budget will always lead to a better investment
decision in terms of F(x). However, the marginal improvement is not significant beyond
r=0.3, as seen in Fig. 2c where under each convergence condition, improving budget
plans from r=0.3 to r=0.4, 0.5, or even 0.8, does not lead to a significant improvement
in F(x). Hence, the proposed methodology can provide useful insights to decision-
makers to aid them in identifying an efficient budget plan. That is, decision-makers can
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test different investment rates and find the preferred one (such as r=0.3 in our
experiments) beyond which the marginal improvement is less significant.

From a computational standpoint, both P1 in the first stage and P2 in the second
stage can be solved using existing polynomial time (or efficient) algorithms in the
literature since P1 is a linear program and P2 is a shortest path problem in the surviving
network. The most computationally intensive component of the proposed solution
algorithm is the iterative process to search for the fixed point in the feasible solution
space, which increases with the network size. This is a standard characteristic of most
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such combination optimization problems. Specific to this study, we found that embed-
ding the MSA procedure in the search process can efficiently reduce the convergence
time. In the study experiments, using Matlab R2011a on a computer with 3.25GB
RAM and Intel(R) Core(TM)2 Duo CPU E8200@2.66GHz, it takes about 17 min of
execution time, on average, to converge to an acceptable solution under the conver-
gence criterion Δ=0.01. As the proposed approach is used to addresses a long-term
pre-disaster (off-line) investment planning problem, the computational time is not a
tight constraint and does not represent a key barrier to using the proposed methodology
for large networks.

The solution of the proposed TSHA algorithm may potentially depend on the
starting point as it is an iterative procedure. However, this effect does not manifest in
the study experiments. More importantly, specific to the proposed problem, a natural
starting point is to set all investment decision variables equal to zero as it corresponds to
the current infrastructure network condition, with none of the links invested in. It
enables the proposed methodology to be consistent with the real-world decision process
as the pre-disaster investment planning usually uses the current network infrastructure
conditions for future investment decisions. Hence, the proposed starting point for the
solution algorithm is synergistic with the application of the proposed methodology in
practice.

5.2.2 Quality of the Solution

This section explores the quality of the feasible investment solution y. To do so,
consider an expected surviving networkΠ, in which the links are considered to survive
in disasters if their expected link survival probabilities θij are greater than a thresholdΘ

corresponding to the level of disaster severity. Mathematically, θij andΠ are defined by
Eqs. (17) and (18), respectively.

θij ¼
X

d
Γ ωdð Þ 1−pij ωdð Þ þ yij pij ωdð Þ−qij ωdð Þ

� �� �
ð17Þ

Π ¼ πij


 � Ej j
;πij ¼ 1; θij≥Θ

0; θij < Θ

(
ð18Þ

Correspondingly, the weighted shortest response time of the expected surviving
network Π over all O-D pairs is denoted as Φ(x), which is computed using Eq. (19):

Φ xð Þ ¼
XK

k¼1
αkgk xkij Πð Þ

� �
ð19Þ

where gk(xij
k(Π)) is the shortest response time for an O-D pair k in Π.

From the definitions of Π and Θ, it can be noted that: (i) Π may not belong to any
individual surviving network in {ξs}|Ξ| under individual disasters since it results from
the expected link survivability distribution θij


 �
, which is different from the link

survivability distribution under a specific disaster; (ii)Π represents an average scenario
of the surviving networks over all disasters, and its performance (such as the shortest
response time Φ(x) in this study) demonstrates the average survivability or functionality
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of the surviving networks over all disasters; and (iii) The disaster severity is implied by
the threshold Θ that is linked to link survival probabilities. A larger value of Θ implies
a higher threshold for a link to survive under a disaster. For example, Θ=0.8 indicates
that only if the expected link survival probability is higher than 0.8, the link will
survive, otherwise it fails. Thus, a higher Θ value indicates a more severe disaster
which may result in fewer surviving links in Π, and vice versa.

Based on the above observations, the Φ(x)s under different disaster severities Θs are
used as benchmarks to evaluate the quality of investment solution y from the THSA.
The underlying idea is that the network performance F(x) predicted by the proposed bi-
level optimization model is compared to the average network performances represented
by the Φ(x)s given that the network links are upgraded using investment solution y
obtained from the bi-level optimization model. The objective is to analyze whether the
predicted network performance F(x) is better or worse than the Φ(x)s under the disaster
with the same severity. This is done using the following sequential steps: (1) By solving
model P, obtain an investment solution y and the expected network performance F(x);
(2) Using this investment solution y, determine the expected surviving networkΠ under
disaster severity Θ; and (iii) Compute the shortest network response time Φ(x) of Π
under each disaster severity. The quality of the investment solution y is demonstrated
by comparing F(x) to the Φ(x)s. To facilitate the discussion hereafter, we more
specifically refer to Φ(x) as Φ(x|Π(Θ)), and F(x) as F(x|Ξ).

The experiment results illustrated in Fig. 3 indicate thatF(x|Ξ) predicts theΦ(x|Π(Θ))s
reasonably well under disasters of moderate severity (such as Θ=0.6 and 0.7), but
underestimates or overestimates Φ(x|Π(Θ))s under disasters of high severity (Θ=0.8) or
mild severity (Θ=0.5), respectively. This is especially perceptible under disasters of
very mild severity. Through these observations, the applicability of the proposed
approach is articulated as follows. First, decision-makers addressing pre-disaster invest-
ment decisions can apply the proposed bi-level model and the associated solution
algorithm to generate an investment strategy, and robustly predict the average network
performance for moderately severe disasters. Second, the proposed approach is also
relevant for very severe disaster scenarios, since the approaches will result in an
investment plan leading to better average network performance. Third, for very mild
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disasters, the proposed approach would lead to a predicted network performance higher
than the target average network performance. Hence, the proposed approach is mean-
ingful under different disaster levels. Further, the focus of pre-disaster investment
planning is typically in the moderately severe disaster context as highly severe disasters
usually occur with very low frequencies but require unacceptable levels of expenditures
to strengthen against them, and mildly severe disasters occur more often but cause
insignificant damage. By contrast, moderately severe disasters usually result in consid-
erable damage and occur reasonably frequently. Thereby, adopting an acceptable budget
and a strategic investment plan can result in significant improvements in network
performance under such moderately severe disasters. Hence, the proposed method aids
in the investment decision-making process for effective pre-disaster investment
planning.

5.2.3 Significance of W c,W f and W p

Next, the significance of the threeW factors:W c,W f, andW p which are used to identify
the importance of a link for pre-disaster investment planning, is investigated. By
comparing their mathematical expressions (Eqs. (4)–(9)), some preliminary insights are
provided as follows. Both W f and W c are impacted by the investment decision in the
upper level as well as the flow in the lower level of the bi-level model. Hence, they bridge
the two levels of the proposed bi-level model as well as the two stages in the TSHA
algorithm, and can potentially guide the TSHA to a good solution. By contrast, W p is
dependent only on the decision variable y in the upper level; hence, it does not represent a
direct linkage between the upper and the lower levels of themodel. Correspondingly,W p

by itself cannot guide the interactive solution search process in the TSHA. Therefore, we
do not discuss the effect of W p by itself on the solution search process.

Several questions arise related to the significance of the threeW factors when viewed
from a more holistic perspective: (i) is W c or W f more significant?, (ii) what is the
effect ifW c,W f, andW p are factored in the different combinations thereof?, and (iii) is
it always necessary to include all three factors? These questions are addressed hereafter
based on the results of the corresponding experiments.

The relevant experiments consist of four cases, which differ in terms of the sets of O-D
pairs considered (two different sets, including the set identified in Section 6.1) and the
link failure probability distributions used (two sets of randomly-generated link failure
distributions for each O-D pair). For each case, the six different budget plans (r=0.1, 0.2,
0.3, 0.4, 0.5 and 0.8) are applied, but the optimal investment strategies are searched using
different combinations of W c,W f, andW p. The results are illustrated in Fig. 4 for each
case, by plotting the relationship between the network performance, F(x), and the
different combinations of W c, W f, and W p for each budget plan. In the figures, a
point with “*” indicates the best network performance under that budget plan in the
corresponding case, and a point with a “♦” symbol represents a value very close to the
best network performance. We differentiate these points to illustrate this aspect.

The results indicate that incorporating the effect of only W f in the pre-disaster
investment decision strategy usually results in a better network performance than
factoring only W c. This is illustrated in Fig. 4 for the four cases; F(x) values for the
scenarios factoring only W f are in most instances smaller than those considering only
W c. However, there are exceptions to this trend as illustrated in the figure.
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For the scenarios in which W f (or W c ) is already involved, by additionally
considering W c (or W f) it may be possible to slightly improve the solution in some
instances. For example, Case 1 in Fig. 4 illustrates that factoring bothW f andW c results
in smaller F(x) values than when only one of them is considered, for budget plans r =0.4,
0.5, and 0.8. The same can be observed in Case 2 when r=0.2, 0.3, 0.5, and in Case 3
when r=0.1. These observations can provide decision-makers insights on the complex-
ity of the interactions among traffic flow, network connectivity, and investment plan.
Hence, it is meaningful to consider their effects in an integrated manner.
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Some results indicate that W p can also improve the solution if W f is already
involved, but this usually occurs when the budget is relatively tight. This is
illustrated in Case 1 and Case 4 where the best solution appears at the combination
ofW f andW p when the budget plan is r=0.1. The inclusion ofW p beyond considering
W c only does not lead to benefits in these experiments.

The results illustrate that the best solutions may occur under different combinations
of W c, W f, and W p under different budget plans. For instance, in Case 1, W p

combined with W f results in the best solution under the budget plan r=0.1. In Case
2, using W c only results in the best solution under the budget plan r=0.4. Further, the
consideration of W c, W f, and W p together results in the best solution in Case 1 under
the budget plan r=0.3. In Case 4, under the budget plan r =0.3, 0.4, 0.5, 0.8, most
often, the best solutions will occur under W f only or the combination of W f and W c.

In summary, the three factors W c, W f, and W p, are significant to determining a
strategic pre-disaster investment decision. More importantly, the effects of W f, W c,
W p, and the combinations thereof on the solution are influenced by the budget plan, the
network structure, O-D pairs of interest, the distributions of the link survival probabil-
ities, and the link upgrade costs. Hence, for a given network structure and budget plan,
the study insights suggest that the decision-maker/practitioners should holistically
analyze different combinations of the three W factors to explore the best pre-disaster
investment strategy.

5.2.4 Sensitivity Analyses for the Weights of Wc,Wf and Wp

Next, the relative significance of each W factor (weighted identically in Eq. (10)) is
explored. To do so, the bi-level optimization model P is solved using the TSHA, in
which one of the weights of the threeW factors is increased from 1 to 100 with the step
size 10, while keeping the weights of the other two W factors equal to 1. The results
shown in Fig. 5 indicate that under the different budget plans, increasing the weight of
W c,W f orW p individually does not improve the solution. They suggest that focus on a
single factor among network connectivity, traffic flow usage, and upgradation cost may
lead to a worse investment strategy for pre-disaster planning. In other words, if
practitioners overemphasize the importance of only connectivity (or only traffic flow
usage or upgradation cost) and invest in the upgradation of the corresponding links, it
may lead to a worse post-disaster response time.

5.2.5 Sensitivity Analyses for the Weights of W c1 and W c2

This section analyzes the relative importance of W c1 and W c2, which were weighted
identically in Eq. (4). To do so, we re-write the formulation of W c as:

Wc
ij ¼ 1−μð ÞWc1

ij þ μWc2
ij ð20Þ

where μ increases from 0 to 1 with step size 0.1. Hence, if the weight of Wij
c2 is

increased from 0 to 1, then the weight ofWij
c1 is correspondingly decreased from 1 to 0.

The relevant experiments also include the four cases identified in Section 6.2.3, which
differ in terms of the sets of O-D pairs considered and the link failure probability
distributions used.
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Figure 6 illustrates the experiment results, where * on the x axis represents the
solution obtained by weighting W c1 and W c2 evenly. The results indicate that a better
investment strategy can be obtained by treating W c1 and W c2 evenly (assigning both
of them a weight equal to 1) rather than overweighing either W c1 or W c2 in W c. This
implies that in the study experiments, neither significant deterministic single link
failure nor stochastic link set failure directs the proposed methodology to identify a
link set whose upgradation leads to a better network performance in terms of response
time under disasters. Thereby, decision-makers and practitioners may need to treat
W c1 and W c2 evenly in evaluating the link significance for network connectivity in
certain applications.
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Fig. 5 Sensitivity analysis for the weights of the W factors
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Overall, the results in Sections 6.2.4 and 6.2.5 provide decision-makers/practitioners
insights and guidelines on how to: (i) assign weights to the three W factors to evaluate
the link significance to post-disaster response time, and (ii) allocate the investment
budget. They further reinforce the idea proposed in this study that decision-makers
need to holistically analyze the impacts of different factors rather than focusing on only
one of them.
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6 Concluding Comments

This study proposes a bi-level stochastic optimization model to address the pre-disaster
investment planning problem that seeks to enhance network survivability to reduce the
post-disaster expected response time for the surviving networks under different disaster
scenarios. To our knowledge, this represents the first instance that two levels of
stochasticity, link failure and disaster characteristics, are being explicitly incorporated
in the same framework for this problem context. Due to the complexity of the model, a
two-stage heuristic algorithm, TSHA, is proposed which decomposes the bi-level
optimization model into two models: a linear optimization model and an expected
shortest path model. The two models are solved in two separate, but interacting, stages.
By iteratively solving the two models until the solution satisfies the pre-defined
convergence criterion, the algorithm determines a fixed point which represents a
feasible solution within an acceptable tolerance level for the proposed bi-level stochas-
tic optimization model.

The results from the numerical experiments suggest that the TSHA algorithm can
efficiently converge to a feasible solution for the proposed bi-level stochastic optimi-
zation model. More importantly, our experiments illustrate that the marginal improve-
ment of network performance does not always increase with budget increment.
Thereby, the proposed methodology can provide insights for decision-makers to
identify an efficient budget plan and the optimal link investment strategy by system-
atically considering the interactions between the pre-disaster investment decisions and
the post-disaster network performance. Further, the proposed bi-level optimization
model predicts the network performance robustly under disasters of moderate severity.

In the parametric analyses, this study considers three factors,W c,W f, andW p. They
represent the significance of the network connectivity, traffic flow and marginal link
survivability improvement on the investment decisions, respectively. More precisely,
they illustrate the effect of the network structure, traffic demand distribution, and
upgradation costs on the investment strategy in the pre-disaster investment planning.
These factors are often considered separately or in isolation; the parametric analyses
suggest the need for the decision-maker to use a holistic perspective to capture the
influence of these factors. Omitting any of them may lead to gaps in the planning
strategy. Further, the relative significance of these factors varies with budget limits, link
survival characteristics, and surviving network topologies. These results indicate that
there is no single solution that “fits” all cases effectively. Hence, the decision-maker
may benefit from considering all possible combinations of these factors and analyze
them under different budget plans to identify the best solution for the pre-disaster
investment strategy in a specific case. The proposed approach provides the capability
for decision-makers to conduct the aforementioned comprehensive analyses.

Based on the perspective in this study that the network performance implies the
response travel time for the response resources (such as personnel and equipment),
traffic flow congestion is not considered on the network links, and free flow travel
times are assumed. While this may suffice for the immediate post-disaster response,
there is a need to factor the traffic patterns when addressing medium- and long-term
post-disaster recovery and reconstruction. This represents a future research direction. It
also has the potential to further refine the understanding of the significance of the
various W factors. Correspondingly, further research work incorporating the issues of
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traffic congestion, dynamic travel times, and the possibility of surviving links with
partial functionality, represents an on-going effort.
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