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Abstract On-time shipment delivery is critical for just-in-time production and quick
response logistics. Due to uncertainties in travel and service times, on-time arrival
probability of vehicles at customer locations can not be ensured. Therefore, on-time
shipment delivery is a challenging job for carriers in congested road networks. In this
paper, such on-time shipment delivery problems are formulated as a stochastic vehicle
routing problem with soft time windows under travel and service time uncertainties. A
new stochastic programming model is proposed to minimize carrier’s total cost, while
guaranteeing a minimum on-time arrival probability at each customer location. The aim
of this model is to find a good trade-off between carrier’s total cost and customer service
level. To solve the proposed model, an iterated tabu search heuristic algorithm was
developed, incorporating a route reduction mechanism. A discrete approximation meth-
od is proposed for generating arrival time distributions of vehicles in the presence of
time windows. Several numerical examples were conducted to demonstrate the appli-
cability of the proposed model and solution algorithm.

Keywords Vehicle routing . Timewindow.Customer service .Stochasticprogramming
. Tabu search . Discrete approximation

1 Introduction

The Vehicle Routing Problem (VRP), introduced by Dantzig and Ramser (1959),
involves the design of a set of minimum-cost routes for the vehicles of a logistics
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company. The routes must start at the depot, serve a group of geographically scattered
customers, and finally return to the depot. Each customer can only be visited once by
one single vehicle. The total demand of each route cannot exceed the capacity of the
vehicle and the duration of each route cannot exceed a given limit. VRP has broad
applications in distribution and logistics management fields. In the last 50 years,
strides have been made in the development of efficient and effective solution algo-
rithms using both exact and heuristic approaches (Laporte 2009). More than one
hundred software companies are now selling commercial vehicle routing software
and thousands of logistics companies are using VRP software (Drexl 2012).

In the literature, a number of VRP variants have been intensively studied (Toth and
Vigo 2002; Golden et al. 2008; Leung et al. 2011; Norouzi et al. 2012; Yu et al. 2011;
Escuín et al. 2012; Li et al. 2012). Vehicle routing problems with time windows
(VRPTW) form a large proportion of the matters studied. One example is the request for
a vehicle to start service within a given time interval (i.e. time window). The time
window constraints can be modeled as either hard or soft. In the hard time window case,
customers refuse the service of late arrival vehicles (Solomon 1987; Savelsbergh 1992;
Cordeau et al. 2002; Nagata et al. 2009; Yu and Yang 2011). In the soft time window
case, customers accept the vehicle service regardless of arrival time, but nonetheless
penalties for earliness or tardiness are incurred (Koskosidis et al. 1992; Balakrishnan
1993; Taillard et al. 1997; Chiang and Russell 2004; Liberatore et al. 2011). In both the
hard and soft cases, early arrival vehicles must wait until the customer’s requested
service time arrives.

In most of VRP studies, the three elements including demand, customers and travel
times are assumed to be deterministic. In reality, however, all these elements can be
highly stochastic due to the complexity of the real logistics applications. For example,
travel times in urban road networks are highly stochastic due to roadway capacity
variations and traffic demand fluctuations (Lam et al. 2008; Chen et al. 2011, 2012;
Li et al. 2012;Wei et al. 2012). Ignoring the stochastic nature of these elements may lead
to sub-optimal even infeasible delivery solutions. In view of this, researchers have
investigated the stochastic vehicle routing problem (SVRP) by considering stochastic
demands and/or customers (Bertsimas and van Ryzin 1991; Gendreau et al. 1995;
Laporte et al. 2002; Lei et al. 2011) and uncertain travel times (Laporte et al. 1992;
Lambert et al. 1993; Kenyon and Morton 2003; Zhang et al. 2012).

Some researchers have also investigated SVRP with time windows under travel
time uncertainties. Ando and Taniguchi (2006) studied SVRP with soft time window
constraints. A model was proposed to minimize carrier’s total cost, which is com-
prised of the fixed vehicle employment cost, operating cost and penalty cost. The
operating cost was assumed to be proportional to the total mean travel time, while the
penalty cost was formulated as the expected earliness and tardiness of vehicles at
customer locations. Travel time distributions were estimated from probe vehicle data.

Russell and Urban (2008) developed a multiple-objective model for SVRP with
soft time window constraints. Priorities among different objectives were assumed in
order of the number of required vehicles, total distance traveled and time-window
penalties incurred. The model minimizes a weighted average of these objectives. A
tabu search heuristics was developed to solve the model. To reduce the number of
required vehicles, the fixed vehicle employment cost was multiplied by a large
weighting parameter in the objective function. The earliness and tardiness penalties
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due to time window violation were deduced based on the assumption of Erlang travel
time distributions.

Li et al. (2010) investigated SVRP in both the hard and soft time window cases.
Uncertain service times were also considered. In the soft time window case, a two-stage
stochastic programming with recourse model was built. The objective of the model is to
design a set of routes in the first stage and to minimize the expected costs in the second
stage when random travel and service times are realized. A tabu search heuristics was
also developed to solve the model. Travel and service times were assumed to be
normally distributed and stochastic simulation was used for probability check and
computing expected values. In the hard time window case, a chance-constrained model
was proposed to ensure that the probability of vehicles arriving at customers within the
time windows is at least a pre-specified value. Expected earliness and tardiness of
vehicles were not included in carrier’s total cost in the hard time window case.

On the basis of the previous works, this paper aims to investigate SVRP with soft
time window constraints under travel and service time uncertainties. In the rest of the
paper, the SVRP with soft time window constraints is referred to as SVRPSTW. The
previous works is extended in the following two aspects.

(1) A new stochastic programmingmodel is proposed in this paper not only tominimize
carrier’s total cost, but also to guarantee a minimum on-time arrival probability at
each customer location. The previous SVRPSTW models mainly focused on
reducing carrier’s total cost. This optimization approach is essentially formulated
from the perspective of the carrier in order to provide shipment delivery service at
minimum total cost. By this approach, the probability of late shipment delivery for
some customers may be quite high. In practice, inventories are limited due to high
holding costs and therefore production or sales processes may be disrupted by
frequently delayed shipments. It is common for customers to require a certain
probability of on-time shipment delivery, though late service is at times permitted.
In this paper, the on-time arrival probability at each customer location is explicitly
formulated in the proposed model by the introduction of a customer service level
constraint. The probability of on-time shipment delivery to each customer can be
then ensured. The advantages of the proposed model are listed below.

& The proposed model is a generalization of the conventional recourse models
for SVRPSTW in the literature (Russell and Urban 2008; Li et al. 2010).
When no customer service level constraint is imposed, solutions of the
proposed model are the same as the previous SVRPSTW models.

& The proposed model provides an easy way of exploring trade-offs between
carrier’s total cost and customer service level, simply by adjusting the
customer service level constraints.

& The proposed model can easily be adapted to multi-class customers with
various service level preferences by imposing appropriate customer service
level constraints.

(2) An iterated tabu search heuristic algorithm is developed to solve the proposed
model. A route reduction mechanism is designed and incorporated in the
developed heuristics. When performing a neighborhood search, trial move costs
that remain unchanged in one iteration are kept in the memory for use in the next
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iteration. On the basis of these cost records, every route that can be decomposed
and inserted into other routes is identified in an SVRPSTW solution. In this way,
the number of routes can be reduced. Additionally, inspired by Miller-Hooks
and Mahmassani (1998) and Chen et al. (unpublished), an approximation
method called α-discrete is proposed in this paper for generating arrival time
distributions of vehicles in the presence of time windows. Using this approxi-
mation method, SVRPSTW solutions can be evaluated without suffering re-
strictions on the assumption of travel and service time distributions.

The remainder of this paper is organized as follows. The proposed model is
formulated in the following section. The iterative tabu search heuristics
designed for solving the proposed model is presented in Section 3. The
approximation method for estimating arrival time distributions is described in
Section 4. Computational results are shown in Section 5. Finally, concluding
remarks are given in Section 6.

2 Model Formulation

LetG=(V0,A) be a complete digraph, whereV0={0,…,n} is the vertex set andA={(i,j):
i,j∈V0,i≠j} is the arc set. Vertex 0 represents the depot where m0 identical vehicles with
capacityQ are available. The customer set is denoted asV ¼ V0= 0f g ¼ 1;…; nf g. Each
customer i∊V has a nonnegative demand qi, a service time Si and a time window [ei,li]. It
is expected that service at customer i begins within [ei,li]. If the vehicle arrives at customer
i’s location before ei, it has to wait until ei; if it arrives at customer i’s location after li, a
penalty proportional to the lateness must be paid. A time window [e0, l0] is also
associated with the depot, where e0 represents the earliest possible departure
time from the depot and l0 represents the latest possible arrival time at the
depot. A travel time Tij is associated with each arc (i, j)∊A. Both Tij and Si are
random variables with distributions assumed to be known and independent of
everything else. Additional assumptions are: Q≥qi, i∊V (i.e. each vehicle can
serve at least one customer) and m0 is big enough (i.e. there are sufficient
vehicles at the depot). Additional notation is listed as follows:

M a sufficiently large number
f fixed cost of employing one vehicle
m number of required vehicles in a feasible solution, m≤m0

m* number of required vehicles in the optimal solution, m*≤m
K the set of required vehicles in a feasible solution, K={1,2,…,m}
xijk a binary variable associated with each arc (i, j)∊A. It is equal to 1 if and only if

arc (i, j) is traversed by vehicle k and 0 otherwise, k∊K
Rk route k defined as Rk ¼ r0 ¼ 0; r1;…; r j; r jþ1;…; rnk ; rnkþ1 ¼ 0

� �
, where nk

is the number of customers assigned to vehicle k, rj∊V0,0≤ j≤nk+1,k∊K
Ar jk arrival time of vehicle k at vertex rj’s location, rj∊Rk,1≤ j≤nk+1,k∊K
Tss
r jk

service start time of vehicle k at customer rj, rj∊Rk,1≤ j≤nk,k∊K
d0k departure time of vehicle k from the depot, k∊K
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Dr jk departure time of vehicle k from customer rj’s location, rj∊Rk,1≤ j≤nk, k∊K
Wr jk earliness (waiting time) of vehicle k at customer rj’s location, rj∊Rk,1≤j≤nk, k∊K
Pr jk tardiness of vehicle k at vertex rj’s location, rj∊Rk,1≤ j≤nk+1,k∊K
Bk duration of route k, k∊K
h upper bound of the duration of each route
Zk excess route duration for vehicle k, k∊K
l1i penalty coefficient for earliness at customer i’s location, i∊V
l2i penalty coefficient for tardiness at customer i’s location, i∊V
l2,0 penalty coefficient for tardiness when a vehicle returns to the depot
l3 penalty coefficient for excess route duration
αi required probability of on-time shipment delivery (i.e. required service level)

by customer i, i∊V
α0 required on-time arrival probability when a vehicle returns to the depot
β required probability that duration of each route is smaller than h.

The stochastic programming model for SVRPSTW proposed in this paper is given
below.

Min

Mf ⋅mþ
X
i; jð Þ∈A

X
k∈K

E Tij

� �
xijk þ

X
k∈K

Xnk
j¼1

l1r jE Wr jk

� �þXnkþ1

j¼1

l2r jE Pr jk

� �þ l3E Zkð Þ
 !

ð1Þ

Subject to X
j∈V0

X
k∈K

xijk ¼ 1; ∀i∈V ð2Þ

X
j∈V

x0jk ¼ 1; ∀k∈K ð3Þ

X
i∈V

xi0k ¼ 1; ∀k∈K ð4Þ

X
i∈V0

xijk−
X
i∈V0

xjik ¼ 0; ∀ j∈V; k∈K ð5Þ

X
i∈V

qi
X
j∈V0

xijk ≤Q; ∀k∈K ð6Þ

P Ar jk ≤ lr j
� �

≥αr j ; ∀r j∈Rk ; 1≤ j≤nk þ 1; k∈K ð7Þ

P Bk ≤hf g≥β; ∀k∈K ð8Þ

Vehicle Routing Problem with Travel Time Uncertainty 475



xijk ¼ 0; 1f g; ∀i; j∈V0; k∈K ð9Þ
The objective function Eq. (1) consists of three parts: 1. fixed vehicle employment

cost, 2. total mean travel time as the operating cost, and 3. weighted expected earliness,
tardiness and excess route duration as penalty cost. Wr jk , Pr jk and Zk are given in Eqs.
(10), (11) and (13) respectively. Illustrations of the penalty coefficients l1i and l2i,i∊V
can be found in Fig. 1. The proposed model has a hierarchical optimization objective:
the primary objective is to minimize the number of required vehicles to satisfy con-
straints (2) to (9); the secondary objective is to minimize the operating and penalty costs
given the minimized number of vehicles m. This hierarchical optimization objective
implies that one SVRPSTW solution with fewer routes but higher operating and penalty
costs is better than another with more routes but lower operating and penalty costs.

Wr jk ¼ max er j−Ar jk ; 0
� �

; r j∈Rk ; 1≤ j≤nk ; k∈K ð10Þ
Pr jk ¼ max Ar jk−lr j ; 0

� �
; r j∈Rk ; 1≤ j≤nk þ 1; k∈K ð11Þ

Bk ¼ Tr0r1 þ
Xnk
j¼1

Wr jk þ Sr j þ Tr jr jþ1

� �
; r j∈Rk ; k∈K ð12Þ

Zk ¼ max Bk−h; 0f g; k∈K ð13Þ
Equation (2) indicates that each customer must be visited exactly once by one vehicle.

Equations (3) and (4) ensure that each vehicle starts and ends its route at the depot.
Equation (5) ensures that each vehicle departs from a customer location after it visits the
customer. Equation (6) is the capacity constraint. Equation (7) is the customer service level
constraint and ensures that the probability of on-time shipment delivery (i.e. service level)
to each customer is at least a predefined value αi (i.e. required service level). Similarly,
when a vehicle returns to the depot, the on-time arrival probability at the depot must be
larger than a threshold α0. The required service level of each customer can be adjusted
according to practical requests. Equation (8) ensures that each route is completed within h
with at least probability β. If αi in Eq. (7) and β in Eq. (8) are set to zero, the proposed
model then reduces to the conventional recourse models for SVRPSTW (Russell and
Urban 2008; Li et al. 2010). Equation (9) defines the domain of the decision variables.

Figure 1 shows the relationship between the timewindow specified by customer i and
possible arrival times of vehicle k. If the vehicle arrives earlier (later) than ei (li), an
earliness (tardiness) penalty cost will then be incurred with unit earliness (tardiness)

Arrival time

Penalty
cost

1

1
1i

2i

PDF of arrival
time Aik

1 2

PDF1

PDF2

On-time arrival probability

Early arrival probability

Late arrival probability

ie
il

Fig. 1 Time window [ei, li] and arrival time Aik of vehicle k at customer i′s location
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penalized by l1i (l2i). The probability density functions (PDF) of three possible vehicle
arrival times are also shown in Fig. 1. In deterministic cases, arrival times μ1 and μ2 may
be accepted because both lie within the time window. While under travel time un-
certainties, arrival times with PDF1 and PDF2 might not be accepted since PDF1 can
possibly lead to a long waiting time and PDF2 may result in a large late arrival
probability. In this sense, it is reasonable and necessary to incur an earliness penalty
cost and to impose a constraint on the vehicle’s minimum on-time arrival probability.

In the proposed model, objective function Eq. (1) represents carrier’s total cost and
constraint Eq. (7) guarantees customers’ required service level. In order to highlight the
primary optimization objective of the proposed model, fixed vehicle employment cost is
multiplied by a sufficiently large number M in Eq. (1). By adjusting αi,i∊V in Eq. (7),
various trade-offs between carrier’s total cost and customer service level can be obtained.

An alternative way to trade off between carrier’s total cost and customer service level is
to adjust the penalty coefficient l2i,i∊V in Eq. (1), without imposing any customer service
level constraint as Eq. (7). IfM in Eq. (1) is a moderate number, l2i can be then increased to
a level such that tardiness penalty cost is comparable to the fixed vehicle employment cost.
In this way the trade-off between cost and service can also be found. However, the increase
of l2imay be irrational as fixed cost of employing one vehicle is usually much larger than
the unit penalty cost (e.g. 1000 versus 0.5 in Russell andUrban 2008). Irrational increase of
l2i may lead to unrealistic cost coefficients and even irrational routing solutions
(Koskosidis et al. 1992). Compared with this method, the proposed model in this paper
provides a more straightforward way of achieving the goal of exploring trade-offs between
carrier’s total cost and customer service level. The probability of on-time arrival to each
customer is explicitly formulated in the proposed model and guaranteed by customer
service level constraints. This has a clear implication in practical applications.

3 Solution Algorithm

In this section, a heuristic algorithm based on an iterated tabu search (ITS) by
Cordeau and Maischberger (2012) is developed for solving the proposed model. In
ITS, an iterated local search (Lourenço et al. 2002) is used as the general framework
and a tabu search is adopted as the local search improvement method. The major
strengths of ITS are simplicity, flexibility and efficiency. The neighborhood structure
of the tabu search heuristics in ITS is simple and a single type of solution perturbation
is adopted. ITS is also flexible as it can solve many VRP variants without changing
the methodology and parameter settings. Finally, ITS is reasonably fast and effective.
Cordeau and Maischberger (2012) reported solving classical VRP and seven VRP
variants by using ITS, and showed the competitiveness of ITS with other heuristics
for each particular problem variant.

The heuristic algorithm developed in this section is a modified version of ITS,
denoted as SVRP-ITS. Minor extensions of ITS are made in SVRP-ITS: (a) a direct
route reduction mechanism is incorporated in SVRP-ITS, aiming to reduce the
number of required vehicles in a SVRPSTW solution; (b) when performing a
neighborhood search, trial move costs that remain unchanged in one iteration are
kept in the memory for use in the next iteration. These cost records can be used to
avoid possible repetitive computing in both neighborhood search and route reduction
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processes. In the following sections, the main framework of SVRP-ITS is shown first,
followed by brief descriptions of each component.

3.1 Main Framework of SVRP-ITS

The main framework of SVRP-ITS is summarized in Algorithm SVRP-ITS. Firstly a
feasible initial solution s0 is constructed (Section 3.2). In each iteration of SVRP-ITS,
tabu search (Section 3.3) is then used to improve the current solution s′, resulting in an
improved solution es. The best feasible solution s* is updated accordingly. Before the start
of the next iteration, s′ is renewed employing a perturbation mechanism (Section 3.5). Ifes satisfies the acceptance criterion (Section 3.4), es is then perturbed, otherwise s* is
perturbed. Let η be the maximum number of tabu search iterations allowed to be
performed during the entire search process of SVRP-ITS. ζ represents the total number
of tabu search iterations performed so far. SVRP-ITS stops if ζ is larger than η. Note that a
tabu search iteration denotes an iteration within a tabu search process (see Step 2 in
Procedure Tabu Search); c(s) is set to the objective function Eq. (1).

Algorithm SVRP-ITS 
Step 1. Initialization. 

0s ← Initial Solution Construction() 

0*s s← , 0's s←
Step 2. Iterated local search. 

while ζ  is smaller than η  do
Step 2.1 Local search improvement. 

s ← Tabu Search( 's ) 
Step 2.2 Update the best feasible solution *s  found so far. 

     if s  is feasible and ( )< ( *)c s c s  then 
*s s←

     end if 
Step 2.3 Renew the current solution 's  employing a perturbation mechanism.

    if Acceptance Criterion( s ) is satisfied then 
's ← Solution Perturbation( s ) 

    else 
's ← Solution Perturbation( *s ) 

    end if 
end while 

Step 3. Return the best feasible solution *s .

3.2 Initial Solution Construction

In ITS (Cordeau and Maischberger 2012), an initial solution with m*+1 routes was
constructed for a benchmark problem, wherem*is the number of routes in the best known
solution of the benchmark problem. For SVRPSTW, no benchmark problem exists andm*
is unavailable. Alternatively, Solomon’s Insertion heuristics (Solomon 1987) is used to
construct an initial solution for SVRP-ITS. Both the two criteria c1(i,u,j) and c2(i,u,j) in
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Solomon (1987) are set to c(s) in SVRP-ITS. The resulting initial solution is feasible and
the number of routes in the initial solution is an upper bound of m*.

3.3 Tabu Search

The tabu search heuristics employed in SVRP-ITS is summarized in the Procedure
Tabu Search. The input solution s′ (may be infeasible) is inherited from Step 2.1 in
Algorithm SVRP-ITS. At the beginning of each tabu search iteration, route reduction
procedure (Section 3.3.6) is performed on the current solution s. If the procedure fails,
the best non-tabu neighborhood solution s in N(s) (Section 3.3.1) is selected to renew
s, considering tabu tenure and aspiration criterion (Section 3.3.4). s may deteriorate
compared with s. Let ζ1 be the number of consecutive iterations in which es has not
been improved. The tabu search stops if the best feasible solution es has not been
improved for η1 consecutive iterations.

Procedure Tabu search( 's ) 
Step 1. Initialization. 

's s← , 's s←
if s  is infeasible then 

( ) +c s ← ∞
end 
Initialize parameters and cost records. 

Step 2. Tabu search iterations. 
while 1ζ  is smaller than 1η  do
 Step 2.1 Perform route reduction procedure.

s ← Route reduction( s ) 
     if route reduction succeeds then 

s s← , return s
      end if 

Step 2.2 Perform neighborhood search. 
  for each solution s  in neighborhood ( )N s  do 

( )f s ← Solution evaluation( s ) 
( )p s ← Diversification( s ) 
( ) ( ) ( )g s f s p s← +

  end for 
      Select one solution s  that minimizes ( )g s  and is not tabu or satisfies aspiration 

criterion. 
Step 2.3 Update the best feasible solution s  found so far. 

      if s  is feasible and ( )< ( )c s c s  then 
s s←

      end if 
s s←

Step 2.4 Update parameters and cost records. 
end while 

Step 3. Return s . 
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3.3.1 Neighborhood Structure

A neighborhood solution of s is constructed by removing a customer from its original
route and then inserting it into another route. This process is performed on every
customer in s and the neighborhood N(s) is then obtained. When a customer is
removed, its original route is reconstructed by connecting the predecessor and
successor vertices of the customer. The customer is inserted into another route with
minimum increase in the value of f (s) (Section 3.3.2).

The definition of attribute was used in Cordeau et al. (2001). If customer i is
assigned to vehicle k in solution s, then s is said to have an attribute (i,k) and
all the attributes of s form the attribute set B(s). The generation of a neigh-
borhood solution of s is just the substitution of one attribute in B(s) with a new
attribute.

3.3.2 Solution Evaluation

To diversify the search, capacity, route duration and customer service level con-
straints are relaxed during the tabu search, with their violations penalized in the
objective function. The augmented objective function is f (s)=c(s)+g1q(s)+g2d(s)+
g3w(s), where q(s), d(s) and w(s) are violations of capacity, route duration and
customer service level constraints respectively. g1, g2 and g3 are three parameters
adjusted dynamically. These parameters are initially set to 1 and any one of them is
divided by 1+δ if the corresponding constraint is satisfied, otherwise it is multiplied
by 1+δ. δ is set to 0.5 in SVRP-ITS. Different from Cordeau et al. (2001), g1, g2 and
g3 are restricted in the interval [10−4,104] in SVRP-ITS. A similar restriction was
applied by Brandão (2004).

3.3.3 Diversification

Consider a move that substitutes attribute (i,k′) with (i,k) in B(s). To direct the search
into less explored search space, if this move generates a non-improving neighborhood
solution s with respect to s, then s is penalized by a term proportional to the frequency
(ρik) that attribute (i,k) is added into the current solution in the tabu search process.
The penalty term is p sð Þ ¼ 0:015c sð Þ ffiffiffiffiffiffi

nm
p

ρik . The new evaluation function for s is
g sð Þ ¼ f sð Þ þ p sð Þ, p sð Þ ¼ 0 if f sð Þ < f sð Þ.

3.3.4 Tabu Tenure and Aspiration Criterion

To prevent cycling, moves that lead to previously encountered solutions are forbidden
for a number of iterations. For example, if attribute (i,k′) is replaced with (i,k) in a
particular move and the resulting solution s is selected to renew s for the next
iteration, (i,k′) is then assigned a tabu status and can not be added to the current
solution for the next θ iterations. θ is set to [7.5log10n], where [x] is the integer nearest
to x. In following iterations, if a move adding attribute (i,k′) to B(s) leads to a
better solution than the best solution so far identified having attribute (i,k′), the
move is then allowed to be performed even if the tabu status of attribute (i,k′)
still exists.
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In SVRP-ITS, the aspiration criterion is further refined to account for both feasible
and infeasible solutions. During the tabu search process, both the best feasible and
infeasible solutions identified having attribute (i,k′) are recorded. If a move adding
attribute (i,k′) results in a better feasible or infeasible solution, the tabu status of
attribute (i,k′) can be then overridden.

3.3.5 Cost Records

In SVRP-ITS, cost records are used for storing the costs of removing each customer
from its original route and inserting it into every possible position in another route.
These costs can be used in both neighborhood search and route reduction processes.
At the end of each tabu search iteration, only two routes in the current solution s will
be changed. Therefore, only the costs related to the two changed routes need to be
updated and the remainder can still be used in the next iteration. This mechanism
aims to avoid possible repetitive computing and reduce the computational effort of
SVRP-ITS.

Suppose that there are m routes in a particular solution and n customers in total. On
average there will be n/m customers per route. If no mechanism such as cost records
exists, then approximately n ⋅(n/m) ⋅(m−1) trial moves need to be evaluated in each
tabu search iteration. If a mechanism such as cost records is adopted, about n ⋅(n/m) ⋅2
trial moves then need to be evaluated in each iteration. When m is larger than 3, a
reduction of about n ⋅(n/m) ⋅(m−3) in computing occurs. For SVRPSTW with cus-
tomer service level constraints in this paper, it is normal for m to be larger than 3. A
similar mechanism can be found in Brandão (2004) and the author reported a
reduction of at least 30 % of the computational effort using this mechanism.

3.3.6 Route Reduction

The original ITS does not have a direct mechanism to minimize the number of routes
(Cordeau and Maischberger 2012). The performance of ITS in solving VRPTW was
tested on Solomon’s benchmark problems (Solomon 1987), for which best known
solutions exist in the literature. The number of routes m* in these best known
solutions was utilized in ITS for solving the benchmark problems. With this useful
information of m*, the authors provided an indirect route reduction mechanism in
ITS. Details can be found in Cordeau and Maischberger (2012).

For SVRPSTW, no benchmark problem exists in the literature and the
information of m* is unavailable. The number of routes in an initial solution
of SVRP-ITS is an upper bound of the optimal value m*(Section 3.2). To
reduce the number of routes to m* in a SVRPSTW solution, a direct route
reduction mechanism for SVRP-ITS is developed in this section. With the use
of cost records, the mechanism checks every route in each tabu search iteration
to find if all customers on that route can be removed and feasibly inserted into
other routes. The mechanism is briefly described below and summarized in the
Procedure Route Reduction.

The procedure begins with checking the feasibility of the input solution s, as an
infeasible solution has little possibility of becoming a feasible one with fewer routes.
The procedure then examines whether there is such a route that all customers on that
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route can be feasibly inserted into other routes. If such a route exists, then ways of
inserting the customers are investigated and the one with the least cost is selected.
Owing to cost records, this procedure does not need much computational effort. In
most cases the procedure stops at an early stage because either, the input solution is
found not feasible or the procedure fails to find a route that can be decomposed.

3.4 Solution Perturbation

In Step 2.3 of Algorithm SVRP-ITS, s′ is perturbed for a tabu search restart. More
specifically, firstly a seed customer is selected at random. The seed customer and its p
closest customers are then removed and reinserted into s′ with minimum cost in a
random order, where p∼U 0;

ffiffiffi
n

pð Þ. This cluster removal heuristics has the potential to
prevent the removed customers from being reinserted into their original routes
(Pisinger and Ropke 2007).

Procedure Route Reduction( s ) 
if s  is infeasible then

return s
end if 
s s← , ( ) +c s ← ∞
for =1:k m do

if all customers in route k  can be feasibly inserted into other routes then
    Enumerate all insertion possibilities in terms of target route. 

for each target route possibility do
Divide the customers in route k  into groups so that customers in the same group 
will be inserted into the same target route. 
for each group do 

Initialize the base route set with the target route. 
  for each customer in the group do 
 Insert the customer into every possible position of each route in the base route 

set.  
if no feasible route exists after the trial insertions then 

The current target route possibility fails. Move to the next target route 
possibility. 

else 
Replace the routes in the base route set with the resulting feasible routes. 

end if
  end for 

Select the route with minimum cost in the base route set. Record the insert 
positions of the customers in the route. 

end for 
Construct solution s  according to the insert position record. 
if ( )< ( )c s c s then

s s← , ( ) ( )c s c s←
end if

end for
end if

end for
s s← , return s . 
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3.5 Acceptance Criterion

When performing solution perturbation, the improved solution es has a 1−(ζ/η)2

probability of being the target to be perturbed. A second choice is the best feasible
solution so far s*. At the early stage of SVRP-ITS,es is very likely to be selected and
perturbed, aiming at exploring a broad solution space. As SVRP-ITS approaches the
end, it will revert to s*.

4 Arrival Time Distribution Approximation

When evaluating a SVRPSTW solution s, (e.g. calculating c(s) and f (s) in
Section 3.3.2), arrival time distributions of vehicles need to be computed first.
Consider route Rk for vehicle k, in the soft time window case, the arrival time
Ar jþ1k of vehicle k at customer rj+1′s location can be recursively computed by Eqs.
(14) to (17).

Ar1k ¼ d0k þ Tr0r1 ð14Þ

Tss
r jk

¼ max Ar jk ; er j
� �

; 1≤ j≤nk ð15Þ

Dr jk ¼ Tss
r jk

þ Sr j ; 1≤ j≤nk ð16Þ

Ar jþ1k ¼ Dr jk þ Tr jr jþ1 ; 1≤ j≤nk ð17Þ
For VRPTW, Ar jþ1k can be predicted deterministically. For SVRPSTW, determin-

ing the distribution of Ar jþ1k is difficult in the presence of time windows. In Chang et
al. (2009), travel and arrival times of vehicles were assumed to be normally distrib-
uted. The mean and variance of departure time Dr jk were estimated based on the

distribution of max Ar jk ; er j
� �þ Sr j . In Thompson et al. (2011), assumptions of

normal distribution were also made. The mean and variance of arrival time distribu-
tions were estimated based on truncated normal distributions. Travel time distribu-
tions, however, are far from normal in some real-life cases (van Lint et al. 2008;
Fosgerau and Karlström 2010). Methods based on normal assumptions may lead to
large estimation errors in those particular cases. Even if travel times do follow normal
distribution, arrival time distributions are not normal in the presence of time windows
(Thompson et al. 2011). In the remainder of this section, the approximation method,
α-discrete is presented as a new method for estimating vehicle arrival time distribu-
tions in the presence of time windows.

Take routeRk for example. For travel timeTr jr jþ1
, a set of L discrete points 0.5ε,1.5ε,

…,Lε−0.5ε in the space of cumulative probability [0,1] is considered, where ε=1/L.

Correspondingly, a sequence of discrete travel times b
Tr jr jþ1
t ; t ¼ 1;…; L can be gener-

ated by Eq. (18), where F−1( ⋅) is the inverse cumulative distribution function (CDF) of
Tr jr jþ1

. The resulting approximated inverse CDF of Tr jr jþ1
is shown in Eq. (19).
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Distribution of service time Sr j can be estimated in the same way as Tr jr jþ1
.

b
Tr jr jþ1
t ¼ F−1 tε−

ε
2

� �
; t ¼ 1;…; L ð18Þ

vTr jr jþ1 tεð Þ ¼ b
Tr jr jþ1
t ; t ¼ 1;…; L ð19Þ

Given departure time d0k and distribution of Tr0r1 , distribution of arrival time Ar1k

in Eq. (14) can be computed as shown in Eq. (20).

vAr1k tεð Þ ¼ b
Tr0r1
t þ d0k ; t ¼ 1;…; L ð20Þ

In Eq. (15), given er j and distribution of Ar jk , distribution of Tss
r jk

can be estimated

using Eqs. (21) to (23).

v
Tss
r jk tεð Þ ¼ er j ; t ¼ 1;…; L; if er j ≥b

Ar jk

L ð21Þ

v
Tss
r jk tεð Þ ¼ er j ; t ¼ 1;…; terj

b
Ar jk

t ; t ¼ terj þ 1;…; L

(
; if b

Ar jk

terj ≤er j < b
Ar jk

terjþ1; 1≤terj≤L−1 ð22Þ

v
Tss
r jk tεð Þ ¼ b

Ar jk

t ; t ¼ 1;…; L; if er j < b
Ar jk

L ð23Þ
In Eq. (16), based on distributions of Tss

r jk
and Sr j , a set of L

2 discrete values bt ; t

¼ 1;…; L2 can be generated using Eq. (24). Another set of discrete values bt,τ=1,…,L2

can be obtained by sorting the elements in bt ; t ¼ 1;…; L2 in an ascending order.
Distribution of Dr jk is then computed as shown in Eq. (25). Given distributions of Dr jk

and Tr jr jþ1
, distribution of Ar jþ1k in Eq. (17) can be computed in the same way as Dr jk .

bt ¼ v
Tss
r jk t1εð Þ þ vSr j t2εð Þ; t1 ¼ 1;…; L; t2 ¼ 1;…; L; t ¼ t1t2 ð24Þ

vDr jk t1εð Þ← 1

L

XL
t2¼1

b t1−1ð ÞLþt2 ; t1 ¼ 1;…; L ð25Þ

Expected values E Wr jk

� �
, E Pr jk

� �
and E(Zk) in Eq. (1) can be estimated as shown

in Eqs. (26), (27) and (28) respectively, given the distribution of Ar jk .

E Wr jk

� � ¼
0; if er j < b

Ar jk

1Xterj
t¼1

ε er j−b
Ar jk

t

� �
; if b

Ar jk

terj ≤er j < b
Ar jk

terjþ1; 1≤terj≤L� 1

XL
t¼1

ε er j−b
Ar jk

t

� �
; if er j ≥b

Ar jk

L

8>>>>>><>>>>>>:
ð26Þ
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E Pr jk

� � ¼
XL
t¼1

ε b
Ar jk

t −lr j
� �

; if lr j < b
Ar jk

1XL
t¼t lrjþ1

ε b
Ar jk

t −lr j
� �

; if b
Ar jk

t lrj ≤ lr j < b
Ar jk

t lrjþ1; 1≤t lrj≤L−1

0; if lr j ≥b
Ar jk

L

8>>>>>>><>>>>>>>:
ð27Þ

E Zkð Þ ¼

XL
t¼1

ε b
Ar jk

t −d0k−h
� �

; if d0k þ h < b
Ar jk

1 ; j ¼ nk þ 1

XL
t¼thþ1

ε b
Ar jk

t −d0k−h
� �

; if b
Ar jk

th ≤d0k þ h < b
Ar jk

thþ1; 1≤th≤L−1; j ¼ nk þ 1

0; if d0k þ h≥b
Ar jk

L ; j ¼ nk þ 1

8>>>>>>><>>>>>>>:
ð28Þ

The probabilities in Eqs. (7) and (8) can also be estimated, as shown in Eqs. (29)
and (30) respectively.

P Ar jk ≤ lr j
� � ¼

0; if lr j < b
Ar jk

1

t lrjε; if b
Ar jk

t lrj ≤ lr j < b
Ar jk

t lrjþ1; 1≤t lrj≤L−1

1; if lr j ≥b
Ar jk

L

8>><>>: ð29Þ

P Bk ≤hf g ¼
0; if d0k þ h < b

Ar jk

1 ; j ¼ nk þ 1

thε; if b
Ar jk

th ≤d0k þ h < b
Ar jk

thþ1; 1≤th≤L−1; j ¼ nk þ 1

1; if d0k þ h≥b
Ar jk

L ; j ¼ nk þ 1

8>><>>: ð30Þ

Expressions for estimating violations of route duration and service level con-
straints (see Section 3.3.2) in solution s are shown in Eqs. (31) and (32) respectively.

d sð Þ ¼
X
k∈K

max vAr jk β
.
ε

h i
⋅ε

� �
−d0k−h; 0

n o
; r j∈Rk ; j ¼ nk þ 1 ð31Þ

w sð Þ ¼
X
k∈K

Xnkþ1

j¼1

max vAr jk αr j

.
ε

h i
⋅ε

� �
−lr j ; 0

n o
; r j∈Rk ð32Þ

5 Computational Results

5.1 Accuracy of the α-Discrete Approximation Method

In this section, the accuracy of the proposed α-discrete approximation method was
tested by comparison with Chang’s method (Chang et al. 2009). Stochastic simulation
(Li et al. 2010) provided the ground true value for the comparison. The test example
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is a simple partial route shown in Fig. 2, where D denotes the depot and Ci represents
the customer, i=1,…,5. In Fig. 2, numbers within square brackets are customers’ soft
time windows, whereas numbers within round brackets represent the mean and
variance of link travel times. Departure time from D was set to zero.

For the proposed α-discrete approximation method, L was set to 100. For stochas-
tic simulation, a total of 106 iterations were performed. Since arrival times were
assumed to be normally distributed in Chang’s method (Chang et al. 2009),
expressions for computing E Wr jk

� �
, E Pr jk

� �
and customer service levels under the

assumption of normal arrival time distribution are given below,

E Wr jk

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ar jk

� �q
ϕ z1ð Þ þ z1Φ z1ð Þ½ �; r j∈Rk ; 1≤ j≤nk ð33Þ

E Pr jk

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ar jk

� �q
ϕ z2ð Þ−z2 1−Φ z2ð Þ½ �f g; r j∈Rk ; 1≤ j≤nk þ 1 ð34Þ

P Ar jk ≤ lr j
� � ¼ Φ z2ð Þ; r j∈Rk ; 1≤ j≤nk þ 1 ð35Þ

where z1 ¼ er j−E Ar jk

� �� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ar jk

� �q
; z2 ¼ lr j−E Ar jk

� �� �
=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Ar jk

� �q
; ϕ( ∙) is

the probability density function of standard normal distribution; Φ(∙) is the cumula-
tive distribution function of standard normal distribution.

The test was conducted in two scenarios. Link travel times in Fig. 2 were assumed
to follow normal distribution in Scenario 1 and lognormal distribution in Scenario 2.
Given mean and variance of link travel times, parameters for the lognormal distribu-
tion of link travel times can be computed using Eqs. (36) and (37). In both scenarios,
service times at customers were assumed to follow the same normal distribution
N(10,52). The test results are shown in Tables 1 to 4.

μ Tr jr jþ1

� � ¼ log E Tr jr jþ1

� �2. ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var Tr jr jþ1

� �þ E Tr jr jþ1

� �2q	 

; r j∈Rk ; 0≤ j≤nk ð36Þ

σ Tr jr jþ1

� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
log Var Tr jr jþ1

� �.
E Tr jr jþ1

� �2 þ 1
� �r

; r j∈Rk ; 0≤ j≤nk ð37Þ

In Scenario 1, it can be seen from Tables 1 to 3 that Chang’s method performed well at
the first customerC1, but not at the rest of the customers. This result is expected, since the
arrival time at C1 is exactly normally distributed in Scenario 1, but arrival times at
customers C2 to C5 are not, due to the impact of time windows. In Scenario 2, the
estimation error is even larger than that in Scenario 1 by Chang’s method. For example,
the relative error between the estimated expected tardiness at C3 by Chang’s method and

C3C2D C1
2(60,20 )

C4 C5
2(50,20 ) 2(40,15 ) 2(40,20 ) 2(30,10 )

[50,80] [100,140] [190,220] [250,275] [280,300]

Fig. 2 A simple partial route
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that by stochastic simulation is −37.09% in Scenario 1, while it is −63.52% in Scenario 2
(Table 3). The reason is clear that travel and arrival times are not normally distributed in
Scenario 2. This, however, is a basic assumption of Chang’s method.

For the proposed α-discrete approximation method, it was found that larger errors
were produced when estimating expected tardiness. The largest relative error between
the results of α-discrete and stochastic simulation is −1.44 % in Tables 1 and 2, while it
is −9.89 % in Table 3. However, the estimation error by α-discrete is still much smaller
compared with that of Chang’s method, as shown in Tables 1 to 3. In addition, the
accuracy of α-discrete can be further improved by increasing the value of L (e.g. 200).

Table 4 shows that the difference between the estimation error by Chang’s method
and that by α-discrete is small in terms of the total cost of the partial route (−0.52 %

Table 2 Estimated expected earliness at each customer by different methods

Type of travel
time distribution

Approximation
method

Estimated expected earliness at each customer (relative error %)

C1 C2 C3 C4 C5

Normal
(Scenario 1)

Stochastic
simulation

3.95 2.14 19.63 11.82 0.76

Chang’s
method

3.96(0.11) 2.36(10.57) 18.92(−3.62) 11.90(0.67) 1.25(64.98)

α-discrete 3.94(−0.42) 2.11(−1.22) 19.61(−0.12) 11.81(−0.09) 0.75(−1.19)

Lognormal
(Scenario 2)

Stochastic
simulation

3.17 1.61 21.43 12.00 0.56

Chang’s
method

3.96(24.62) 2.36(46.30) 18.92(−11.70) 11.90(−0.83) 1.25(125.57)

α-discrete 3.16(−0.44) 1.61(−0.03) 21.46(0.14) 11.98(−0.15) 0.55(−1.44)

A bolded number represents the smallest one in relevant rows of a particular column

Table 1 Estimated service level at each customer by different methods

Type of
travel time
distribution

Approximation
method

Estimated service level (%) at each customer (relative error %)

C1 C2 C3 C4 C5

Normal
(Scenario 1)

Stochastic
simulation

84.07 74.31 93.42 89.10 63.03

Chang’s
method

84.13(0.07) 73.60(−0.96) 94.79(1.47) 89.85(0.84) 56.92(−9.69)

α-discrete 83.50(−0.68) 73.50(−1.10) 92.50(−0.99) 88.50(−0.67) 62.50(−0.84)

Lognormal
(Scenario 2)

Stochastic
simulation

85.26 77.04 92.24 87.69 65.73

Chang’s
method

84.13(−1.32) 73.60(−4.47) 94.79(2.77) 89.85(2.47) 56.92(−13.40)

α-discrete 84.50(−0.89) 76.50(−0.70) 91.50(−0.81) 87.50(−0.21) 65.50(−0.35)

A bolded number represents the smallest one in relevant rows of a particular column
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versus −0.14 % in Scenario 1 and −2.23 % versus −0.42 % in Scenario 2). This is
because penalty cost takes up only a small part of the total cost in this test example
and mean travel times are the same for both methods. Even though this difference can
be ignored, however, the difference in estimating service levels at each customer by
these two methods is sometimes large (Table 1) and thus can not be neglected.

In conclusion, the accuracy of the proposed α-discrete approximation method is
higher than that of Chang’s method, especially when travel times are not normally
distributed. Thus α-discrete is selected as the approximation method for solution
evaluation and used in the remainder of this paper.

Table 4 Estimated cost of the partial route by different methods

Type of travel
time
distribution

Approximation
method

Estimated cost of the partial route (relative error %)

No. of
vehicles
used

Mean
travel
time

Penalty cost Sum of mean travel
time and penalty cost

Earliness
penalty

Tardiness
penalty

Normal
(Scenario 1)

Stochastic
simulation

1 220 38.30 14.18 272.48

Chang’s
method

1 220 38.39(0.23) 12.67(−10.65) 271.06(−0.52)

α-discrete 1 220 38.22(−0.21) 13.88(−2.12) 272.10(−0.14)

Lognormal
(Scenario 2)

Stochastic
simulation

1 220 38.77 18.46 277.23

Chang’s
method

1 220 38.39(−0.98) 12.67(−31.37) 271.06(−2.23)

α-discrete 1 220 38.76(0) 17.60(−4.66) 276.36(−0.42)

A bolded number represents the smallest one in relevant rows of a particular column

Table 3 Estimated expected tardiness at each customer by different methods

Type of travel
time
distribution

Approximation
method

Estimated expected tardiness at each customer (relative error %)

C1 C2 C3 C4 C5

Normal
(Scenario 1)

Stochastic
simulation

1.67 4.28 0.94 1.65 5.64

Chang’s
method

1.67(0) 4.08(−4.68) 0.59(−37.09) 1.13(−31.92) 5.21(−7.52)

α-discrete 1.65(−1.51) 4.22(−1.37) 0.88(−6.07) 1.58(−4.59) 5.55(−1.61)

Lognormal
(Scenario 2)

Stochastic
simulation

2.29 4.91 1.61 2.83 6.82

Chang’s
method

1.67(−27.31) 4.08(−16.95) 0.59(−63.52) 1.13(−60.20) 5.21(−23.53)

α-discrete 2.25(−2.04) 4.78(−2.56) 1.45(−9.89) 2.59(−8.48) 6.53(−4.30)

A bolded number represents the smallest one in relevant rows of a particular column
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5.2 Performance of the Proposed Model for SVRPSTW

In this section, several of Solomon’s benchmark problems (Solomon 1987) were
adapted as test instances to demonstrate the performance of the proposed model. In
the remainder of this section, the test dataset and experiment settings are introduced
first, followed by the computational results of the proposed model on this dataset.

5.2.1 Test Dataset and Experiment Settings

The well-known Solomon’s benchmark problems (Solomon 1987) have been chosen
as test datasets by many previous studies on VRPTW (Taillard et al. 1997; Cordeau et
al. 2001; Chiang and Russell 2004; Nagata et al. 2009). Several factors were
considered when these benchmark problems were generated, such as geographical
locations of customers and tightness of time windows. In this study, seven of the
benchmark problems were chosen and adapted for the demonstration of the proposed
model. Their major characteristics are listed in Table 5.

Three types of problems according to the geographical locations of customers are
shown in Table 5. For each problem type, two or three instances were chosen with
different time window width sizes. For each problem instance, there are a total of 20
customers and the sum of customer demands is listed in Table 5. Vehicle capacity is
200 units in each problem instance. Travel times were assumed to follow lognormal
distribution and service times were assumed to be normally distributed. The COVof
the travel times was randomly generated from [0.2, 0.6]. Given the mean and variance
of travel times, parameters for the lognormal distribution of travel times can be
computed using Eqs. (36) and (37). This dataset is chosen to demonstrate the
applicability of the proposed model on problem instances with different characteris-
tics. Additional data (e.g. coordinates and time windows) of the dataset can be found
on http://web.cba.neu.edu/~msolomon/problems.htm.

The proposed solution algorithm SVRP-ITS was implemented in Matlab 7.5.0 and
run on a PC with a four-core Inter Core i7 3.40 GHz CPU (only one core was used)
and 4 GB RAM. The maximum number of tabu search iterations η was set to 2000. In
local search improvement phases, tabu search stops if the best feasible solution has
not been improved for 200 consecutive iterations. For the proposed α-discrete
approximation method, L was set to 100.

Each problem instance was tested in four scenarios, with parameter settings of the
proposed model in these scenarios shown in Table 6. In the last scenario, customers
were divided into two groups: the first 6 customers being the first group and the rest
14 the second group. It was assumed that customers in the first group require higher
service levels than those in the second group.

5.2.2 Computational Results of the Proposed Model on a Typical Problem Instance

In this section, one of the problem instances RC101.20 in Table 5 was selected
as a typical example to demonstrate the performance of the proposed model.
RC101.20 was considered typical because of the mixed (randomly distributed
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and/or clustered) geographical locations of customers in that problem and
because the time window width (30 min) is common in just-in-time production
(Chang et al. 2009). Computational results of the proposed model on RC101.20
are shown in Table 7.

Table 7 shows that the number of vehicles used m in Scenario 1 is the
smallest among all the four scenarios. Because in achieving the primary objec-
tive of the proposed model (i.e. minimizing m while satisfying all the con-
straints, Section 2), constraints are the weakest in Scenario 1 with no customer
service level constraints imposed (Table 6). In such a case, capacity constraint
Eq. (6) determines the number of required vehicles in the solution. As the sum
of customer demands is 430 units in RC101.20 (Table 5) and the vehicle
capacity is 200, at least 3 vehicles are required in the solution, as shown in
Table 7. With limited number of vehicles used in Scenario 1, customer service
levels cannot be ensured. The tardiness penalty cost is the largest and the mean
customer service level is the lowest in this scenario.

Table 6 Parameter settings of the proposed model for each problem instance in different scenarios

Scenario Parameter settings of the proposed model

l1i,i∊V l2i, i∊V αi,i∊V l1,0 l2,0 l3 α0 β f

1 0.5 2 0 0 1 0 0 0 1000

2 0.5 2 0.5 0 1 0 0 0 1000

3 0.5 2 0.8 0 1 0 0 0 1000

4 0.5 4a, 2b 0.8a, 0.5b 0 1 0 0 0 1000

A bolded number represents the smallest one in relevant rows of a particular column
a Parameter setting for customers in the first group
b Parameter setting for customers in the second group

Table 7 Computational results of the proposed model on RC101.20

Scenario Computational results of the proposed model

No. of
vehicles
used

Mean
travel
time

Penalty cost Mean
service
levela

Sum of mean travel
time and penalty cost

Total
costb

Earliness
penalty

Tardiness
penalty

RC101.20_1 3 338.33 29.72 176.53 69.30% 544.58 3544.58

RC101.20_2 4 429.31 51.05 22.62 93.92 % 502.99 4502.99

RC101.20_3 5 455.75 85.21 6.49 98.15 % 547.45 5547.45

RC101.20_4 4 433.58 47.26 40.93 91.27 % 521.77 4521.77

A bolded number represents the smallest one in relevant rows of a particular column
aMean value of the service levels at the 20 customers in the problem;
b Total cost equals to the sum of fixed vehicle employment cost, mean travel time and penalty cost
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In Scenario 2, a minimum service level of 50 % was specified for each customer in
RC101.20. Consequently, the number of required vehicles increases in this scenario
(Table 7). With one more vehicle used, the mean customer service level is greatly
improved compared with that in Scenario 1. This result implies that carriers may
consider adding one more vehicle to their fleet to improve their service quality. In
Scenario 3, required customer service levels were further increased to 80 %, resulting
in a high mean customer service level (Table 7). Whereas the number of required
vehicles in this scenario is the largest among all the four scenarios.

In Scenario 4, only thirty percent of the customers in RC101.20 (i.e. customers in
the first group) were guaranteed a minimum service level of 80 %, while for others
(i.e. customers in the second group) the value was 50 %. This differentiation among
customers according to their diverse service level preferences leads to a reduction in
the number of required vehicles in Scenario 4, compared with that in Scenario 3
(Table 7).

It can be also found from Table 7 that mean travel time increases when more
vehicles are used. For example, mean travel time increases by 26.89 % in Scenario 2
compared with that in Scenario 1. Earliness penalty cost also increases in line with the
increase in the number of vehicles used. The reason is that, in such a case, on average,
fewer customers will be assigned to one vehicle. Additionally, the duration of each
route will not necessarily become shorter, due to the existence of time windows.
Therefore more time might be spent in waiting at customer locations. Finally, it is
shown in Table 7 that the total cost is the highest in Scenario 3, since the number of
vehicles used is the largest in that scenario.

5.2.3 Computational Results of the Proposed Model on Other Problem Instances

To demonstrate the applicability of the proposed model on different types of
problems, the proposed model was solved on the other six problem instances
in Table 5 (except RC101.20) in this section. The computational results are
displayed in Table 8.

A large increase in the number of vehicles used in the solution (from 2 to 5) is
found from Scenario 1 to Scenario 2 for problem R105.20 in Table 8. The trade-off is
that the mean customer service level is greatly improved (from 30.65 % in Scenario 1
to 90.40 % in Scenario 2). For Scenarios 2 to 4 of problem R105.20, the number of
vehicles used is the same, although the required customer service levels differ in these
scenarios (Table 5). In these cases, the trade-off is between the mean travel time and
the tardiness penalty cost, with the number of required vehicles kept the same. Similar
trends can be found for problem R109.20, except that the increase in the number of
vehicles used from Scenario 1 to Scenario 2 is smaller for R109.20 than that for
R105.20. The reason is that the time windows specified by customers were tighter in
Problem R105.20 than those in R109.20 (Table 5).

For problems C101.20 and C106.20, the total cost is the smallest in Scenario 2
among all four scenarios as shown in Table 8. This is because the cost paid for
additional vehicles is compensated by the reduction in the tardiness penalty cost. In
Scenario 4 of these two problem instances, a reduction in the number of required
vehicles is seen again because of the differentiation among customers according to
their diverse service level preferences.
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For problems RC106.20 and RC107.20, it can be seen from Table 8 that solutions
in some of the scenarios are the same. For example, the solution of problem
RC106.20 in Scenario 1 is the same as that in Scenario 2. The reason is that for
problem RC106.20 at least 3 vehicles were required in Scenario 1 with no customer
service level imposed (for the same reason as stated in Section 5.2.2 for problem
RC101.20). With this number of vehicles used, customer service levels in Scenario 1

Table 8 Computational results of the proposed model on the other 6 problem instances

Scenario Computational results of the proposed model

No. of
vehicles
used

Mean
travel
time

Penalty cost Mean
service
levela

Sum of mean travel
time and penalty cost

Total
costb

Earliness
penalty

Tardiness
penalty

R105.20_1 2 350.78 12.13 1893.61 30.65% 2256.52 4256.52

R105.20_2 5 455.91 84.78 32.62 90.40 % 573.31 5573.31

R105.20_3 5 524.18 76.29 24.80 94.47 % 625.27 5625.27

R105.20_4 5 487.19 79.78 39.44 91.43 % 606.41 5606.41

R109.20_1 2 318.0 10.06 1259.10 48.35% 1587.16 3587.16

R109.20_2 4 392.16 42.01 20.05 95.40 % 454.21 4454.21

R109.20_3 4 428.62 27.46 13.28 96.65 % 469.36 4469.36

R109.20_4 4 394.15 57.63 24.94 93.93 % 476.71 4476.71

C101.20_1 2 160.82 29.45 1612.38 47.0% 1802.64 3802.64

C101.20_2 3 250.18 217.52 82.81 90.85 % 550.51 3550.51

C101.20_3 4 283.04 252.36 49.40 93.80 % 584.80 4584.80

C101.20_4 3 275.17 205.02 108.69 90.55 % 588.88 3588.88

C106.20_1 2 160.82 26.34 1505.31 50.95% 1692.46 3692.46

C106.20_2 3 248.76 194.60 78.02 91.70 % 521.37 3521.37

C106.20_3 4 281.62 230.93 45.17 94.55 % 557.72 4557.72

C106.20_4 3 250.18 201.11 81.56 92.15 % 532.85 3532.85

RC106.20_1 3 329.76 22.33 65.0 91.92% 417.09 3417.09

RC106.20_2 3 329.76 22.33 65.0 91.92% 417.09 3417.09

RC106.20_3 4 387.13 32.47 9.19 98.25 % 428.79 4428.79

RC106.20_4 3 329.76 22.33 66.42 91.92% 418.51 3418.51

RC107.20_1 3 289.67 25.12 36.46 93.75 % 351.25 3351.25

RC107.20_2 3 289.67 25.12 36.46 93.75 % 351.25 3351.25

RC107.20_3 3 353.48 25.22 23.90 96.37 % 402.60 3402.60

RC107.20_4 3 307.59 25.22 45.88 93.22% 378.69 3378.69

A bolded number represents the smallest one in relevant rows of a particular column
aMean value of the service levels at the 20 customers in the problem;
b Total cost equals to the sum of fixed vehicle employment cost, mean travel time and penalty cost
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already reached the required level in Scenario 2. Therefore the problem solution for
Scenario 2 is the same as that in Scenario 1.

6 Conclusions

A stochastic vehicle routing problem with soft time windows considering travel and
service time uncertainties is presented in this paper. A new stochastic programming
model has been proposed to minimize carrier’s total cost while ensuring a minimum
on-time arrival probability at each customer location. To solve the proposed model,
an iterated tabu search heuristic algorithm was developed. A route reduction mech-
anism was incorporated in this heuristics to reduce the number of required vehicles. A
discrete approximation method has been proposed to estimate the arrival time distri-
butions of vehicles in the presence of time windows.

Computational results showed that the accuracy of the proposed α-discrete approx-
imation method is higher than that of Chang’s method (Chang et al. 2009), especially
when travel times are not normally distributed. Although travel times were assumed to
be normal or lognormal in the test example, it is noted thatα-discrete can also be applied
for other travel time distributions. In addition, several numerical examples were carried
out to demonstrate the performance of the proposed SVRPSTW model. Computational
results confirmed that the proposedmodel can be applied on different types of problems.
Various trade-offs between carrier’s total cost and customer service level can be explored
using the proposed model. Results indicated that the proposed model can easily be
adapted to multi-class customers with various service level preferences by imposing
appropriate customer service level constraints.

The computational efficiencies of the proposed α-discrete approximation method,
Chang’s method (Chang et al. 2009) and stochastic simulation (Li et al. 2010) will be
investigated in future work. More effort is also required to improve the efficiency of
the proposed solution algorithm for solving larger problem instances. In addition, it is
noted that VRP has been studied in combination with other problems. For example,
location-routing problems (Bozkaya et al. 2010; Toyoglu et al. 2012; Silva and Gao
2012) combine the problems of facility location and vehicle routing. It is interesting
to investigate the effects of travel time uncertainties on these problems.
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